Skip to main content
Log in

Targeting Hepatitis B Therapy to the Liver

Clinical Pharmacokinetic Considerations

  • Review Article
  • Drug Delivery Systems
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The hepatitis B virus (HBV) is the world's most important chronic virus infection. The immunomodulator interferon-α (IFNα) is the only clinically applied drug available, despite its low response rate (approximately 30%) even in highly selected chronic carriers. Antiviral nucleoside analogues have proven to be potent inhibitors of viral replication in vitro, but their significant adverse effects which are, at least partially, due to their nonspecific body distribution, have forced the cessation of their clinical development in the past. For example, vidarabine causes severe neuromuscular toxicity, and fialuridine has caused fatal cases of liver and kidney failure in a recent clinical trial. Furthermore, the potential clinical application of (modified) antisense oligodeoxynucleotides, which are very specific inhibitors of viral replication, is hampered by their nonspecific body distribution, instability in serum and poor cell penetration.

As infection and replication of HBV mainly occur in liver parenchymal cells, selective targeting of antiviral nucleoside analogues as well as antisense oligodeoxynucleotides to the liver would theoretically improve therapeutic efficacy. At present, conjugates of vidarabine and neoglycoproteins have entered clinical trials, and initial data suggest that therapeutic concentrations are achieved at lower dosages with minor adverse effects. These data have stimulated preclinical research on other liver-specific drug carriers for the selective delivery of HBV-active drugs such as glycosylated polymers and neolipoproteins: these approaches are outlined in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beasley RP, Lin CC, Hwang LY, et al. Hepatocellular carcinoma and hepatitis B virus: a prospective study of 22,707 men in Taiwan. Lancet 1981; II: 1129–33

    Article  Google Scholar 

  2. Robinson WS. Molecular events in the pathogenesis of hepadnavirus-associated hepatocellular carcinoma. Annu Rev Med 1994; 45: 297–323

    Article  PubMed  CAS  Google Scholar 

  3. Hoofnagle JH. Chronic hepatitis B. N Engl J Med 1990; 323: 337–9

    Article  PubMed  CAS  Google Scholar 

  4. Wright TL, Lau JYN. Clinical aspects of hepatitis B virus infection. Lancet 1993; 342: 1340–4

    Article  PubMed  CAS  Google Scholar 

  5. Alter MJ, Hadler SC, Margolis HS, et al. The changing epidemiology of hepatitis B in the United States: need for alternative vaccination strategies. JAMA 1990; 263: 1218–22

    Article  PubMed  CAS  Google Scholar 

  6. Schaffner W, Gardner P. Hepatitis B immunization strategies: expanding the target. Ann Intern Med 1993; 118: 308–9

    PubMed  CAS  Google Scholar 

  7. Summers J, Mason WS. Replication of the genome of a hepatitis B-like virus by reverse transcription of an RNA intermediate. Cell 1982; 29: 403–15

    Article  PubMed  CAS  Google Scholar 

  8. Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature 1985; 317: 489–95

    Article  PubMed  CAS  Google Scholar 

  9. Seeger C, Ganem D, Varmus HE. Biochemical and genetic evidence for the hepatitis B virus replication strategy. Science 1986; 232: 477–84

    Article  PubMed  CAS  Google Scholar 

  10. Hoofnagle JH, Di Bisceglie AM. Antiviral therapy of viral hepatitis. In: Galasso GJ, Whitley RJ, Merigan TC, editors. Antiviral agents and viral diseases of man. New York: Raven Press, 1990:415–59

    Google Scholar 

  11. Dejean A, Lugassy C, Zafrani S, et al. Detection of hepatitis B virus DNA in pancreas, kidney and skin of two human carriers of the virus. J Gen Virol 1984; 65: 651–5

    Article  PubMed  Google Scholar 

  12. Romet-Lemonne JL, McLane MF, Elfrassi E, et al. Hepatitis B virus infection in cultured human lymphoblastoid cells. Science 1983; 221: 667–9

    Article  PubMed  CAS  Google Scholar 

  13. Pontisso P, Petit MA, Bankowski MJ, et al. Human liver plasma membranes contain receptors for the hepatitis B virus preS 1 region and, via polymerized human serum albumin, for the preS2 region. J Virol 1989; 63: 1981–8

    PubMed  CAS  Google Scholar 

  14. Krone B, Lenz A, Heermann KH, et al. Interaction between hepatitis B surface proteins and monomeric human serum albumin. Hepatology 1990; 11: 1050–6

    Article  PubMed  CAS  Google Scholar 

  15. Franco A, Paroli M, Testa U, et al. Transferrin receptor mediates uptake and presentation of hepatitis B envelope antigen by T lymphocytes. J Exp Med 1992; 175: 1195–205

    Article  PubMed  CAS  Google Scholar 

  16. Klingmüller U, Schaller H. Hepadnavirus infection requires interaction between the viral pre-S domain and a specific hepatocellular receptor. J Virol 1993; 67: 7414–22

    PubMed  Google Scholar 

  17. Treichel U, Meyer zum Büschenfelde KH, Stockert RJ, et al. The asialoglycoprotein receptor mediates hepatic binding and uptake of natural hepatitis B virus particles derived from viraemic carrier. J Gen Virol 1994; 75: 3021–9

    Article  PubMed  CAS  Google Scholar 

  18. Hertogs K, Leenders WPJ, Depla E, et al. Endonexin II, present on human liver plasma membranes, is a specific binding protein of small hepatitis B virus (HBV) envelope protein. Virology 1994; 197: 549–57

    Article  Google Scholar 

  19. Ganem D, Varmus HE. The molecular biology of the hepatitis B viruses. Annu Rev Biochem 1987; 56: 651–93

    Article  PubMed  CAS  Google Scholar 

  20. Hollinger FB. Hepatitis B virus in virology. In: Fields BN, Knipe DM, editors. Fields' virology. New York: Raven Press Ltd., 1990: 2171–238

    Google Scholar 

  21. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 1995; 13: 29–60

    Article  PubMed  CAS  Google Scholar 

  22. Hyams KC. Risks of chronicity following acute hepatitis B virus infection: a review. Clin Infect Dis 1995; 20: 992–1000

    Article  PubMed  CAS  Google Scholar 

  23. Gaur S, Kesarwala H, Gavai M, et al. Clinical immunology and infectious diseases. Pediatr Clin North Am 1994; 41: 745–82

