Skip to main content
Log in

Bioequivalence of Chiral Drugs

Stereospecific versus Non-Stereospecific Methods

  • Review Article
  • Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Guidelines for bioequivalence of non-racemic pharmaceuticals are abundant in the literature. However, few guidelines exist for the bioequivalence of racemic drugs which consist of 2 or more stereoisomers. The aim of this article is to address the question of whether the bioequivalence of racemic drugs should be based on the measurement of the individual enantiomers or that of the total drug.

Several pharmacokinetic-pharmacodynamic cases are examined to test the validity of extrapolating the bioequivalence of racemic drugs to that of their individual enantiomers after administration of the racemate; simulation and experimental data are presented to support these cases.

It is shown that for drugs which exhibit non-linear pharmacokinetics, the results of bioequivalence studies based on the total drug may differ from those based on the individual enantiomers. Similar discrepancies can be shown for a racemic drug with linear pharmacokinetics whose enantiomers substantially differ from each other in their pharmacokinetic parameters. Therefore, it is suggested that stereospecific assays be used for these drugs. Additionally, it is recommended that for racemic drugs which undergo chiral inversion, and for most products with modified release characteristics, the bioequivalence be assessed using stereospecific assays. Conversely, for racemic drugs with linear pharmacokinetics and minimal to modest stereoselectivity in their kinetic parameters, and for those with non-stereoselective pharmacodynamics, the use of stereospecific analytical methods are not warranted.

Finally, the limited, controversial literature in favour of or against the use of stereospecific assays in bioequivalence of chiral drugs are reviewed and a preliminary guideline is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Some views from the Medical Product Agency of the documentation for chiral drugs. Uppsala: Registration Division, Medical Product Agency, 1991

  2. EC-Note for guidance: investigation of chiral active substances, CPMP Working party on quality of medicinal products, CPMP Working party on safety of medicinal products, CPMP Working party on efficacy of medicinal products. 1993 Oct. III/3501/91EN

  3. Ariens E. Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 1984; 26: 663–8

    Article  PubMed  CAS  Google Scholar 

  4. Jamali F, Mehvar R, Pasutto FM. Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci 1989; 78: 695–715

    Article  PubMed  CAS  Google Scholar 

  5. Tucker GT, Lennard MS. Enantiomer specific pharmacokinetics. Pharmacol Ther 1990; 45: 309–29

    Article  PubMed  CAS  Google Scholar 

  6. Drayer DE. Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: an overview. Clin Pharmacol Ther 1986; 40: 125–33

    Article  PubMed  CAS  Google Scholar 

  7. Lee EJD, Williams KM. Chirality: clinical pharmacokinetic and pharmacodynamic considerations. Clin Pharmacokinet 1990; 18: 339–45

    Article  PubMed  CAS  Google Scholar 

  8. Eichelbaum M, Gross AS. Stereochemical aspects of drug action and disposition. In: Testa B, Meyer UA, editors. Advances in drug research. Vol. 28. London: Academic Press, 1996: 1–64

    Google Scholar 

  9. Jamali F, Collins DS, Berry BW, et al. Comparative bioavailability of two flurbiprofen products: stereoselective versus conventional approach. Biopharm Drug Dispos 1991; 12: 435–45

    Article  PubMed  CAS  Google Scholar 

  10. Koytchev R, Alken RG, Mayer O, et al. Bioequivalence studies of two oral propafenone preparations [in German]. Arzneimittel Forschung 1995; 45: 542–5

    PubMed  CAS  Google Scholar 

  11. Midha KK, Hubbard JW, Rawson MJ, et al. The roles of stereochemistry and partial areas in a parallel design study to assess the bioequivalence of two formulations of hydroxychloroquine: a drug with a very long half life. Eur J Pharm Sci 1996; 4: 283–92

    Article  CAS  Google Scholar 

  12. Srinivas NR, Barr WH, Shyu WC, et al. Bioequivalence of two tablet formulations of nadolol using single and multiple dose data: assessment using stereospecific and nonstereospecific assays. J Pharm Sci 1996; 85: 299–303

    Article  PubMed  CAS  Google Scholar 

  13. Nerurkar SG, Dighe SV, Williams RL. Bioequivalence of racemic drugs. J Clin Pharmacol 1992; 32: 935–43

    PubMed  CAS  Google Scholar 

  14. Shah VP, Midha KK, Dighe S, et al. Analytical methods validation: bioavailability, bioequivalence, and pharmacokinetics. J Pharm Sci 1992; 81: 309–12

