Skip to main content

Drug Interactions with Grapefruit Juice

Summary

Some drugs demonstrate a significantly greater (up to 3-fold) mean oral bioavailability on coadministration with grapefruit juice. With some calcium antagonists, the benzodiazepines midazolam and triazolam and the antihistamine terfenadine, changes in bioavailability are accompanied by altered drug action. Study design factors possibly contribute to the magnitude of changes in drug bioavailability; they include the source of the citrus, its intake schedule, drug formulations and individual metabolising capacity.

The components of citrus juice that are responsible for clinical drug interactions have yet to be fully determined. Based on the flavonoid naringin’s unique distribution in the plant kingdom, abundance in grapefruit and ability to inhibit metabolic enzymes, naringin is likely to be one of the grapefruit components influencing drug metabolism. Other components present in citrus fruit, such as furanocoumarins, may be more potent inhibitors than flavonoids and are under investigation. Conclusions drawn from clinical drug interaction studies should be considered specific to the citrus fruit products evaluated because of the variation in their natural product content.

The predominant mechanism for enhanced bioavailability is presumably the inhibition of oxidative drug metabolism in the small intestine. The consistent findings across studies of diverse cytochrome P450 (CYP) 3A substrates support the mechanistic hypothesis that 1 or more grapefruit juice components inhibit CYP3A enzymes in the gastrointestinal tract.

The evaluation of the need to avoid the concomitant intake of grapefruit products with drugs is best done on an individual drug basis rather than collectively by drug class. Based on the narrow therapeutic range of cyclosporin and research experience in organ transplant recipients, its interaction with grapefruit juice is likely to be clinically significant.

This is a preview of subscription content, access via your institution.

References

  1. Anderson KE. Influences of diet and nutrition on clinical pharmacokinetics. Clin Pharmacokinet 1988; 14: 325–46

    PubMed  Article  CAS  Google Scholar 

  2. Melander A. Influence of food on the bioavailability of drugs. Clin Pharmacokinet 1978; 3: 337–51

    PubMed  Article  CAS  Google Scholar 

  3. Welling PG. Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharm 1977; 5: 291–334

    PubMed  CAS  Google Scholar 

  4. Williams L, Hill DP, Davis JA, et al. The influnce of food on the absorption and metabolism of drugs: an update. Eur J Metab Pharmacokinet 1966; 21(3): 201–11

    Article  Google Scholar 

  5. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996; 31: 47–64

    PubMed  Article  CAS  Google Scholar 

  6. Horowitz RM. The citrus flavonoids. In: Sinclair WB, editor. The orange, its biochemistry and physiology. Riverside (CA): University of California, 1961: 334–72

    Google Scholar 

  7. Ameer B, Weintraub RA, Johnson JV, et al. Flavanone absorption after naringin, hesperidin and citrus administration. Clin Pharmacol Ther 1996; 60: 34–40

    PubMed  Article  CAS  Google Scholar 

  8. Fuhr U, Kummert A. The fate of naringin in humans: a key to grapefruit juice-drug interactions? Clin Pharmacol Ther 1995; 58: 365–73

    PubMed  Article  CAS  Google Scholar 

  9. Johnston A, Marsden JT, Hla KK, et al. The effect of vehicle on the oral absorption of cyclosporine. Br J Clin Pharmacol 1986; 21: 331–3

    PubMed  Article  CAS  Google Scholar 

  10. Yee GC, Stanley DL, Pessa LJ, et al. Effect of grapefruit juice on blood cyclosporine concentration. Lancet 1994; 345: 955–6

    Article  Google Scholar 

  11. Bailey DG, Spence JD, Munoz C, et al. Interaction of citrus juices with felodipine and nifedipine. Lancet 1991; 337: 268–9

    PubMed  Article  CAS  Google Scholar 

  12. Bailey DG, Munoz C, Arnold JMO, et al. Grapefruit juice and naringin interaction with nitrendipine [abstract]. Clin Pharmacol Ther 1992; 51: 156

    Google Scholar 

  13. Bailey DG, Arnold JMO, Strong HA, et al. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics. Clin Pharmacol Ther 1993; 54: 589–94

