Skip to main content
Log in

Recent Advances in the Pharmacokinetics of Local Anaesthetics

Long-Acting Amide Enantiomers and Continuous Infusions

  • Review Articles
  • Drug Delivery Systems
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The most widely used long-acting amide local anaesthetic is bupivacaine, a racemic mixture of 2 stereoisomers. However, there is evidence that the use of single enantiomer compounds offers advantages over racemic agents.

Ropivacaine, the recently introduced propyl homologue of bupivacaine, is a pure S-(−)-enantiomer. It is associated with a reduced incidence of both cardiovascular and central nervous system toxicity, a concern with racemic bupivacaine, in preclinical studies. The relevant pharmacokinetic differences include a lower lipid solubility, a slightly higher plasma clearance and shorter elimination half-life (t1/2β) compared with racemic bupivacaine, with a similar degree of plasma protein binding.

More recently levobupivacaine, the pure S-(−)-enantiomer of bupivacaine, has been produced. Stereoselective differences have been observed between the 2 enantiomers and the racemic mixture, with levobupivacaine exhibiting a slightly higher degree of plasma protein binding, a lower volume of distribution, a higher plasma clearance, and a shorter t1/2β than the R-(+)-enantiomer. In common with ropivacaine, levobupivacaine has been shown to have a reduced incidence of toxicity in comparison the R-(+)-enantiomer in preclinical studies, explained in part by a reduced affinity to both brain and myocardial tissue.

Racemic bupivacaine is increasingly administered by continuous infusion to provide prolonged postoperative analgesia. The pharmacokinetic profile of the drug administered in this manner has only recently been elucidated and indicates a slow rise in total plasma concentration with increasing duration of infusion, mitigated by changes in plasma protein concentrations during the postoperative period. This appears to be the predominant reason why complications related to systemic toxicity are rarely observed with this technique. However, continuous administration of individual enantiomers may potentially serve as a safer option in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denson DD, Behbehani MM, Gregg RV. Enantiomer-specific effects of an intravenously administered arrhythmogenic dose of bupivacaine on neurons of the nucleus tractus solitarius and the cardiovascular system in the anesthetized rat. Reg Anesth 1992; 17 (6): 311–6.

    PubMed  CAS  Google Scholar 

  2. Nancarrow C, Rutten AJ, Runciman WB, et al. Myocardial and cerebral drug concentrations and the mechanisms of death after fatal intravenous doses of lidocaine, bupivacaine, and ropivacaine in the sheep. Anesth Analg 1989; 69 (3): 276–83.

    Article  PubMed  CAS  Google Scholar 

  3. Feldman HS, Arthur GR, Covino BG. Comparative systemic toxicity of convulsant and supraconvulsant doses of intravenous ropivacaine, bupivacaine, and lidocaine in the conscious dog. Anesth Analg 1989; 69 (6): 794–801.

    Article  PubMed  CAS  Google Scholar 

  4. Scott DB, Lee A, Fagan D, et al. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg 1989; 69 (5): 563–9.

    Article  PubMed  CAS  Google Scholar 

  5. Zaric D, Nydahl PA, Philipson L, et al. The effect of continuous lumbar epidural infusion of ropivacaine (0.1%, 0.2%, and 0.3%) and 0.25% bupivacaine on sensory and motor block in volunteers: a double-blind study. Reg Anesth 1996; 21 (1): 14–25.

    PubMed  CAS  Google Scholar 

  6. Tucker GT. Pharmacokinetics of local anaesthetics. Br J Anaesth 1986; 58 (7): 717–31.

    Article  PubMed  CAS  Google Scholar 

  7. Santos AC, Arthur GR, Lehning EJ, et al. Comparative pharmacokinetics of ropivacaine and bupivacaine in nonpregnant and pregnant ewes. Anesth Analg 1997; 85 (1): 87–93.