    Article  Google Scholar 

  15. Blume HH, Midha KK. Bio-international 92, conference on bioavailability, bioequivalence, and pharmacokinetic studies. Eur J Drug Metab Pharmacokinet 1993 Jul–Sep; 18: 225–32

    Article  Google Scholar 

  16. Ariens E. Racemic therapeutics: ethical and regulatory aspects. Eur J Clin Pharmacol 1991; 41: 89–93

    Article  PubMed  CAS  Google Scholar 

  17. Cox SR, Brown MA, Squires DJ, et al. Comparative human study of ibuprofen enantiomer plasma concentrations produced by two commercially available ibuprofen tablets. Biopharm Drug Dispos 1988; 9: 539–49

    Article  PubMed  CAS  Google Scholar 

  18. Nitchuk WM. Regulatory requirements for generic chiral drugs. J Clin Pharmacol 1992; 32: 953–4

    PubMed  CAS  Google Scholar 

  19. Jamali F, Wechter WJ. From controversy to resolution: bioequivalence of racemic drugs [abstract]. J Clin Pharmacol 1992; 32: 955–62

    Google Scholar 

  20. Jamali F. Stereochemistry and bioequivalence. J Clin Pharmacol 1992; 32: 930–4

    PubMed  CAS  Google Scholar 

  21. Hooper WD, Dickinson RG, Gal J. Enantioselective versus non-enantioselective assays in comparative bioavailability studies with racemic drugs. Biopharm Drug Dispos 1992; 13: 383–5

    Article  PubMed  CAS  Google Scholar 

  22. Jamali F. Enantioselective versus non-enantioselective assays in comparative bioavailability studies for racemic drugs. Biopharm Drug Dispos 1992; 13: 385–7

    Article  Google Scholar 

  23. Wright MR, Jamali F. Bioequivalence: stereochemical considerations. Clin Res Reg Affairs 1993; 10: 1–11

    Article  Google Scholar 

  24. Ravis WR, Owen JS. Stereochemical considerations in bioavailability studies. In: Jackson AJ, editor. Generics and bioequivalence. Ann Arbor (MI): CRC Press, 1994: 113–37

    Google Scholar 

  25. Midha KK, Hubbard JW, Mckay G, et al. Stereoselectivity in bioequivalence studies of nortriptyline. J Pharm Sci 1995; 84: 1265–6

    Article  PubMed  CAS  Google Scholar 

  26. Midha KK, Hubbard JW, Rawson M, et al. The impact of stereoisomerism in a bioequivalence study on two formulations of doxepin. Eur J Pharm Sci 1996; 4: 133–8

    Article  CAS  Google Scholar 

  27. Thompson GA, Barker SH, Brezovic CP, et al. Ibuprofen pharmacokinetics are stereoselectively altered by food [abstract]. Pharm Res 1996; 13 Suppl.: S–413

    Google Scholar 

  28. Pasutto FM. Mirror images: the analysis of pharmaceutical enantiomers. J Clin Pharmacol 1992; 32: 917–24

    PubMed  CAS  Google Scholar 

  29. Richmond B, Peterson S, Vescuso P. An academic user’s guide to STELLA. Lyme (NH): High Performance Systems, 1987

    Google Scholar 

  30. Mehvar R. Input rate-dependent stereoselective pharmacokinetics: enantiomeric oral bioavailability and blood concentration ratios after constant oral input. Biopharm Drug Dispos 1992; 13: 597–615

    Article  PubMed  CAS  Google Scholar 

  31. Mehvar R. Input rate-dependent stereoselective pharmacokinetics: effect of pulsatile oral input. Chirality 1994; 6: 185–95

    Article  PubMed  CAS  Google Scholar 

  32. Gill TS, Hopkins KJ, Rowland M. Stereospecific assay of nicoumalone: application to pharmacokinetic studies in man. Br J Clin Pharmacol 1988; 25: 591–8

    Article  PubMed  CAS  Google Scholar 

  33. Gupta SK, Hwang S, Atkinson L, et al. Simultaneous first-order and capacity-limited elimination kinetics after oral administration of verapamil. J Clin Pharmacol 1996; 36: 25–34

    PubMed  CAS  Google Scholar 

  34. Eichelbaum M, Mikus G, Vogelgesang B. Pharmacokinetics of (+)-, (−)-, and (±)-verapamil after intravenous administration. Br J Clin Pharmacol 1984; 17: 453–8

    Article  PubMed  CAS  Google Scholar 

  35. Wagner J. Predictability of verapamil steady-state plasma levels from single-dose data explained. Clin Pharmacol Ther 1984; 36: 1–4