    PubMed  CAS  Google Scholar 

  24. Perrillo RP. The management of chronic hepatitis B. Am J Med 1994;96 Suppl. 1A: 34–40

    Article  Google Scholar 

  25. Wong DKH, Heathcote J. The role of interferon in the treatment of viral hepatitis. Pharmacol Ther 1994; 63: 177–86

    Article  PubMed  CAS  Google Scholar 

  26. Dusheiko GM. Treatment and prevention of chronic viral hepatitis. Pharmacol Ther 1995; 65: 47–73

    Article  PubMed  CAS  Google Scholar 

  27. Wong DK, Cheung AM, O'Rourke K, et al. Effect of alpha-interferon treatment in patients with hepatitis B e antigenpositive chronic hepatitis B: a meta-analysis. Ann Intern Med 1993; 119: 312–23

    PubMed  CAS  Google Scholar 

  28. Brook MG, Karayiannis P, Thomas HC. Which patients with chronic hepatitis B virus infection will respond to α-interferon therapy? A statistical analysis of predictive factors. Hepatology 1989; 10: 761–3

    Article  PubMed  CAS  Google Scholar 

  29. Perrillo RP, Schiff ER, Davis GL, et al. A randomized, controlled trial of interferon alfa-2b alone and after prednisone withdrawal for the treatment of chronic hepatitis B. N Engl J Med 1990; 321: 295–301

    Article  Google Scholar 

  30. Hoofnagle JH, Di Bisceglie AM, Waggoner JG, et al. Interferon alfa for patients with clinically apparent cirrhosis due to chronic HBV. Gastroenterology 1993; 104: 1116–21

    PubMed  CAS  Google Scholar 

  31. Low TLK, Goldstein AL. Thymosins: structure, function and therapeutic applications. Thymus 1984; 6: 27–42

    PubMed  CAS  Google Scholar 

  32. Mutchnick D, Appelman HD, Chung HT, et al. Thymosin treatment of chronic hepatitis B: a placebo-controlled pilot trial. Hepatology 1991; 14: 409–15

    Article  PubMed  CAS  Google Scholar 

  33. Mutchnick MG, Ehrinpreis MN, Kinzie JL, et al. Prospectives on the treatment of chronic hepatitis B and chronic hepatitis C with thymic peptides and antiviral agents. Antiviral Res 1994; 24: 245–57

    Article  PubMed  CAS  Google Scholar 

  34. Sells MA, Chen ML, Acs G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proc Natl Acad Sci USA 1987; 84: 1005–9

    Article  PubMed  CAS  Google Scholar 

  35. Korba BE, Gerin JL. Use of a standardized cell culture assay to assess activities of nucleoside analogs against hepatitis B virus replication. Antiviral Res 1992; 19: 55–70

    Article  PubMed  CAS  Google Scholar 

  36. Tsurimoto T, Fujiyama A, Matsubara K. Stable expression and replication of hepatitis B virus genome in an integrated state in a human hepatoma cell line transfected with the cloned viral DNA. Proc Natl Acad Sci USA 1987; 84: 444–8

    Article  PubMed  CAS  Google Scholar 

  37. Ueda K, Tsurimoto T, Nagahata T, et al. An in vitro system for screening anti-hepatitis B virus drugs. Virology 1989; 169: 213–6

    Article  PubMed  CAS  Google Scholar 

  38. Marion P. Development of antiviral therapy for chronic infection with hepatitis B virus. Curr Top Microbiol Immunol 1991; 168: 166–83

    Google Scholar 

  39. Regenstein F. New approaches to the treatment of chronic viral hepatitis B and C. Am J Med 1994; 96 Suppl. 1A: 47–51

    Article  Google Scholar 

  40. Block TM, Lu X, Platt FM, et al. Secretion of human hepatitis B virus is inhibited by the imino sugar N-butyldeoxynojirimycin. Proc Natl Acad Sci USA 1994; 91: 2235–9

    Article  PubMed  CAS  Google Scholar 

  41. Kruining J, Heijtink RA, Schalm SW. Antiviral agents in hepatitis B virus transfected cell lines: inhibitory and cytotoxic effect related to time of treatment. J Hepatol 1995; 22: 263–7

    Article  PubMed  CAS  Google Scholar 

  42. Doong SL, Tsai CH, Schinazi RF, et al. Inhibition of the replication of hepatitis B virus in vitro by 2′,3′-dideoxy-3′-thiacytidine and related analogues. Proc Natl Acad Sci USA 1991; 88: 8495–9

    Article  PubMed  CAS  Google Scholar 

  43. Chang CN, Doong SL, Zhou JH, et al. Deoxycytidine deaminase-resistant stereoisomer is the active form of (±)-2′,3′-dideoxy-3′-thiacytidine in the inhibition of hepatitis B virus replication. J Biol Chem 1992; 267: 13938–42

    PubMed  CAS  Google Scholar 

  44. Lin TS, Luo MZ, Liu MC, et al. Synthesis and biological evaluation of 2′,3′-dideoxy-L-pyrimidine nucleosides as potential antiviral agents against human immunodeficiency virus (HIV) and hepatitis B virus (HBV). J Med Chem 1994; 37: 798–803

    Article  PubMed  CAS  Google Scholar 

  45. Schinazi RF, Gosselin G, Faraj A, et al. Pure nucleoside enantiomers of β-2′,3′-dideoxycytidine analogs are selective inhibitors of hepatitis B virus in vitro. Antimicrob Agents Chemother 1994; 38: 2172–4

    Article  PubMed  CAS  Google Scholar 

  46. Furman PA, Davis M, Liotta DC, et al. The anti-hepatitis B virus activities, cytotoxicities, and anabolic profiles of the (−) and (+) enantiomers of cis-5-fluoro-l-(2-(hydroxymethyl)-l,3-oxathiolan-5-yl)cytosine. Antimicrob Agents Chemother 1992; 36: 2686–92

    Article  PubMed  CAS  Google Scholar 

  47. Lin TS, Luo MZ, Liu MC, et al. Antiviral activity of 2′,3′-dideoxy-β-L-5-fluorocytidine (β-L-FddC) and 2′,3′-dideoxy-β-L-cytidine (β-L-ddC) against hepatitis B virus and human immunodeficiency virus type 1 in vitro. Biochem Pharmacol 1994; 47: 171–4

