Skip to main content

Clinical Pharmacokinetics of Nabumetone

The Dawn of Selective Cyclo-Oxygenase-2 Inhibition?

Summary

Nabumetone is a nonsteroidal anti-inflammatory drug (NSAID) of the 2,6-disubstituted naphthyl-alkanone class. Nabumetone is metabolised to an active metabolite 6-methoxy-2-napthylacetic acid (6-MNA) which is a relatively selective cyclo-oxygenase-2 inhibitor that has anti-inflammatory and analgesic properties. Nabumetone and its metabolites bind extensively to plasma albumin.

Nabumetone is eliminated following biotransformation to 6-MNA, which does not undergo enterohepatic circulation and the respective glucoroconjugated metabolites are excreted in urine. Substantial concentrations of 6-MNA are attained in synovial fluid, which is the proposed site of action in chronic inflammatory arthropathies. A smaller area under the plasma concentration-time curve (AUC) is evident at steady state as compared with a single dose; this is possibly due to an increase in the volume of distribution and saturation of protein binding. Relationships between 6-MNA concentrations and the therapeutic and toxicological effects have yet to be elucidated for this NSAID.

Renal failure significantly reduces 6-MNA elimination but steady-state concentrations of 6-MNA are not increased, possibly because of nonlinear protein binding. Elderly patients with osteoarthritis demonstrate decreased elimination and increased plasma concentrations of nabumetone as compared with young healthy volunteers. Rheumatic disease activity also influences 6-MNA plasma concentrations, as patients with more active disease and lower serum albumin concentrations demonstrate a lower area under the plasma concentration versus time curve. A reduced bioavailability of 6-MNA in patients with severe hepatic impairment is also evident.

Dosage adjustment may be required in the elderly, patients with active rheumatic disease and those with hepatic impairment, but not in patients with mild-to-moderate renal failure.

This is a preview of subscription content, access via your institution.

References

  1. Jeremy JY, Mikhailidis DP, Barradas MA. The effect of nabumetone and its principal active metabolite on in vitro human gastric mucosal prostanoid synthesis and platelet function. Br J Rheum 1990; 29: 116–9

    Article  CAS  Google Scholar 

  2. Goudie AC, Gaster LM, Lake AW, et al. 4-(6-Methoxy-2-naphthyl)butan-2-one and related analogues, a novel structural class of antiinflammatory compounds. J Med Chem 1978; 219(12): 1260–4

    Article  Google Scholar 

  3. Friedel HA, Todd PA. Nabumetone: a preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in rheumatic diseases. Drugs 1988; 35(5): 504–24

    PubMed  Article  CAS  Google Scholar 

  4. Friedel HA, Langtry HD, Buckley MM. Nabumetone: a reappraisal of its pharmacology and therapeutic use in rheumatic diseases. Drugs 1993; 45(1): 131–6

    PubMed  Article  CAS  Google Scholar 

  5. Ray JE, Day RO. High-performance liquid Chromatographic determination of a new anti-inflammatory agent, nabumetone, and its major metabolite in plasma using fluorimetric detection. J Chromatogr 1984; 336: 234–8

    PubMed  Article  CAS  Google Scholar 

  6. Maleev A, Vlahov V, Gruev I, et al. Liver insufficiency as a factor modifying the pharmacokinetic characteristic of the preparation nabumetone. Int J Clin Pharmacol Ther Toxicol 1986; 24(8): 425–9

    PubMed  CAS  Google Scholar 

  7. Torre D, Sampietro C, Maggiolo F. Blood and tissue fluid levels of a new non- steroidal anti-inflammatory preparation of nabumetone. J Int Med Res 1987; 15: 368–73

    PubMed  CAS  Google Scholar 

  8. Daigneault EA, Ferslew KE, Stanton P. Bioequivalence study of nabumetone: tablet versus suspension. Am J Med 1987; 83 Suppl. 4B: 11–4

    PubMed  Article  CAS  Google Scholar 

  9. Kendall MJ, Chellingsworth MC, Jubb R, et al. A pharmacokinetic study of the active metabolite of nabumetone in young healthy subjects and older arthritis patients. Eur J Clin Pharmacol 1989; 36: 299–305