    Article  PubMed  CAS  Google Scholar 

  36. Kroemer HK, Funck-Brentano C, Silberstein DJ, et al. Stereoselective disposition and pharmacologic activity of propafenone enantiomers. Circulation 1989; 79: 1068–76

    Article  PubMed  CAS  Google Scholar 

  37. Groschner K, Linder W, Schnedl H, et al. The effects of the stereoisomers of propafenone and diprafenone in guinea-pig heart. Br J Pharmacol 1991; 102: 669–74

    Article  PubMed  CAS  Google Scholar 

  38. Stoschitzky K, Klein W, Stark G, et al. Different stereoselective effects of (R)- and (S)-propafenone: clinical pharmacologic, electrophysiologic, and radioligand binding studies. Clin Pharmacol Ther 1990; 47: 740–6

    Article  PubMed  CAS  Google Scholar 

  39. Stark U, Stark G, Stoschitzky K, et al. Stereoselective electrophysiological effects of propafenone in Langendorff perfused guinea pig hearts. Basic Res Cardiol 1992; 87: 87–97

    Article  PubMed  CAS  Google Scholar 

  40. Piquette-Miller M, Foster RT, Kappagoda CT, et al. Pharmacokinetics of acebutolol enantiomers in humans. J Pharm Sci 1991; 80: 313–6

    Article  PubMed  CAS  Google Scholar 

  41. Piquette-Miller M, Foster RT, Kappagoda CT, et al. Effect of aging on the pharmacokinetics of acebutolol enantiomers. J Clin Pharmacol 1992; 32: 148–56

    PubMed  CAS  Google Scholar 

  42. Mehvar R, Gross ME, Kreamer RN. Pharmacokinetics of atenolol enantiomers in humans and rats. J Pharm Sci 1990; 79: 881–5

    Article  PubMed  CAS  Google Scholar 

  43. Villen T, Bertilsson L, Sjoqvist F. Nonstereoselective disposition of ethosuximide in humans. Ther Drug Monit 1990; 12: 514–6

    Article  PubMed  CAS  Google Scholar 

  44. Kroemer HK, Turgeon J, Parker RA, et al. Flecainide enantiomers: disposition in human subjects and electrophysiologic actions in vitro. Clin Pharmacol Ther 1989; 46: 584–90

    Article  PubMed  CAS  Google Scholar 

  45. Jamali F, Berry BW, Tehrani MR, et al. Stereoselctive pharmacokinetics of flurbiprofen in humans and rats. J Pharm Sci 1988; 77: 666–9

    Article  PubMed  CAS  Google Scholar 

  46. Jamali F, Brocks DR. Clinical pharmacokinetics of ketoprofen and its enantiomers. Clin Pharmacokinet 1990; 19: 197–217

    Article  PubMed  CAS  Google Scholar 

  47. Abolfathi Z, Fiset C, Gilbert M, et al. Role of polymorphic debrisoquin 4-hydroxylase activity in the stereoselective disposition of mexiletine in humans. J Pharmacol Exp Ther 1993; 266: 1196–201

    PubMed  CAS  Google Scholar 

  48. Carr RA, Foster RT, Lewanczuk RZ, et al. Pharmacokinetics of sotalol enantiomers in humans. J Clin Pharmacol 1992; 32: 1105–9

    PubMed  CAS  Google Scholar 

  49. Fiset C, Philippon F, Gilbert M, et al. Stereoselective disposition of (±)-sotalol at steady-state conditions. Br J Clin Pharmacol 1993; 36: 75–7

    Article  PubMed  CAS  Google Scholar 

  50. Singh NN, Jamali F, Pasutto FM, et al. Pharmacokinetics of the enantiomers of tiaprofenic acid in humans. J Pharm Sci 1986; 75: 439–42

    Article  PubMed  CAS  Google Scholar 

  51. Gross AS, Mikus G, Fischer C, et al. Stereoselective disposition of flecainide in relation to the sparteine/debrisoquine metaboliser phenotype. Br J Clin Pharmacol 1989; 28: 555–66

    Article  PubMed  CAS  Google Scholar 

  52. Brocks DR, Jamali F, Russell AS, et al. The stereoselective pharmacokinetics of etodolac in young and elderly subjects, and after cholecystectomy. J Clin Pharmacol 1992; 32: 982–9

    PubMed  CAS  Google Scholar 

  53. Smith DA, Chandler MH, Shedlofsky SI, et al. Age-dependent stereoselective increase in the oral clearance of hexobarbitone isomers caused by rifampicin. Br J Clin Pharmacol 1991; 32: 735–9