    PubMed  CAS  Google Scholar 

  8. Arthur GR, Feldman HS, Covino BG. Comparative pharmacokinetics of bupivacaine and ropivacaine, a new amide local anesthetic. Anesth Analg 1988; 67 (11): 1053–8.

    PubMed  CAS  Google Scholar 

  9. Katz JA, Sehlhorst CS, Thompson GA, et al. Pharmacokinetics of intravenous and epidural ropivacaine in the rhesus monkey. Biopharm Drug Dispos 1993; 14 (7): 579–88.

    Article  PubMed  CAS  Google Scholar 

  10. Thompson GA, Turner PA, Bridenbaugh PO, et al. The influence of diazepam on the pharmacokinetics of intravenous and epidural bupivacaine in the rhesus monkey. Anesth Analg 1986; 65 (2): 151–5.

    PubMed  CAS  Google Scholar 

  11. Rutten AJ, Mather LE, Plummer JL, et al. Postoperative course of plasma protein binding of lignocaine, ropivacaine and bupivacaine in sheep. J Pharm Pharmacol 1992; 44: 355–8.

    Article  PubMed  CAS  Google Scholar 

  12. Rutten AJ, Mather LE, Nancarrow C, et al. Cardiovascular effects and regional clearances of intravenous ropivacaine in sheep. Anesth Analg 1990; 70 (6): 577–82.

    Article  PubMed  CAS  Google Scholar 

  13. Santos AC, Pedersen H, Sallusto JA, et al. Pharmacokinetics of ropivacaine in nonpregnant and pregnant ewes. Anesth Analg 1990; 70 (3): 262–6.

    Article  PubMed  CAS  Google Scholar 

  14. Lee A, Fagan D, Lamont M, et al. Disposition kinetics of ropivacaine in humans. Anesth Analg 1989; 69 (6): 736–8.

    Article  PubMed  CAS  Google Scholar 

  15. Emanuelsson BM, Persson J, Sandin S, et al. Intraindividual and interindividual variability in the disposition of the local anesthetic ropivacaine in healthy subjects. Ther Drug Monit 1997; 19 (2): 126–31.

    Article  PubMed  CAS  Google Scholar 

  16. Halldin MM, Bredberg E, Angelin B, et al. Metabolism and excretion of ropivacaine in humans. Drug Metab Dispos 1996; 24 (9): 962–8.

    PubMed  CAS  Google Scholar 

  17. Ekstrom G, Gunnarsson UB. Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes. Drug Metab Dispos 1996; 24 (9): 955–61.

    PubMed  CAS  Google Scholar 

  18. Katz JA, Bridenbaugh PO, Knarr DC, et al. Pharmacodynamics and pharmacokinetics of epidural ropivacaine in humans. Anesth Analg 1990; 70 (1): 16–21.

    Article  PubMed  CAS  Google Scholar 

  19. Morrison LM, Emanuelsson BM, McClure JH, et al. Efficacy and kinetics of extradural ropivacaine: comparison with bupivacaine. Br J Anaesth 1994; 72 (2): 164–9.

    Article  PubMed  CAS  Google Scholar 

  20. Emanuelsson BM, Zaric D, Nydahl PA, et al. Pharmacokinetics of ropivacaine and bupivacaine during 21 hours of continuous epidural infusion in healthy male volunteers. Anesth Analg 1995; 81 (6): 1163–8.

    PubMed  CAS  Google Scholar 

  21. Erichsen CJ, Sjovall J, Kehlet H, et al. Pharmacokinetics and analgesic effect of ropivacaine during continuous epidural infusion for postoperative pain relief. Anesthesiology 1996; 84 (4): 834–42.

    Article  PubMed  CAS  Google Scholar 

  22. Burm AGL, Vermeulen NPE, Van Kleef JW, et al. Pharmacokinetics of lignocaine and bupivacaine in surgical patients following epidural administration: simultaneous investigation of absorption and disposition kinetics using stable isotopes. Clin Pharmacokinet 1987; 13: 191–203.