    PubMed  CAS  Google Scholar 

  48. Chu CK, Ma T, Shanmuganathan K, et al. Use of 2′-fluoro-5-methyl-β-L-arabinofuranosyluracil as a novel antiviral agent for hepatitis B virus and Epstein-Barr virus. Antimicrob Agents Chemother 1995; 39: 979–81

    Article  PubMed  CAS  Google Scholar 

  49. Hoofnagle JH, Hanson RG, Minuk GY, et al. Randomized controlled trial of adenine arabinoside monophosphate for chronic type B hepatitis. Gastroenterology 1984; 86: 150–7

    PubMed  CAS  Google Scholar 

  50. Hoofnagle JH. Therapy of chronic type B hepatitis with adenine arabinoside and adenine arabinoside monophosphate. J Hepatol 1986; 3: S73–80

    Article  PubMed  Google Scholar 

  51. Marcellin P, Pouteau M, Loriot MA, et al. Adenine arabinoside 5′-monophosphate in patients with chronic hepatitis B: comparison of the efficacy in patients with high and low viral replication. Gut 1995; 36: 422–6

    Article  PubMed  CAS  Google Scholar 

  52. Alexander GJM, Fagan EA, Hegarty JE, et al. Controlled clinical trial of acyclovir in chronic hepatitis B virus infection. J Med Virol 1987; 21: 81–7

    Article  PubMed  CAS  Google Scholar 

  53. Fried MW, Korenman JC, Di Bisceglie AM, et al. A pilot study of 2′,3′-dideoxyinosine for the treatment of chronic hepatitis B. Hepatology 1992; 16: 861–4

    Article  PubMed  CAS  Google Scholar 

  54. Fried MW, Fong TL, Swain MG, et al. Therapy of chronic hepatitis B with a 6-month course of ribavirin. J Hepatol 1994; 21: 145–50

    Article  PubMed  CAS  Google Scholar 

  55. Marcellin P, Piadoux G, Girard PM, et al. Absence of effect of zidovudine on replication of hepatitis B virus in patients with chronic HIV and HBV infection. N Engl J Med 1989; 321: 1758

    PubMed  CAS  Google Scholar 

  56. Gilson RJ, Hawkins AE, Kelly GK, et al. No effect of zidovudine on hepatitis B virus replication in homosexual men with symptomatic HIV-1 infection. AIDS 1991; 5: 217–20

    Article  PubMed  CAS  Google Scholar 

  57. Fried MW, Di Bisceglie AM, Straus SE, et al. FIAU, a new oral anti-viral agent, profoundly inhibits HBV DNA in patients with chronic hepatitis B [abstract]. Hepatology 1992; 16: A127

    Article  Google Scholar 

  58. Richardson FC, Engelhardt JA, Bowsher RR. Fialuridine accumulates in DNA of dogs, monkeys, and rats following longterm oral administration. Proc Natl Acad Sci USA 1994; 91: 12003–7

    Article  PubMed  CAS  Google Scholar 

  59. McKenzie R, Fried MW, Sallie R, et al. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 1995; 333: 1099–105

    Article  PubMed  CAS  Google Scholar 

  60. Tyrrell DLJ, Mitchell MC, De Man RA, et al. Phase II trial of lamivudine for chronic hepatitis B [abstract]. Hepatology 1993;18:A224

    Article  Google Scholar 

  61. Dienstag JL, Perrillo RP, Schiff ER, et al. Double-blind, randomized, three-month, dose-ranging trial of lamivudine for chronic hepatitis B [abstract]. Hepatology 1994; 20: A412

    Google Scholar 

  62. Benhamou Y, Dohin E, Lunel-Fabiani F, et al. Efficacy of lamivudine on replication of hepatitis B virus in HIV-infected patients. Lancet 1995; 345: 396–7

    Article  PubMed  CAS  Google Scholar 

  63. Patterson JL, Fernandez-Larsson R. Molecular mechanisms of actions of ribavirin. Rev Infect Dis 1990; 12: 1139–46

    Article  PubMed  CAS  Google Scholar 

  64. Yarchoan R, Pluda JM, Thomas RV, et al. Long-term toxicity/ activity profile of 2′,3′-dideoxyinosine in AIDS or AIDS-related complex. Lancet 1990; 336: 526–9

    Article  PubMed  CAS  Google Scholar 

  65. Lai KK, Gang DL, Zawacki JK, et al. Fulminant hepatic failure associated with 2′,3′-dideoxyinosine. Ann Intern Med 1991; 115: 283–4

    PubMed  CAS  Google Scholar 

  66. Lok ASF, Novick DM, Karyiannis P, et al. A randomized study of the effects of adenine arabinoside 5′-monophosphate (short or long courses) and lymphoblastoid interferon on hepatitis B virus replication. Hepatology 1985; 5: 1132–8

    Article  PubMed  CAS  Google Scholar 

  67. Lewis W, Dalakas MC. Mitochondrial toxicity of antiviral drugs: review. Nature Med 1995; 1: 417–22

    Article  PubMed  CAS  Google Scholar 

  68. Grant AJ, Feinberg A, Chou TC, et al. Incorporation of metabolites of 2′-fluoro-5-iodo-l-β-D-arabinofuranosylcytosine into deoxyribonucleic acid of neoplastic and normal mammalian tissues. Biochem Pharmacol 1982; 31: 1103–8

    Article  PubMed  CAS  Google Scholar 

  69. Lewis LD, Hamzeh FM, Lietman PS. Ultrastructural changes associated with reduced mitochondrial DNA and impaired mitochondrial function in the presence of 2′,3′-dideoxycytidine. Antimicrob Agents Chemother 1992; 36: 2061–5

    Article  PubMed  CAS  Google Scholar 

  70. Starnes MC, Cheng YC. Cellular metabolism of 2′,3′-dideoxycytidine, a compound active against human immunodeficiency virus in vitro. J Biol Chem 1987; 262: 988–91

    PubMed  CAS  Google Scholar 

  71. Severini A, Liu XY, Wilson JS, et al. Mechanism of inhibition of duck hepatitis B virus polymerase by (−)-β-L-2′,3′-dideoxy-3′-thiacytidine. Antimicrob Agents Chemother 1995; 39: 1430–5