    PubMed  Article  CAS  Google Scholar 

  14. Rashid J, McKinstry C, Renwick AG, et al. Quercetin, an in vitro inhibitor of CYP3A, does not contribute to the interaction between nifedipine and grapefruit juice. Br J Clin Pharmacol 1993; 36: 460–3

    PubMed  Article  CAS  Google Scholar 

  15. Edwards DJ, Bellevue FH, Woster PM. Identification of 6′,7′-dihydroxybergamottin, a cytochrome P450 inhibitor, in grapefruit juice. Drug Metab Dispos 1996; 24(12): 1287–90

    PubMed  CAS  Google Scholar 

  16. Mclntosh CA, Mansell RL, Rouseff RL. Distribution of limonin in the fruit tissues of nine grapefruit cultivars. J Agric Food Chem 1982; 30: 689–92

    Article  Google Scholar 

  17. Rouseff RL. Nomolin, a new bitter component in grapefruit juice. J Agric Food Chem 1982; 30: 504–7

    Article  CAS  Google Scholar 

  18. Rouseff RL. Differentiating citrus juices using flavanone glycoside concentration profiles. In: Nagy S, Attaway JA, Rhodes ME, editors. Adulteration of fruit juice beverages. New York: Marcel Dekker, 1988: 49–65

    Google Scholar 

  19. Rouseff RL, Martin SF, Youtsey CO. Quantitative survey of narirutin, hesperidin, and neohesperidin in Citrus. J Agric Food Chem 1987: 35: 1027–30

    Article  CAS  Google Scholar 

  20. Mansell RL, Mclntosh CA, Vest SE. An analysis of the limonin and naringin content of grapefruit juice samples collected from Florida state test houses. J Agric Food Chem 1983; 31: 156–62

    Article  CAS  Google Scholar 

  21. Herzog P, Monselise SP. Growth and development of grapefruits in two different climatic districts of Israel. Israel J Agric Res 1968; 18: 181–6

    CAS  Google Scholar 

  22. Albach RF, Redman GH, Cruse RR. Annual and seasonal changes in naringin concentration of ruby red grapefruit juice. J Agric Food Chem 1981; 29(4): 808–11

    Article  CAS  Google Scholar 

  23. Berhow MA, Vandercook CE. Biosynthesis of naringen and prunin in detached grapefruit. Phytochem 1989; 28: 1627–30

    Article  CAS  Google Scholar 

  24. Albach RF, Wutscher HK. Flavanone content of whole grapefruit and juice as influenced by fruit development. J Rio Grande Valley Hort Soc 1988; 41: 89–93

    CAS  Google Scholar 

  25. Castillo J, Benavente O, del Rio JA. Hesperitin 7-O-glucoside and prunin in Citrus species (C. aurantium and C. paridisi): a study of their quantitative distribution in immature fruits and as immediate precursors of neohesperidin and naringin in C. aurantium. J Agric Food Chem 1993; 41: 1920–4

    Article  CAS  Google Scholar 

  26. Shaw PE, Calkins CO, McDonald RE, et al. Changes in limonin and naringin levels in grapefruit albedo with maturity and the effects of gibberellic acid on these changes. Phytochemistry 1991; 30: 3215–9

    Article  CAS  Google Scholar 

  27. Wagner CJ, Wilson CW, Shaw PE. Reduction of grapefruit bitter components in a fluidized B-cyclodextrin polymer bed. J Food Sci 1988; 53(2): 516–8

    Article  CAS  Google Scholar 

  28. Florida Department of Citrus. Standards for processed citrus products. Chapter 20–64. revised edition August 23, 1993

  29. Barthe GA, Jourdan PS, Mclntosh CA, et al. Radioimmunoassay for the quantitative determination of hesperidin and analysis of its distribution in Citrus sinensis. Phytochemistry 1988; 27: 249–54

    Article  CAS  Google Scholar 

  30. Wilson CW, Wagner CJ, Shaw PE. Reduction of bitter components in grapefruit and navel orange juices with B-cyclodextrin polymers or XAD resins in a fluidized bed process. J Agric Food Chem 1989; 37: 14–8