    PubMed  Article  CAS  Google Scholar 

  10. Miehlke RK, Schneider S, Sorgel F, et al. Penetration of the active metabolite of nabumetone into synovial fluid and adherent tissue of patients undergoing knee joint surgery. Drugs 1990; 40 Suppl. 5: 57–61

    PubMed  Article  Google Scholar 

  11. Haddock RE, Jeffrey DJ, Llloyd JA, et al. Metabolism of nabumetone (BRL 1477) by various species including man. Xenobiotica 1984; 14(4): 327–37

    PubMed  Article  CAS  Google Scholar 

  12. Von Schrader HW, Buscher G, Dierdorf D, et al. Nabumetone. A novel anti-inflammatory drug: the influence of food, milk, antacids, and analgesics on bioavailability of single oral doses. Int J Clin Pharmacol Ther Toxicol 1983; 21(6): 311–21

    Google Scholar 

  13. Von Schrader HW, Buscher G, Dierdorf D, et al. Nabumetone. A novel anti-inflammatory drug: bioavailability after different dosage regimens. Int J Clin Pharmacol Ther Toxicol 1984; 22(12): 672–6

    Google Scholar 

  14. Nandi KL, Corless D, Undre NA, et al. A study of the pharmacokinetics, effectiveness, and tolerance of nabumetone, a novel anti-inflammatory drug, in elderly patients. Roy Soc Med Int Sym Ser 1985; 69: 163–72

    Google Scholar 

  15. Hamdy RC, Price JD, Undre NA, et al. The pharmacokinetics of nabumetone in elderly patients. Roy Soc Med Int Sym Ser 1985; 69: 173–9

    Google Scholar 

  16. Boelaert JR, Jonnaert HA, Daneels RF, et al. Nabumetone pharmacokinetics in patients with varying degrees of renal impairment. Am J Med 1987; 83 Suppl. 4B: 107–9

    PubMed  Article  CAS  Google Scholar 

  17. McMahon FG, Vargas R, Ryan JR. Nabumetone kinetics in the young and elderly. Am J Med 1987; 83 Suppl. 4B: 92–5

    PubMed  Article  CAS  Google Scholar 

  18. Terziivanov D, Maleev A, Vlahov V. Nabumetone (BRL 14777) presystemic elimination and disposition in patients with liver impairments. Int J Clin Pharmacol Ther Toxicol 1987; 25(4): 208–13

    PubMed  CAS  Google Scholar 

  19. Brier ME, Aronoff GR. Multiple dose kinetics of nabumetone in renal impairment [abstract]. Clin Res 1990; 38: 520

    Google Scholar 

  20. Brett MA, Buscher G, Ellrich E, et al. Nabumetone: evidence for the lack of enterohepatic circulation of the active metabolite 6-MNA in humans. Drugs 1990; 40 Suppl. 5: 67–70

    PubMed  Article  Google Scholar 

  21. Brier ME, Sloan RS, Aronoff GR. Population pharmacokinetics of the active metabolite of nabumetone in renal dysfunction. Clin Pharmacol Ther 1995; 57: 622–7

    PubMed  Article  CAS  Google Scholar 

  22. Hyneck ML. An overview of the clinical pharmacokinetics of nabumetone. J Rheumatol 1992; 19 Suppl. 36: 20–4

    Google Scholar 

  23. Davies NM, Anderson KE. Clinical pharmacokinetics of naproxen. Clin Pharmacokinet 1997; 32(4): 321–5

    Article  Google Scholar 

  24. Hyneck M, Audet P, Nichols A, et al. Steady-state pharmacokinetics an ex vivo protein binding of nabumetone. Clin Pharmacol Ther 1993; 53: 212 PIII-22

    Google Scholar 

  25. Bourke B, Undre NA, Thawley AR. An investigation into the penetration of nabumetone and its metabolites into synovial fluid in patients with rheumatoid arthritis. Roy Soc Med Int Sym Ser 1985; 69: 31–5

    Google Scholar 

  26. Freeman AM, Undre NA, Thawley AR, et al. Plasma and synovial fluid concentrations of nabumetone and BRL 10720 in patients given nabumetone. Roy Soc Med Int Sym Ser 1984; 69: 40–2

    Google Scholar 

  27. Davies NM, Wallace JL. Non-steroidal anti-inflammatory drug-induced gastrointestinal toxicity: new insights into an old problem. J Gastroenterol 1997; 32(2): 127–33