    Article  PubMed  CAS  Google Scholar 

  72. Simpson MV, Chin CD, Keilbaugh SA, et al. Studies on the inhibition of mitochondrial replication by 3′-azido-3′-deoxythymidine and other dideoxynucleoside analogs inhibit HIV-1 replication. Biochem Pharmacol 1989; 38: 1033–6

    Article  PubMed  CAS  Google Scholar 

  73. Arnaudo E, Dalakas M, Shanske S, et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet 1991; 337: 508–10

    Article  PubMed  CAS  Google Scholar 

  74. Chattha G, Arieff AI, Cummings C, et al. Lactic acidosis complicating the acquired immunodeficiency syndrome. Ann Intern Med 1993; 118: 37–9

    PubMed  CAS  Google Scholar 

  75. Maxson CJ, Greenfield SM, Turner JL. Acute pancreatitis as a common complication of 2′,3′-dideoxyinosine therapy in the acquired immunodeficiency syndrome. Am J Gastroenterol 1992; 87: 708–13

    PubMed  CAS  Google Scholar 

  76. Bissuel F, Bruneel F, Habersetzer F, et al. Fulminant hepatitis with severe lactate acidosis in HIV-infected patients on didanosine therapy. J Intern Med 1994; 235: 367–71

    Article  PubMed  CAS  Google Scholar 

  77. Yarchoan R, Thomas RV, Allain JP, et al. Phase I studies of 2′,3′-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet 1988:1; 76–81

    Article  PubMed  CAS  Google Scholar 

  78. Merigan TC, Skowron G, Bozette SA, et al. Circulating p24 antigen levels and responses to dideoxycytidine in human immunodeficiency virus (HIV) infections: a phase I and II study. Ann Intern Med 1989; 110: 189–94

    PubMed  CAS  Google Scholar 

  79. Merigan TC, Skowron G, Study Group of the AIDS Clinical Trials Group of the National Institute of Allergy and Infectious Diseases. Safety and tolerance of dideoxycytidine as a single agent: results of early-phase studies in patients with acquired immunodeficiency syndrome (AIDS) or advanced AIDS-related complex. Am J Med 1990; 88: S11–5

    Article  Google Scholar 

  80. Cui L, Yoon S, Schinazi RF, et al. Cellular and molecular events leading to mitochondrial toxicity of l-(2-deoxy-2-fluoro-l-β-D-arabinofuranosyl)-5-iodouracil in human liver cells. J Clin Invest 1995; 95: 555–63

    Article  PubMed  CAS  Google Scholar 

  81. Clayton DA. Replication of animal mitochondrial DNA. Cell 1982; 28: 693–705

    Article  PubMed  CAS  Google Scholar 

  82. Cheng YC, Dutschman G, Fox JJ, et al. Differential activity of potential antiviral nucleoside analogs on herpes simplex virus-induced and human cellular thymidine kinases. Antimicrob Agents Chemother 1981; 20: 420–3

    Article  PubMed  CAS  Google Scholar 

  83. Beach JW, Jeong LS, Alves AJ, et al. Synthesis of enantiomerically pure (2′R,5′S)-(−)-l-(2-(hydroxymethyl)oxathiolan-5-yl) cytosine as a potent antiviral agent against hepatitis B virus (HBV) and human immunodeficiency virus (HIV). J Org Chem 1992; 57: 2217–9

    Article  CAS  Google Scholar 

  84. Chang CN, Skalski V, Zhou HJ, et al. Biochemical pharmacology of (+)- and (−)-2′,3′-dideoxy-3′-thiacytidine as anti-hepatitis B virus agents. J Biol Chem 1992; 267: 22414–20

    PubMed  CAS  Google Scholar 

  85. Hart GJ, Orr DC, Penn CR, et al. Effects of (−)-2′-deoxy-3′-thiacytidine (3TC) 5′-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases alpha, beta, and gamma. Antimicrob Agents Chemother 1992; 36: 1688–94

    Article  PubMed  CAS  Google Scholar 

  86. Frick LW, St John L, Taylor LC, et al. Pharmacokinetics, oral bioavailability, and metabolic disposition in rats of (−)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]cytosine, a nucleoside analog active against human immunodeficiency virus and hepatitis B virus. Antimicrob Agents Chemother 1993; 37: 2285–92

    Article  PubMed  CAS  Google Scholar 

  87. Frick LW, Lambe CU, St John L, et al. Pharmacokinetics, oral bioavailability, and metabolism in mice and cynomolgus monkeys of (2′R,5′S-)-cis-5-fluoro-l-[2-(hydroxymethyl)-l,3-oxathiolan-5-yl] cytosine, an agent active against human immunodeficiency virus and human hepatitis B virus. Antimicrob Agents Chemother 1994; 38: 2722–9

    Article  PubMed  CAS  Google Scholar 

  88. Blaney SM, Daniel MJ, Harker AJ, et al. Pharmacokinetics of lamivudine and BDH-189 in plasma and cerebrospinal fluid of nonhuman primates. Antimicrob Agents Chemother 1995; 39: 2779–82

    Article  PubMed  CAS  Google Scholar 

  89. Condreay LD, Jansen RW, Powdrill TF, et al. Evaluation of the potent anti-hepatitis B virus agent (−) cis-5-fluoro-l-[2-(hydroxymethyl)-l,3-oxathiolan-5-yl]cytosine in a novel in vivo model. Antimicrob Agents Chemother 1994; 38: 616–9

    Article  PubMed  CAS  Google Scholar 

  90. Balzarini J, Hao Z, Herdewijn P, et al. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl) adenine, a potent anti-human immunodeficiency virus compound. Proc Natl Acad Sci USA 1991; 88: 1499–503

    Article  PubMed  CAS  Google Scholar 

  91. Johnson MA, Ahluwalia G, Connelly MC, et al. Metabolic pathways for the activation of the antiretroviral agent 2′,3′-dideoxyadenosine in human lymphoid cells. J Biol Chem 1988; 263: 15354–7

    PubMed  CAS  Google Scholar 

  92. Ho HT, Hitchcock MJM. Cellular pharmacology of 2′,3′-dideoxy-2′,3′-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother 1989; 33: 844–9