    Article  CAS  Google Scholar 

  31. Tsen H-Y, Yu G-K. Limonin and naringin removal from grapefruit juice with naringinase entrapped in cellulose triacetate fibers. J Food Sci 1991; 56(1): 31–4

    Article  CAS  Google Scholar 

  32. Braddock RJ, Cadwallader KR. Citrus by-products manufacture for food use. Food Tech 1992; 46: 105–10

    CAS  Google Scholar 

  33. Kimball DA, Norman SI. Processing effects during commercial debittering of California navel orange juice. J Agric Food Chem 1990; 38: 1396–1400

    Article  CAS  Google Scholar 

  34. United States Food and Drug Administration, Health and Human Services; 21: code of federal registations 146.132–146.154. Washington, DC: US Government Printing Office, 1995

    Google Scholar 

  35. Guengerich FP, Kim DH. In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogen 1990; 11: 2275–9

    Article  CAS  Google Scholar 

  36. Miniscalco A, Lundahl J, Regårdh CG, et al. Inhibition of dihydropyridine metabolism in rat and human liver microsomes by flavonoids found in grapefruit juice. J Pharmacol Exp Ther 1992; 261: 1195–9

    PubMed  CAS  Google Scholar 

  37. Ha HR, Chen J, Leuenberger PM, et al. In vitro inhibition of midazolam and quinidine metabolism by flavonoids. Eur J Clin Pharmacol 1995; 48: 367–71

    PubMed  CAS  Google Scholar 

  38. Schubert W, Eriksson U, Edgar B, et al. Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17β-estradiol. Eur J Drug Metab Pharmacokinet 1995; 20: 219–24

    PubMed  Article  CAS  Google Scholar 

  39. Jurima-Romet M, Crawford K, Cyr T, et al. Terfenadine metabolism in human liver: in vitro inhibition by macrolide antibiotics and azole antifungals. Drug Metab Dispos 1995; 22: 849–57

    Google Scholar 

  40. Fuhr U, Klittich K, Staib AH. Inhibitory effect of grapefruit juice and the active component naringenin on CYP1A2 dependent metabolism of caffeine in man. Br J Clin Pharmacol 1993; 35: 431–6

    PubMed  Article  CAS  Google Scholar 

  41. Lee YS, Lorenzo BJ, Koufis T, et al. Grapefruit juice and its flavonoids inhibit 11β-hydroxysteroid dehydrogenase. Clin Pharmacol Ther 1996; 59: 62–71

    PubMed  Article  CAS  Google Scholar 

  42. Obermeier MT, White RE, Yang CS. Effects of bioflavonoids on hepatic P450 activities. Xenobiotica 1995; 25: 575–84

    PubMed  Article  CAS  Google Scholar 

  43. Fasco MJ, Silkworth JB, Dunbar DA, et al. Rat small intestinal cytochromes P450 probed by warfarin metabolism. Molecular Pharmacol 1993; 43: 226–33

    CAS  Google Scholar 

  44. Lown KS, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel. Lack of prediction by the erythromycin breath test. Drug Metabl Dispos 1994; 22: 947–55

    CAS  Google Scholar 

  45. Lampen A, Uwe C, Guengerich FP, et al. Metabolism of the immunosuppressant tacrolimus in the small intestine: cytochrome P450, drug interactions, and interindividual variability. Drug Metab Dispos 1995; 23: 1315–24

    PubMed  CAS  Google Scholar 

  46. Vernet A, Siess MH. Comparison of the effects of various flavonoids on ethoxycoumarin deethylase activity of rat intestinal and hepatic microsomes. Food Chem Toxicol 1986; 24: 857–61

    PubMed  Article  CAS  Google Scholar 

  47. Balogh A, Weber A, Klinger G. Can grapefruit juice influence the bioavailability of ethinylestradiol? [abstract]. Eur J Clin Pharmacol 1994; 47: A93