    Article  PubMed  CAS  Google Scholar 

  23. Burm AGL. Clinical pharmacokinetics of epidural and spinal anesthesia. Clin Pharmacokinet 1989; 16: 283–311.

    Article  PubMed  CAS  Google Scholar 

  24. Kopacz DJ, Emanuelsson BM, Thompson GE, et al. Pharmacokinetics of ropivacaine and bupivacaine for bilateral intercostal blockade in healthy male volunteers. Anesthesiology 1994; 81 (5): 1139–48.

    Article  PubMed  CAS  Google Scholar 

  25. Hickey R, Blanchard J, Hoffman J, et al. Plasma concentrations of ropivacaine given with or without epinephrine for brachial plexus block. Can J Anaesth 1990; 37 (8): 878–82.

    Article  PubMed  CAS  Google Scholar 

  26. Mather LE. Disposition of mepivacaine and bupivacaine enantiomers in sheep. Br J Anaesth 1991; 67 (3): 239–46.

    Article  PubMed  CAS  Google Scholar 

  27. Rutten AJ, Mather LE, McLean CF. Cardiovascular effects and regional clearances of i.V. bupivacaine in sheep: enantiomeric analysis. Br J Anaesth 1991; 67 (3): 247–56.

    Article  PubMed  CAS  Google Scholar 

  28. Gristwood R, Bardsley H, Baker H, et al. Reduced cardiotoxicity of levobupivacaine compared with racemic bupivacaine (Marcaine): new clinical evidence. Expert Opin Invest Drugs 1994; 3 (11): 1209–12.

    Google Scholar 

  29. Mazoit JX, Boico O, Samii K. Myocardial uptake of bupivacaine: II. Pharmacokinetics and pharmacodynamics of bupivacaine enantiomers in the isolated perfused rabbit heart. Anesth Analg 1993; 77 (3): 477–82.

    PubMed  CAS  Google Scholar 

  30. Rutten AJ, Mather LE, McLean CF, et al. Tissue distribution of bupivacaine enantiomers in sheep. Chirality 1993; 5 (7): 485–91.

    Article  PubMed  CAS  Google Scholar 

  31. Mather LE, Rutten AJ, Plummer JL. Pharmacokinetics of bupivacaine enantiomers in sheep: influence of dosage regimen and study design. J Pharmacokinet Biopharm 1994; 22 (6): 481–98.

    PubMed  CAS  Google Scholar 

  32. Mazoit JX, Lin Sen C, Samii K. Binding of bupivacaine to human serum proteins, isolated albumin and isolated alpha-1-acid glycoprotein: differences between the two enantiomers are partly due to cooperativity. J Pharmacol Exper Ther 1996; 276 (1): 109–15.

    CAS  Google Scholar 

  33. Burm AG, van der Meer AD, van Kleef JW, et al. Pharmacokinetics of the enantiomers of bupivacaine following intravenous administration of the racemate. Br J Clin Pharmacol 1994; 38 (2): 125–9.

    Article  PubMed  CAS  Google Scholar 

  34. Berrisford RG, Sabanathan S, Mearns AJ, et al. Plasma concentrations of bupivacaine and its enantiomers during continuous extrapleural intercostal nerve block. Br J Anaesth 1993; 70 (2): 201–4.

    Article  PubMed  CAS  Google Scholar 

  35. Mather LE, McCall P, McNicol PL. Bupivacaine enantiomer pharmacokinetics after intercostal neural blockade in liver transplantation patients. Anesth Analg 1995; 80 (2): 328–35.

    PubMed  CAS  Google Scholar 

  36. Blake DW, Bjorksten A, Dawson P, et al. Pharmacokinetics of bupivacaine enantiomers during interpleural infusion. Anaesth Intens Care 1994; 22 (5): 522–8.