    Article  PubMed  CAS  Google Scholar 

  93. Paff MT, Averett DR, Prus KL, et al. Intracellular metabolism of (−)- and (+)-cis-5-fluoro-l-[2-(hydroxymethyl)-l,3-oxathiolan-5-yl] cytosine in HepG2 derivative 2.2.15 (sub-clone P5A) cells. Antimicrob Agents Chemother 1994; 38: 1230–8

    Article  PubMed  CAS  Google Scholar 

  94. Starrett Jr JE, Tortolani DR, Russell J, et al. Synthesis, oral bioavailability determination, and in vitro evaluation of prodrugs of the antiviral agent 9-[2-(phosphonomethoxy)-ethyl] adenine (PMEA). J Med Chem 1994; 37: 1857–64

    Article  PubMed  CAS  Google Scholar 

  95. Srinivas RV, Robbins BL, Connelly MC, et al. Metabolism and in vitro antiretroviral activities of bis(pivaloyloxymethyl) prodrugs of acyclic nucleoside phosphonates. Antimicrob Agents Chemother 1993; 37: 2247–50

    Article  PubMed  CAS  Google Scholar 

  96. Cundy KC, Shaw JP, Lee WA. Oral, subcutaneous, and intramuscular bioavailabilities of the antiviral nucleotide analog 9-(2-phosphonylmethoxyethyl)adenine in cynomolgus monkeys. Antimicrob Agents Chemother 1994; 38: 365–8

    Article  PubMed  CAS  Google Scholar 

  97. Naesens L, Neyts J, Balzarini J, et al. Pharmacokinetics in mice of bis(POM)-PMEA, the bis(pivaloyloxymethyl) ester prodrug of 9-(2-phosphonylmethoxyethyl)adenine [abstract]. Antiviral Res 1995; 26: A277

    Article  Google Scholar 

  98. Shaw T, Amor P, Civitico G, et al. In vitro antiviral activity of penciclovir, a novel purine nucleoside, against duck hepatitis B virus. Antimicrob Agents Chemother 1994; 38: 719–23

    Article  PubMed  CAS  Google Scholar 

  99. Levin M. Oral. 8th International Conference on Antiviral Research: 1995 Apr 23–28; Santa Fe

  100. Stein CA, Cohen JC. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res 1988; 48: 2659–68

    PubMed  CAS  Google Scholar 

  101. Uhlmann E, Peyman A. Antisense oligonucleotides: a new therapeutic principle. Chem Rev 1990; 90: 543–84

    Article  CAS  Google Scholar 

  102. Hélène C, Toulmé JJ. Specific regulation of c gene expression by antisense, sense and antigene nucleic acids. Biochim Biophys Acta 1990; 1049: 99–125

    Article  PubMed  Google Scholar 

  103. Agrawal S. Antisense oligonucleotides as antiviral agents. Trends Biotechnol Sci 1992; 10: 152–8

    Article  CAS  Google Scholar 

  104. Wickstrom E. Oligodeoxyribonucleotide stability in subcellular extracts and culture media. J Biochem Biophys Methods 1986; 13: 97–102

    Article  PubMed  CAS  Google Scholar 

  105. Miller PS, McParland KB, Jayaraman K, et al. Biochemical and biological effects of nonionic nucleic acid methylphosphonates. Biochemistry 1981; 20: 1874–80

    Article  PubMed  CAS  Google Scholar 

  106. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem 1985; 54: 367–402

    Article  PubMed  CAS  Google Scholar 

  107. Goodarzi G, Gross SC, Tewari A, et al. Antisense oligodeoxyribonucleotides inhibit the expression of the gene for hepatitis B virus surface antigen. J Gen Virol 1990; 71: 3021–5

    Article  PubMed  CAS  Google Scholar 

  108. Gamper HB, Reed MW, Cox T, et al. Facile preparation of nuclease resistant 3′ modified oligodeoxynucleotides. Nucleic Acids Res 1993; 21: 145–50

    Article  PubMed  CAS  Google Scholar 

  109. Blum HE, Galun E, Von Weizsäcker F, et al. Inhibition of hepatitis B virus by antisense oligodeoxynucleotides. Lancet 1991; 337: 1230

    Article  PubMed  CAS  Google Scholar 

  110. Von Weizsäcker F, Blum HE, Wands JR. Cleavage of hepatitis B virus RNA by three ribozymes transcribed from a single DNA template. Biochem Biophys Res Commun 1992; 189: 743–8

    Article  Google Scholar 

  111. Offensperger WB, Offensperger S, Walter E, et al. In vivo inhibition of duck hepatitis B virus replication and gene expression by phosphorothioate modified antisense oligodeoxynucleotides. EMBO J 1993; 12: 1257–62

    PubMed  CAS  Google Scholar 

  112. Agrawal S, Temsamani J, Galbraith W, et al. Pharmacokinetics of antisense oligonucleotides. Clin Pharmacokinet 1995; 28: 7–16

    Article  PubMed  CAS  Google Scholar 

  113. Boutorin AS, Gus'kova LV, Ivanova EM, et al. Synthesis of alkylating oligonucleotide derivatives containing cholesterol or phenazinium residues at their 3′-terminus and their interaction with DNA within mammalian cells. FEBS Lett 1989; 254: 129–32

    Article  PubMed  CAS  Google Scholar 

  114. Letsinger RL, Zhang G, Sun DK, et al. Cholesteryl-conjugated oligonucleotides: synthesis, properties, and activity as inhibitors of replication of human immunodeficiency virus in culture. Proc Natl Acad Sci USA 1989; 86: 6553–6

    Article  PubMed  CAS  Google Scholar 

  115. Kabanov AV, Vinogradov SV, Ovcharenko AV, et al. A new class of antivirals: antisense oligonucleotides combined with a hydrophobic substituent effectively inhibit influenza virus reproduction and synthesis of virus-specific proteins in MDCK cells. FEBS Lett 1990; 259: 327–30

    Article  PubMed  CAS  Google Scholar 

  116. Shea RG, Marsters JC, Bischofberger N. Synthesis, hybridization properties and antiviral activity of lipid-oligodeoxynucleotide conjugates. Nucleic Acids Res 1990; 18: 3777–83