    Google Scholar 

  48. Ducharme MP, Provenzano R, Dehoorne-Smith M, et al. Trough concentrations of cyclosporin following administration with grapefruit juice. Br J Clin Pharmacol 1993; 36: 457–9

    PubMed  Article  CAS  Google Scholar 

  49. Herlitz H, Edgar B, Hedner T, et al. Grapefruit juice: a possible source of variability in blood concentrations of cyclosporine A [letter]. Nephrol Dial Transplant 1993; 8: 375

    PubMed  CAS  Google Scholar 

  50. Hollander AAMJ, van Rooij J, Lentjes EGWM, et al, The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients. Clin Pharmacol Ther 1995; 57: 318–24

    PubMed  Article  CAS  Google Scholar 

  51. Proppe DG, Hoch OD, McLean AJ, et al. Influence of chronic ingestion of grapefruit juice on steady-state blood concentrations of cyclosporine A in renal transplant patients with stable graft function [letter]. Br J Clin Pharmacol 1995; 39: 337–8

    PubMed  Article  CAS  Google Scholar 

  52. Proppe DG, Visser K, Bartels R, et al. Grapefruit juice selectively modifies cyclosporin A metabolite patterns in renal transplant patients [abstract]. Clin Pharmacol Ther 1996; 59: 138

    Article  Google Scholar 

  53. Schubert W, Cullberg G, Edgar B, et al. Inhibition of 17β-estradiol metabolism by grapefruit juice in ovariectomized women. Maturitas 1995; 20: 155–63

    Article  Google Scholar 

  54. Edgar B, Bailey D, Bergstrand R, et al. Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics of felodipine: its potential clinical relevance. Eur J Clin Pharmacol 1992; 42: 313–7

    PubMed  Article  CAS  Google Scholar 

  55. Bailey DG, Arnold JMO, Munoz C, et al. Grapefruit juicefelodipine interaction: mechanism, predictability and effect of naringen. Clin Pharmacol Ther 1993; 53: 637–42

    PubMed  Article  CAS  Google Scholar 

  56. Lundahl J, Regardh CG, Edgar B, et al. Relationship between time of intake of grapefruit juice and its effect on pharmacokinetics and pharmacodynamicss of felodipine in healthy subjects. Eur J Clin Pharmacol 1995; 49: 61–7

    PubMed  Article  CAS  Google Scholar 

  57. Benton RE, Honig PK, Zamani K, et al. Grapefruit juice alters terfenadine pharmacokinetics, resulting in prolongation of repolarization on the electrocardiogram. Clin Pharmacol Ther 1996; 59: 383–8

    PubMed  Article  CAS  Google Scholar 

  58. Honig PK, Wortham DC, Lazarev A, et al. Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine. J Clin Pharmacol 1996; 36: 345–51

    PubMed  CAS  Google Scholar 

  59. Fuhr U, Harder S, Lopez-Rojas P, et al. Increase of verapamil concentrations in steady state by coadministration of grapefruit juice [abstract]. Arch Pharmacol 1994; 349 Suppl.: R134

    Google Scholar 

  60. Vanakoski J, Mattila MJ, Seppala T. Grapefruit juice does not enhance the effects of midazolam and triazolam in man. Eur J Clin Pharmacol 1996; 50: 501–8

    PubMed  Article  CAS  Google Scholar 

  61. Sigusch H, Henschel L, Kraul H, et al. Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects. Pharmazie 1994; 49: 675–9

    PubMed  CAS  Google Scholar 

  62. Kupferschmidt HHT, Ha HR, Ziegler WH, et al. Interaction between grapefruit juice and midazolam in humans. Clin Pharmacol Ther 1995; 58: 20–8

    PubMed  Article  CAS  Google Scholar 

  63. Bailey DG, Bend JR, Arnold JMO, et al. Erythromycin-felodipine interaction: magnitude, mechanism and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60: 25–33

    PubMed  Article  CAS  Google Scholar 

  64. Merkel U, Sigusch H, Hoffmann A. Grapefruit juice inhibits 7-hydroxylation of coumarin in healthy volunteers. Eur J Clin Pharmacol 1994; 46: 175–7