    CAS  Google Scholar 

  37. De Leon-Casasola OA, Lema MJ. Postoperative epidural opioid analgesia: what are the choices? Anesth Analg 1996; 83: 867–75.

    PubMed  Google Scholar 

  38. Mazoit JX, Lambert C, Berdeaux A, et al. Pharmacokinetics of bupivacaine after short and prolonged infusions in conscious dogs. Anesth Analg 1988; 67: 961–6.

    Article  PubMed  CAS  Google Scholar 

  39. Denson DD, Thompson GA, Raj PP, et al. Continuous perineural infusions of bupivacaine for prolonged analgesia: pharma-cokinetic considerations. Int J Clin Pharmacol Ther Toxicol 1983; 21 (12): 591–7.

    PubMed  CAS  Google Scholar 

  40. Richter O, Klein K, Abel J, et al. The kinetics of bupivacaine (Carbostesin) plasma concentrations during epidural anesthesia following intraoperative bolus injection and subsequent continuous infusion. Int J Clin Pharmacol Ther Toxicol 1984; 22: 611–7.

    PubMed  CAS  Google Scholar 

  41. Raj PP, Knarr DC, Vigdorth E, et al. Comparison of continuous epidural infusion of a local anesthetic and administration of systemic narcotics in the management of pain after total knee replacement surgery. Anesth Analg 1987; 66: 401–6.

    Article  PubMed  CAS  Google Scholar 

  42. Perkins FM. Pharmacokinetics of bupivacaine following prolonged administration [abstract]. Anesthesiology 1989; 71: 3A.

    Article  Google Scholar 

  43. Bruguerolle B, Dupont M, Lebre P, et al. Bupivacaine chronokinetics in man after a peridural constant rate infusion. Annu Rev Chronopharmacol 1988; 5: 223–6.

    Google Scholar 

  44. Schweitzer SA, Morgan DJ. Plasma bupivacaine concentrations during postoperative continuous epidural analgesia. Anaesth Intens Care 1987; 15: 425–30.

    CAS  Google Scholar 

  45. Wulf H, Winckler K, Maier C, et al. Pharmacokinetics and protein binding of bupivacaine in postoperative epidural analgesia. Acta Anaesthesiol Scand 1988; 32: 530–4.

    Article  PubMed  CAS  Google Scholar 

  46. Kastrissios H, Triggs EJ, Mogg GA, et al. The disposition of bupivacaine following a 72h interpleural infusion in cholecystectomy patients. Br J Clin Pharmacol 1991; 32: 251–4.

    Article  PubMed  CAS  Google Scholar 

  47. Schug SA, Payne JA, Baker P, et al. Non-stationary pharmacokinetics of bupivacaine during continuous interpleural infusion. Acute Pain 1997; 1 (1): 15–20.

    Article  CAS  Google Scholar 

  48. van Kleef JW, Logeman EA, Burm AG, et al. Continuous interpleural infusion of bupivacaine for postoperative analgesia after surgery with flank incisions: a double-blind comparison of 0.25% and 0.5% solutions. Anesth Analg 1992; 75: 268–74.

    Article  PubMed  Google Scholar 

  49. Tuominen M, Pitkanen M, Rosenberg PH. Postoperative pain relief and bupivacaine plasma levels during continuous interscalene brachial plexus block. Acta Anaesthesiol Scand 1987; 31: 276–8.

    Article  PubMed  CAS  Google Scholar 

  50. Rosenberg PH, Pere P, Hekali R, et al. Plasma concentrations of bupivacaine and two of its metabolites during continuous interscalene brachial plexus block. Br J Anaesth 1991; 66: 25–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan A. Schug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, J.M., Schug, S.A. Recent Advances in the Pharmacokinetics of Local Anaesthetics. Clin Pharmacokinet 36, 67–83 (1999). https://doi.org/10.2165/00003088-199936010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199936010-00005

Keywords

Navigation