    Article  PubMed  CAS  Google Scholar 

  117. De Smidt PC, Le Doan T, De Falco S, et al. Association of antisense oligonucleotides with lipoproteins prolongs the plasma half-life and modifies the tissue distribution. Nucleic Acids Res 1991; 19: 4695–700

    Article  PubMed  Google Scholar 

  118. Krieg AM, Tonkinson J, Matson S, et al. Modification of antisense phosphodiester oligodeoxynucleotides by a 5′cholesteryl moiety increases cellular association and improves efficacy. Proc Natl Acad Sci USA 1993; 90: 1048–52

    Article  PubMed  CAS  Google Scholar 

  119. Ramazeilles C, Mishra RK, Moreau S, et al. Antisense phosphorothioate oligonucleotides: selective killing of the intracellular parasite Leishmania amazonensis. Proc Natl Acad Sci USA 1994; 91: 7859–63

    Article  PubMed  CAS  Google Scholar 

  120. Mishra RK, Moreau C, Ramazeilles C, et al. Improved leishmanicidal effect of phosphorothioate antisense oligonucleotides by LDL-mediated delivery. Biochim Biophys Acta 1995; 1264: 229–37

    Article  PubMed  Google Scholar 

  121. MacKellar C, Graham D, Will DW, et al. Synthesis and physical properties of anti-HBV antisense oligonucleotides bearing terminal lipophilic groups. Nucleic Acids Res 1992; 20: 3411–7

    Article  PubMed  CAS  Google Scholar 

  122. Gryaznov SM, Lloyd DH. Modulation of oligonucleotide duplex and triplex stability via hydrophobic interactions. Nucleic Acids Res 1993; 21: 5909–15

    Article  PubMed  CAS  Google Scholar 

  123. Gura T. Antisense has growing pains. Science 1995; 270: 575–7

    Article  PubMed  CAS  Google Scholar 

  124. Stein. CA. Does antisense exist? Nature Med 1995; 1: 1119–21

    Article  PubMed  CAS  Google Scholar 

  125. Brown DA, Kang SH, Gryaznov SM, et al. Effect of phosphorothioate modification of oligodeoxynucleotides on specific protein binding. J Biol Chem 1994; 269: 26801–5

    PubMed  CAS  Google Scholar 

  126. Weidner DA, Valdez BC, Henning D, et al. Phosphorothioate oligonucleotides bind in a non sequence-specific manner to the nucleolar protein C23/nucleolin. FEBS Lett 1995; 366: 146–50

    Article  PubMed  CAS  Google Scholar 

  127. Mason WS, Cullen J, Saputelli J, et al. Characterization of the antiviral effects of 2′ carbodeoxyguanoside in ducks chronically infected with duck hepatitis B virus. Hepatology 1994; 19: 398–411

    Article  PubMed  CAS  Google Scholar 

  128. Wang Y, Luscombe C, Bowden S, et al. Inhibition of duck hepatitis B virus DNA replication by antiviral chemotherapy with ganciclovir-nalidixic acid. Antimicrob Agents Chemother 1995; 39: 556–8

    Article  PubMed  CAS  Google Scholar 

  129. Arber N, Zajicek G, Ariel I. The streaming liver II: the hepatocyte life history. Liver 1988; 8: 80–7

    PubMed  CAS  Google Scholar 

  130. Benedetti A, Jezequel AM, Orlandi F. A quantitative evaluation of apoptotic bodies in the rat liver. Liver 1988; 8: 172–7

    PubMed  CAS  Google Scholar 

  131. Ashwell G, Harford J. Carbohydrate-specific receptors on the liver. Annu Rev Biochem 1982; 51: 531–54

    Article  PubMed  CAS  Google Scholar 

  132. Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240: 622–30

    Article  PubMed  CAS  Google Scholar 

  133. Meijer DKF, Molema G. Targeting of drugs to the liver. Semin Liver Dis 1995; 15: 202–56

    Article  PubMed  CAS  Google Scholar 

  134. Wisse E, De Zanger RB, Charels K, et al. The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 1985; 5: 683–92

    Article  PubMed  CAS  Google Scholar 

  135. Rice KG, Weisz OA, Barthel T, et al. Defined geometry of binding between triantennary glycopeptide and asialoglycoprotein receptor of rat hepatocytes. J Biol Chem 1990; 265: 18429–34

    PubMed  CAS  Google Scholar 

  136. Spiess M, Schwartz AL, Lodish HF. Sequence of human asialoglycoprotein receptor cDNA. J Biol Chem 1985; 260: 1979–82

    PubMed  CAS  Google Scholar 

  137. Stockert RJ. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol Rev 1995; 75: 591–609

    PubMed  CAS  Google Scholar 

  138. Fiume L, Mattioli A, Balboni PG, et al. Enhanced inhibition of virus DNA synthesis in hepatocytes by trifluorothymidine coupled to asialofetuin. FEBS Lett 1979; 103: 47–51

    Article  PubMed  CAS  Google Scholar 

  139. Fiume L, Mattioli A, Busi C, et al. Selective inhibition of Ectromelia virus DNA synthesis in hepatocytes by adenine9-β-D-arabinofuranoside (ara-A) and adenine-9-β-Darabinofuranoside 5′-monophosphate (ara-AMP) conjugated to asialofetuin. FEBS Lett 1980; 116: 185–8

    Article  PubMed  CAS  Google Scholar 

  140. Fiume L, Busi C, Mattioli A, et al. Hepatocyte targeting of adenine-9-β-D-arabinofuranoside 5′-monophosphate (ara-AMP) coupled to lactosaminated albumin. FEBS Lett 1981; 129: 261–4

    Article  PubMed  CAS  Google Scholar 

  141. Fiume L, Busi C, Mattioli A. Lactosaminated human serum albumin as hepatotropic drug carrier: rate of uptake by mouse liver. FEBS Lett 1982; 146: 42–6

    Article  PubMed  CAS  Google Scholar 

  142. Fiume L, Mattioli A, Busi C, et al. Selective penetration and pharmacological activity of lactosaminated albumin conjugates of adenine arabinoside 5-monophosphate (ara-AMP) in mouse liver. Gut 1984; 25: 1392–8

    Article  PubMed  CAS  Google Scholar 

  143. Fiume L, Bassi B, Busi C, et al. Drug targeting in antiviral chemotherapy: a chemically stable conjugate of 9-β-Darabinofuranosyl-adenine 5′-monophosphate with lactosaminated albumin accomplishes a selective delivery of the drug to liver cells. Biochem Pharmacol 1986; 35: 967–72