    PubMed  CAS  Google Scholar 

  54. Hooper WD, Qing MS. The influence of age and gender on the stereoselective metabolism and pharmacokinetics of mephobarbital in humans. Clin Pharmacol Ther 1990; 48: 633–40

    Article  PubMed  CAS  Google Scholar 

  55. Mehvar R, Reynolds JM. Input rate-dependent stereoselective pharmacokinetics: experimental evidence in verapamil-in-fused isolated rat livers. Drug Metab Dispos 1995; 23: 637–41

    PubMed  CAS  Google Scholar 

  56. Karim A, Piergies A. Verapamil stereoisomerism: enantiomeric ratios in plasma dependent on peak concentrations, oral input rate, or both. Clin Pharmacol Ther 1995; 58: 174–84

    Article  PubMed  CAS  Google Scholar 

  57. Bleske BE, Welage LS, Rose S, et al. The effect of dosage release formulations on the pharmacokinetics of propranolol stereoisomers in humans. J Clin Pharmacol 1995; 35: 374–8

    PubMed  CAS  Google Scholar 

  58. Takahashi H, Ogata H, Shimizu M, et al. Comparative pharmacokinetics of unbound disopyramide enantiomers following oral administration of racemic disopyramide in humans. J Pharm Sci 1991; 80: 709–11

    Article  PubMed  CAS  Google Scholar 

  59. Paliwal JK, Smith DE, Cox SR, et al. Stereoselective, competitive, and nonlinear plasma protein binding of ibuprophen enantiomers as determined in vivo in healthy subjects. J Pharmacokinet Biopharm 1993; 21: 145–61

    PubMed  CAS  Google Scholar 

  60. Aoyama T, Kotaki H, Sasaki T, et al. Nonlinear kinetics of threometylphenidate enantiomers in a patient with narcolepsy and in healthy volunteers. Eur J Clin Pharmacol 1993; 44: 79–84

    Article  PubMed  CAS  Google Scholar 

  61. Silber B, Holford NHG, Riegelman S. Stereoselective disposition and glucuronidation of propranolol in humans. J Pharm Sci 1982; 71: 699–704

    Article  PubMed  CAS  Google Scholar 

  62. Wetterich U, Spahn-Langguth H, Mutschier E, et al. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration- and dose-dependent absorption in vitro and in vivo. Pharm Res 1996; 13: 514–22

    Article  PubMed  CAS  Google Scholar 

  63. Wade DN, Mearrick PT, Morris JL. Active transport of L-dopa in the intestine. Nature 1973; 242: 463–5

    Article  PubMed  CAS  Google Scholar 

  64. Hendel J, Brodthagen H. Entero-hepatic cycling of methotrexate estimated by use of the D-isomer as a reference marker. Eur J Clin Pharmacol 1984; 26: 103–7

    Article  PubMed  CAS  Google Scholar 

  65. Tamai I, Ling H-Y, Timbul S-M, et al. Stereospecific absorption and degradation of cephalexin. J Pharm Pharmacol 1988; 40: 320–4

    Article  PubMed  CAS  Google Scholar 

  66. Kroemer HK, Echizen H, Heidemann H, et al. Predictability of the in vivo metabolism of verapamil from in vitro data: contribution of individual pathways and stereoselective aspects. J Pharmacol Exp Ther 1992; 260: 1052–7

    PubMed  CAS  Google Scholar 

  67. Woodcock B, Menke G, Fischer A, et al. Drug input rate from the GI-tract. Michaelis-Menten kinetics and the bioavailability of slow release verapamil and nifedipine. Drug Des Deliv 1988; 2: 299–310

    PubMed  CAS  Google Scholar 

  68. Takahashi H, Ogata H. Plasma protein binding and blood cell distribution of propranolol enantiomers in rats. Biochem Pharmacol 1990; 39: 1495–8

    Article  PubMed  CAS  Google Scholar 

  69. Jamali F, Singh NN, Pasutto FM, et al. Pharmacokinetics of ibuprofen enantiomers in humans following oral administration of tablets with different absorption rates. Pharm Res 1988; 5: 40–3

    Article  PubMed  CAS  Google Scholar 

  70. Avgerinos A, Noormohammadi A, Hutt AJ. Disposition of ibuprofen following administration of a novel controlled release formulation to healthy volunteers. Int J Pharm 1991; 68: 97–103

    Article  CAS  Google Scholar 

  71. Kroemer HK, Fischer C, Meese CO, et al. Enantiomer/enantiomer interaction of (S)- and (R)-propafenone for cytochrome P450IID6-catalyzed 5-hydroxylation: in vitro evaluation of the mechanism. Mol Pharmacol 1991; 40: 135–42