    PubMed  Article  CAS  Google Scholar 

  65. Fuhr U, Maier A, Keller A, et al. Lacking effect of grapefruit juice on theophylline pharmacokinetics. Int J Clin Pharmacol 1995; 33: 311–4

    CAS  Google Scholar 

  66. Ameer B, Weintraub RA, Rouseff RL. Citrus flavanone determination by HPLC [abstract]. J Clin Pharmacol 1996; 36: 852

    Google Scholar 

  67. Edgar B, Bailey DG, Bergstrand R, et al. Formulation dependent interaction between felodipine and grapefruit juice [abstract]. Clin Pharmacol Ther 1990; 47: 181

    Google Scholar 

  68. Thummel KE, O’Shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59: 491–502

    PubMed  Article  CAS  Google Scholar 

  69. Hukkinen SK, Varhe A, Olkkola KT, et al. Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice. Clin Pharmacol Ther 1995; 58: 127–31

    PubMed  Article  CAS  Google Scholar 

  70. Ducharme MP, Warbasse LH, Edwards DJ. Disposition of intravenous and oral cyclosporine after administration with grapefruit juice. Clin Pharmacol Ther 1995; 57: 485–91

    PubMed  Article  CAS  Google Scholar 

  71. Bailey DG, Arnold JMO, Bend JR, et al. Grapefruit juicefelodipine interaction: reproducibility and characterization with the extended release drug formulation. Br J Clin Pharmacol 1995; 40: 135–40

    PubMed  CAS  Google Scholar 

  72. Soons PA, Vogels BAPM, Roosemalen MCM, et al. Grapefruit juice and cimetidine inhibit stereoselective metabolism of nitrendipine in humans. Clin Pharmacol Ther 1991; 50: 394–403

    PubMed  Article  CAS  Google Scholar 

  73. Rashid TJ, Martin U, Clarke H, et al. Factors affecting the absolute bioavailability of nifedipine. Br J Clin Pharmacol 1995; 40: 51–8

    PubMed  Article  CAS  Google Scholar 

  74. Josefsson M, Zackrisson A-L, Ahlner J. Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers. Eur J Clin Pharmacol 1996; 51: 189–93

    PubMed  Article  CAS  Google Scholar 

  75. Fuhr U, Maier A, Blume H, et al. Grapefruit juice increases oral nimodipine bioavailability [abstract]. Eur J Clin Pharmacol 1994; 47: A100

    Google Scholar 

  76. Uno T, Ohkubo T, Sugawara K, et al. Effect of grapefruit juice on the disposition of nicardipine after intravenous and oral doses [abstract]. Clin Pharmacol Ther 1997; 61: 209

    Google Scholar 

  77. Ingersoll B. FDA proposes to force Seldane off the market. Wall Street J 1997 Jan 14; Sect. B: 1 (col.3–6)-11 (col.6)

    Google Scholar 

  78. Van Rooij J, van der Meer FJM, Schoemaker HC, et al. Comparison of the effect of grapefruit juice and cimetidine on pharmacokinetics and anticoagulant effect of a single dose of acenocoumarol [proceedings abstract]. Br J Clin Pharmacol 1993; 35: 548P

    Article  Google Scholar 

  79. Maish WA, Hampton EM, Whitsett TL, et al. Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics. Pharmacotherapy 1996; 16(6): 1046–52

    PubMed  CAS  Google Scholar 

  80. Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev 1995; 27: 397–417

    PubMed  Article  CAS  Google Scholar 

  81. Kolars JC, Lowns KS, Schmiedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–59

    PubMed  Article  CAS  Google Scholar 

  82. Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90: 1871–8

    PubMed  Article  CAS  Google Scholar 

  83. Kivistö KT, Bookjan G, Fromm MF, et al. Expression of CYP3A4, CYP3A5 and CYP3A7 in human duodenal tissue. Br J Clin Pharmacol 1996; 42: 387–9

    PubMed  Article  Google Scholar 

  84. Bonkovsky HL, Hauri H-P, Marti U, et al. Cytochrome P450 of small intestinal epithelial cells. Gastroenterology 1985; 88: 458–67