    Article  PubMed  CAS  Google Scholar 

  144. Fiume L, Mattioli A, Spinosa G. Distribution of a conjugate of 9-β-D-arabinofuranosyladenine 5′-monophosphate (ara-AMP) with lactosaminated albumin in parenchymal and sinusoidal cells of rat liver. Cancer Drug Deliv 1987; 4: 11–6

    Article  PubMed  CAS  Google Scholar 

  145. Fiume L, Busi C, Preti P, et al. Conjugates of ara-AMP with lactosaminated albumin: a study on their immunogenicity in mouse and rat. Cancer Drug Deliv 1987; 4: 145–50

    Article  PubMed  CAS  Google Scholar 

  146. Fiume L, Torrani Cerenzia MR, Bonino F, et al. Inhibition of hepatitis B virus replication by vidarabine monophosphate conjugated with lactosaminated serum albumin. Lancet 1988; II: 13–5

    Article  Google Scholar 

  147. Molema G, Jansen RW, Visser J, et al. Neoglycoproteins as carriers for antiviral drugs: synthesis and analysis of proteindrug conjugates. J Med Chem 1991; 34: 1137–41

    Article  PubMed  CAS  Google Scholar 

  148. Ponzetto A, Fiume L, Forzani B, et al. Adenine arabinoside monophosphate and acyclovir monophosphate coupled to lactosaminated albumin reduce woodchuck hepatitis virus viremia at doses lower than do the unconjugated drugs. Hepatology 1991; 14: 16–24

    Article  PubMed  CAS  Google Scholar 

  149. Fiume L, Betts CM, Busi C, et al. The pathogenesis of vacuoles produced in rat and mouse liver cells by a conjugate of adenine arabinoside monophosphate with lactosaminated albumin. J Hepatol 1992; 15: 314–22

    Article  PubMed  CAS  Google Scholar 

  150. Fiume L, Busi C, Di Stefano G, et al. Coupling of antiviral nucleoside analogues to lactosaminated albumin by using the imidazolides of their phosphoric esters. Anal Biochem 1993; 212: 407–11

    Article  PubMed  CAS  Google Scholar 

  151. Jansen RW, Kruijt JK, Van Berkel TJC, et al. Coupling of the antiviral drug ara-AMP to lactosaminated albumin leads to specific uptake in rat and human hepatocytes. Hepatology 1993; 18: 146–52

    Article  PubMed  CAS  Google Scholar 

  152. Fiume L, Busi C, Corzani S, et al. Organ distribution of a conjugate of adenine arabinoside monophosphate with lactosaminated albumin in the rat. J Hepatol 1994; 20: 681–2

    Article  PubMed  CAS  Google Scholar 

  153. Torrani Cerenzia MR, Fiume L, Busi C, et al. Inhibition of hepatitis B virus replication by adenine arabinoside monophosphate coupled to lactosaminated albumin: efficacy and minimal active dose. J Hepatol 1994; 20: 307–9

    Article  PubMed  CAS  Google Scholar 

  154. Fiume L, Bassi B, Busi C, et al. Galactosylated poly(L-lysine) as a hepatotropic carrier of 9-β-D-arabinofuranosyladenine 5′-monophosphate. FEBS Lett 1986; 203: 203–6

    Article  PubMed  CAS  Google Scholar 

  155. Wu GY, Wu CH. Specific inhibition of hepatitis B viral gene expression in vitro by targeted antisense oligonucleotides. J Biol Chem 1992; 267: 12436–9

    PubMed  CAS  Google Scholar 

  156. Reinis M, Damkova M, Korec E. Receptor-mediated transport of oligodeoxynucleotides into hepatic cells. J Virol Methods 1993; 42: 99–106

    Article  PubMed  CAS  Google Scholar 

  157. Fiume L, Di Stefano G, Busi C, et al. A conjugate of lactosaminated poly-L-lysine with adenine arabinoside monophosphate, administered to mice by intramuscular route, accomplishes a selective delivery of the drug to the liver. Biochem Pharmacol 1994; 47: 643–50

    Article  PubMed  CAS  Google Scholar 

  158. Biessen EAL, Beuting DM, Vietsch H, et al. Specific targeting of the antiviral drug 5-iodo 2′-deoxyuridine to the parenchymal liver cell using lactosylated poly-L-lysine. J Hepatol 1994; 21: 806–15

    Article  PubMed  CAS  Google Scholar 

  159. Fiume L, Di Stefano G, Busi C, et al. Inhibition of woodchuck hepatitis virus replication by adenine arabinoside monophosphate coupled to lactosaminated poly-L-lysine and administered by intramuscular route. Hepatology 1995; 22: 1072–7

    PubMed  CAS  Google Scholar 

  160. Enriquez PM, Jung C, Josephson L, et al. Conjugation of adenine arabinoside 5′-monophosphate to arabinogalactan: synthesis, characterization, and antiviral activity. Bioconjug Chem 1995; 6: 195–202

    Article  PubMed  CAS  Google Scholar 

  161. Bijsterbosch MK, Van Berkel TJC. Lactosylated high density lipoprotein: a potential carrier for the site-specific delivery of drugs to parenchymal liver cells. Mol Pharmacol 1992; 41: 404–11

    PubMed  CAS  Google Scholar 

  162. Schouten D, Van der Kooij M, Müller J, et al. Development of lipoprotein-like lipid particles for drug targeting: neo-high density lipoproteins. Mol Pharmacol 1993; 44: 486–92

    PubMed  CAS  Google Scholar 

  163. Bijsterbosch MK, Schouten D, Van Berkel TJC. Synthesis of the dioleoyl derivative of iododeoxyuridine and its incorporation into reconstituted high density lipoprotein particles. Biochemistry 1994; 33: 14073–80

    Article  PubMed  CAS  Google Scholar 

  164. Fiume L, Busi C, Di Stefano G, et al. Targeting of antiviral drugs to the liver using glycoprotein carriers. Adv Drug Del Rev 1994; 14: 51–65