    PubMed  Article  CAS  Google Scholar 

  28. Blower P. The science — equivalent efficacy and diminished risk. Eur J Rheum Inflamm 1991; 11: 37–57

    Google Scholar 

  29. Reuter BK, Davies NM, Wallace JL. NSAID-enteropathy in rats: role of epithelial permeability, bacterial load, and enterohepatic circulation. Gastroenterology 1997; 112(1): 109–17

    PubMed  Article  CAS  Google Scholar 

  30. Bjarnason I, Fehilly B, Smethurst P, et al. Importance of local versus systemic effects of non-steroidal anti-inflammatory drugs in increasing small intestinal permeability in man. Gut 1991; 32: 275–7

    PubMed  Article  CAS  Google Scholar 

  31. Devlin J, Moots R, Andrews D, et al. High intestinal permeability in patients with inflammatory arthritis is more strongly associated with any NSAID therapy than with diagnosis or disease activity. Arthritis Rheum 1996; S280: 1513

    Google Scholar 

  32. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature New Biol 1971; 231: 232–5

    PubMed  CAS  Google Scholar 

  33. Whittle BJR, Vane JR. A biochemical basis for the gastrointestinal toxicity of non-steroid anti-rheumatoid drugs. Arch Toxicol 1984; 7: 315–22

    Article  CAS  Google Scholar 

  34. Meade EA, Smith WL, DeWitt DL. Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non- steroidal anti-inflammatory drugs. J Biol Chem 1993; 268(9): 6610–4

    PubMed  CAS  Google Scholar 

  35. Davies NM, Wallace JL. Selective inhibitors of cyclooxygenase 2: potential in elderly patients. Drugs Aging 1996; 9(6): 406–17

    PubMed  Article  CAS  Google Scholar 

  36. Lemmel EM, Bolten W, Burgos-Vargas R, et al. Efficacy and safety of meloxicam in patients with rheumatoid arthritis. J Rheumatol 1997; 24(2): 282–90

    PubMed  CAS  Google Scholar 

  37. Bjarnason I, Macpherson A, Rotman H, et al. A randomized, double-blind, crossover comparative endoscopy study on the gastroduodenal tolerability of a highly specific cyclooxygenase-2 inhibitor, flosulide, and diclofenac. Scand J Gastroenterol 1997; 32(2): 126–30

    PubMed  Article  CAS  Google Scholar 

  38. Reuter BK, Asfaha S, Buret A, et al. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 1996; 98: 2076–85

    PubMed  Article  CAS  Google Scholar 

  39. Mizuno H, Sakamoto C, Matsuda K. Induction of cyclooxygenase 2 in gastric mucosal lesions and its inhibition by specific antagonist delays healing in mice. Gastroenterology 1997; 112: 387–97

    PubMed  Article  CAS  Google Scholar 

  40. Voss GD. GI bleeding associated with nabumetone. Am J Hosp Pharm 1994; 51: 2506–8

    PubMed  CAS  Google Scholar 

  41. Eberhardt CE, Coffey RJ, Radhika A, et al. Up regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1996; 107: 1183–8

    Google Scholar 

  42. Kargman SL, O’Neill GP, Vikers PJ, et al. Expression of prostaglandin G/H synthase-1 and -2 protein in human colorectal cancer. Cancer Res 1991; 55: 2556–9

    Google Scholar 

  43. Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial of indomethacin in Alzheimers disease. Neurology 1993; 43: 1609–11

    PubMed  Article  CAS  Google Scholar 

  44. Onoe Y, Miaura C, Kammakayashik T. IL-13 and IL-14 inhibit bone suppressing cyclooxygenase-2 prostaglandin synthesis in osteoblasts. J Immmunol 1996; 156: 758–64

    CAS  Google Scholar 

  45. Fitzgerald DE. Double-blind study to establish whether there is any interaction between nabumetone and warfarin in healthy adult male volunteers. Roy Soc Med In Cong Sym Ser 1985; 69: 47–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neal M. Davies.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Davies, N.M. Clinical Pharmacokinetics of Nabumetone. Clin Pharmacokinet 33, 403–416 (1997). https://doi.org/10.2165/00003088-199733060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199733060-00001

Keywords

  • Adis International Limited
  • Synovial Fluid
  • Clinical Pharmacokinetic
  • Nabumetone
  • Blister Fluid