    PubMed  CAS  Google Scholar 

  72. Mast V, Fischer C, Mikus G, et al. Use of pseudoracemic nitrendipine to elucidate the metabolic steps responsible for stereoselective disposition of nitrendipine enantiomers. Br J Clin Pharmacol 1992; 33: 51–9

    Article  PubMed  CAS  Google Scholar 

  73. Giacomini KM, Nelson WL, Pershe RA, et al. In vivo interaction of the enantiomers of disopyramide in human subjects. J Pharmacokinet Biopharm 1986; 14: 335–55

    PubMed  CAS  Google Scholar 

  74. Duddu SP, Vakilynejad M, Jamali F, et al. Stereoselective dissolution of propranolol hydrochloride from hydroxypropyl methylcellulose matrices. Pharm Res 1993; 10: 1648–53

    Article  PubMed  CAS  Google Scholar 

  75. Aubry A-F, Wainer IW. An in vitro study of the stereoselective dissolution of (rac)-verapamil from two sustained release formulation. Chirality 1993; 5: 84–90

    Article  CAS  Google Scholar 

  76. Carr RA, Pasutto FM, Longstreth JA, et al. Stereospecific determination of the in vitro dissolution of modified release formulations of (±)-verapamil. Chirality 1993; 5: 443–7

    Article  Google Scholar 

  77. Vakily M, Jamali F. Human pharmacokinetics of tiaprofenic acid after regular and sustained release formulations: lack of chiral inversion and stereoselective release. J Pharm Sci 1994; 83: 495–8

    Article  PubMed  CAS  Google Scholar 

  78. Echizen H, Manz M, Eichelbaum M. Electrophysiologic effects of dextro- and levo-verapamil on sinus node and AV node function in humans. J Cardiovasc Pharmacol 1988; 12: 543–6

    Article  PubMed  CAS  Google Scholar 

  79. Hamann SR, Blouin RA, McAllister Jr RG. Clinical pharmacokinetics of verapamil. Clin Pharmacokinet 1984; 9: 26–41

    Article  PubMed  CAS  Google Scholar 

  80. Longstreth JA. Verapamil, a chiral challenge to the pharmacokinetic and pharmacodynamic assessment of bioavailability and bioequivalence. In: Wainer IW, editor. Drug stereochemistry, analytical methods and pharmacology. New York: Marcel Dekker, 1993: 315–36

    Google Scholar 

  81. Shibukawa A, Wainer IW. Simultaneous direct determination of the enantiomers of verapamil and norverapamil in plasma using a derivatized amylose high-performance liquid Chromatographic chiral stationary phase. J Chromatogr Biomed Appl 1992; 574: 85–92

    Article  CAS  Google Scholar 

  82. Walker SE, Hardy BG. Alterations in apparent bioequivalency of ibuprofen based on isomer analysis [abstract]. J Clin Pharmacol 1992; 32: 957

    Google Scholar 

  83. Kaiser DG, VanGiessen GJ, Reischer RJ, et al. Isomeric inversion of ibuprofen (R)-enantiomer in humans. J Pharm Sci 1976; 65: 269–73

    Article  PubMed  CAS  Google Scholar 

  84. Takahashi H, Ogata H, Shimizu M, et al. Relative bioavailability of two disopyramide capsules in humans based on total, unbound, and unbound enantiomer concentrations. Biopharm Drug Dispos 1993; 14: 409–18

    Article  PubMed  CAS  Google Scholar 

  85. Lima JJ, Wenzke SC, Boudoulas H, et al. Antiarrhythmic activity and unbound concentrations of disopyramide enantiomers in patients. Ther Drug Monit 1990; 12: 23–8

    Article  PubMed  CAS  Google Scholar 

  86. Midha KK, Hubbard JW, McKay G, et al. Stereoselective pharmacokinetics of doxepin isomers. Eur J Clin Pharmacol 1992; 42: 539–44

    Article  PubMed  CAS  Google Scholar 

  87. Ducharme J, Fieger H, Ducharme MP, et al. Enantioselective disposition of hydroxychloroquine after a single oral dose of the racemate to healthy subjects. Br J Clin Pharmacol 1995; 40: 127–33

    Article  PubMed  CAS  Google Scholar 

  88. Karim A. Enantioselective assays in comparative bioavailability studies of racemic drug formulations: nice to know or need to know? J Clin Pharmacol 1996; 36: 490–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mehvar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehvar, R., Jamali, F. Bioequivalence of Chiral Drugs. Clin. Pharmacokinet. 33, 122–141 (1997). https://doi.org/10.2165/00003088-199733020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199733020-00004

Keywords

Navigation