    PubMed  CAS  Google Scholar 

  85. Krishna DR, Klotz U. Extrahepatic metabolism of drugs in humans. Clin Pharmacokinet 1994; 26: 144–60

    PubMed  Article  CAS  Google Scholar 

  86. Lown KS, Thummel KE, Benedict PE, et al. The erythromycin breath test predicts the clearance of midazolam. Clin Pharmacol Ther 1995; 57: 16–24

    PubMed  Article  CAS  Google Scholar 

  87. Pichard L, Gillet G, Fabre I, et al. Identification of the rabbit and human cytochromes P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab Dispos 1990; 18: 711–9

    PubMed  CAS  Google Scholar 

  88. Sesardic D, Boobis AR, Edwards RJ, et al. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyzes the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol 1988; 26: 363–72

    PubMed  Article  CAS  Google Scholar 

  89. Paine MF, Shen DD, Kunze KL, et al. First-pass metabolism of midazolam by the human intestine. Clin Pharmacol Ther 1996; 60: 14–24

    PubMed  Article  CAS  Google Scholar 

  90. Wu C-Y, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58: 492–7

    PubMed  Article  CAS  Google Scholar 

  91. Lown KS, Bailey DG, Fontana RJ, et al. Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Invest 1997; 99: 2245–53

    Article  Google Scholar 

  92. Wacher VJ, Wu C-Y, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 1995; 13: 129–34

    PubMed  Article  CAS  Google Scholar 

  93. Willie RT, Lown KS, Huszczo UR, et al. Short term effect of medications on CYP3A and P-glycoprotein expression in human intestinal mucosa [abstract]. Gastroenterology 1997; 112 Suppl.: A419

    Google Scholar 

  94. Kivistö KT, Kroemer HK, Eichelbaum M. The role of human cytochrome P450 enzymes in the metabolism of anticancer agents: implication for drug interactions. Br J Clin Pharmacol 1995; 40: 523–30

    PubMed  Article  Google Scholar 

  95. Inaba T, Nebert DW, Burchell B, et al. Pharmacogenetics in clinical pharmacology and toxicology: a tribute to Werner Kalow. Can J Physiol Pharmacol 1995; 73: 331–8

    PubMed  Article  CAS  Google Scholar 

  96. Honig PK, Smith JE, Wortham DC, et al. Population variability in the pharmacokinetics of terfenadine: the case for a pseudo-polymorphism with clinical implications. Drug Metab Drug Interact 1994; 11: 161–8

    Article  CAS  Google Scholar 

  97. Hunt CM, Westerkam WR, Stave GM. Effect of age and gender on the activity of human hepatic CYP3A. Biochem Pharmacol 1992; 44: 275–83

    PubMed  Article  CAS  Google Scholar 

  98. Vincent J, Foulds G, Dogolo LC, et al. Grapefruit juice does not alter the pharmacokinetics of amlodipine in man [abstract]. Clin Pharmacol Ther 1997; 61: 233

    Google Scholar 

  99. Burggraaf J, Schoemaker R, Cohen AF. The effect of grapefruit juice (GF) on the pharmacokinetics (PK) and pharmacodynamics (PD) of nifedipine administered in two different formulations [abstract]. Clin Pharmacol Ther 1997; 61: 232

    Google Scholar 

  100. Neoral® soft gelatin capsules and oral solution for microemulsion, product labeling. East Hanover (NJ): Sandoz Pharmaceuticals Corporation, 1995

  101. Bailey DG, Arnold JMO, Spence JD. Grapefruit juice and drugs. how significant is the interaction? Clin Pharmacokinet 1994; 26: 91–8

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy A. Weintraub.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ameer, B., Weintraub, R.A. Drug Interactions with Grapefruit Juice. Clin. Pharmacokinet. 33, 103–121 (1997). https://doi.org/10.2165/00003088-199733020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199733020-00003

Keywords

  • Adis International Limited
  • Felodipine
  • Naringenin
  • Terfenadine
  • Triazolam