    Article  CAS  Google Scholar 

  165. Wadhwa MS, Rice KG. Receptor mediated glycotargeting. J Drug Target 1995; 3: 111–27

    Article  PubMed  CAS  Google Scholar 

  166. Van Berkel TJC, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified LDL and acetylated LDL in rats: recognition by various scavenger receptors on Kupffer and endothelial cells. J Biol Chem 1991; 266: 2282–9

    PubMed  Google Scholar 

  167. Torrani Cerenzia M, Fiume L, De Bernardi Venon W, et al. Adenine arabinoside monophosphate coupled to lactosaminated human albumin administered for 4 weeks in patients with chronic type B hepatitis decreased viremia without producing significant side effects. Hepatology 1996; 23: 657–61

    Article  PubMed  CAS  Google Scholar 

  168. Di Stefano G, Busi C, Mattioli A, et al. Selective delivery to the liver of antiviral nucleoside analogs coupled to a high molecular mass lactosaminated poly-L-lysine and administered to mice by intramuscular route. Biochem Pharmacol 1995; 49: 1769–75

    Article  PubMed  Google Scholar 

  169. Lu XM, Fischman AJ, Jyawook SL, et al. Antisense DNA delivery in vivo: liver targeting by receptor-mediated uptake. J Nucl Med 1994; 35: 269–75

    PubMed  CAS  Google Scholar 

  170. Bijsterbosch MK, Van Berkel TJC. Native and modified lipoproteins as drug delivery systems. Adv Drug Deliv Rev 1990; 5: 231–51

    Article  CAS  Google Scholar 

  171. De Smidt PC, Van Berkel TJC. LDL-mediated drug targeting. Crit Rev Ther Drug Carrier Syst 1990; 77: 99–120

    Google Scholar 

  172. Shaw MJ. Lipoproteins as carriers of pharmacological agents. New York: Marcel Dekker, 1991

  173. Van Berkel TJC, Van Dijk MCM, Bijsterbosch MK, et al. Drug targeting by neo-lipoproteins. J Control Release 1996. In press

  174. Rensen PCN, Van Dijk MCM, Havenaar EC, et al. Selective targeting of antivirals by recombinant chylomicrons: a new therapeutic approach to hepatitis B. Nature Med 1995; 1: 221–5

    Article  PubMed  CAS  Google Scholar 

  175. Forte TM, McCall MR, Amacher S, et al. Physical and chemical characteristics of apolipoprotein A-I-lipid complexes produced by Chinese hamster ovary cells transfected with the human apolipoprotein A-I gene. Biochim Biophys Acta 1990; 1047: 11–8

    Article  PubMed  CAS  Google Scholar 

  176. Oberhauser B, Wagner E. Effective incorporation of 2′-Omethyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Res 1992; 20: 533–8

    Article  PubMed  CAS  Google Scholar 

  177. Wagner E, Plank C, Zatloukal K, et al. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle. Proc Natl Acad Sci USA 1992; 89: 7934–8

    Article  PubMed  CAS  Google Scholar 

  178. Marshall JS, Williams S, Jones P. Serum desialylated glycoproteins in patients with hepatobiliary dysfunction. J Lab Clin Med 1978; 92: 30–7

    PubMed  CAS  Google Scholar 

  179. Sawamura T, Nakada H, Hazama H, et al. Hyperasialoglycoproteinemia in patients with chronic liver diseases and/or liver cell carcinoma: asialoglycoprotein receptor in cirrhosis and liver cell carcinoma. Gastroenterology 1984; 87: 1217–21

    PubMed  CAS  Google Scholar 

  180. Burgess JB, Baenziger JU, Brown WR. Abnormal surface distribution of the human asialoglycoprotein receptor in cirrhosis. Hepatology 1992; 15: 702–6

    Article  PubMed  CAS  Google Scholar 

  181. Virgolini I, Müller C, Höbart J, et al. Liver function in acute viral hepatitis as detemined by a hepatocyte-specific ligand: 99mTc-galactosyl-neoglycoalbumin. Hepatology 1992; 15: 593–8

    Article  PubMed  CAS  Google Scholar 

  182. Van Dijk MCM, Ziere GJ, Boers W, et al. Recognition of chylomicron remnants and β-migrating very-low-density lipoproteins by the remnant receptor of parenchymal liver cells is distinct from the liver α2-macroglobulin-recognition site. Biochem J 1991; 279: 863–70

    PubMed  Google Scholar 

  183. Chen Z, Keech A, Collins R, et al. Prolonged infection with hepatitis B virus and association between low blood cholesterol concentration and liver cancer. BMJ 1993; 306: 890–4

    Article  PubMed  CAS  Google Scholar 

  184. Hoeg JM, Demosky Jr SJ, Gregg RE, et al. Distinct hepatic receptors for low density lipoprotein and apolipoprotein E in humans. Science 1985; 227: 759–61

    Article  PubMed  CAS  Google Scholar 

  185. Mahley RW, Hussain MM. Chylomicron and chylomicron remnant catabolism. Curr Opin Lipidol 1991; 2: 170–6

    Article  CAS  Google Scholar 

  186. Rensen PCN, Van Berkel TJC. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicronlike triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem 1996. In press

  187. Lentz TL. The recognition event between virus and host cell receptor: a target for antiviral agents. J Gen Virol 1990; 71: 751–66

    Article  PubMed  CAS  Google Scholar 

  188. Shouval D, Wands JR, Zurawski VR, et al. Selecting binding and complement-mediated lysis of human hepatoma cells (PLC/PRF/5) in culture by monoclonal antibodies to hepatitis B surface antigen. Proc Natl Acad Sci USA 1982; 79: 650–4

    Article  PubMed  CAS  Google Scholar 

  189. Shouval D, Adler R, Wands JR, et al. Conjugates between monoclonal antibodies to HBsAg and cytosine arabinoside. J Hepatol 1986; 3 Suppl. 2: S87–95

    Article  PubMed  CAS  Google Scholar 

  190. Schlicht HJ, Schaller H. The secretory core protein of human hepatitis B virus is expressed on the cell surface. J Virol 1989; 63: 5399–404

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick C. N. Reusen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reusen, P.C.N., de Vrueh, R.L.A. & van Berkel, T.J.C. Targeting Hepatitis B Therapy to the Liver. Clin-Pharmacokinet 31, 131–155 (1996). https://doi.org/10.2165/00003088-199631020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631020-00005

Keywords

Navigation