Skip to main content
Log in

Optimisation of Antiepileptic Drug Therapy

The Importance of Serum Drug Concentration Monitoring

  • Review Article
  • Target Concentration Intervention
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The ability to measure the serum concentrations of antiepileptic drugs, and the widespread use of this procedure, has markedly improved the treatment given to patients with epilepsy during the past 3 decades. The monitoring of antiepileptic drug concentrations in serum is necessary for the optimal drug therapy of seizures, because the therapeutic and toxic effects of these drugs are better related to serum concentration than to administered dosage. Monitoring appeared to have a major impact on improving the effectiveness and safety of antiepileptic drug therapy.

The age-related variability of pharmacokinetic parameters may also require the individualisation of therapy, with subsequent re-evaluation as the person grows older. Monitoring serum concentrations of antiepileptic drugs may help to optimise the dose. A drug concentration, however, can only be regarded as a guide around which to alter the dosage according to the patient's clinical condition.

Serum drug concentration monitoring is particularly useful to ensure compliance and in helping to manage combinations of antiepileptic drugs that invariably interact. The addition or deletion of other antiepileptic drugs may change dosage requirements. Therefore, routine monitoring of antiepileptic drug serum concentrations would be extremely useful, especially in the paediatric population, and in patients who require associated antiepileptic medication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tozer TN, Winter ME. Phenytoin. In: Evans WE, Schentag JJ, Jusko WJ, editors. Applied pharmacokinetics: principles of therapeutic drug monitoring. 3rd ed. San Francisco: Applied Therapeutics, 1992: 1–44

    Google Scholar 

  2. Bowdle TA, Patel IH, Levy RH, et al. Valproic acid dosage and plasma protein binding and clearance. Clin Pharmacol Ther 1980; 28: 486–92

    Article  PubMed  CAS  Google Scholar 

  3. Kumps AH. Dose-dependency of the ratio between carbamazepine serum levels and dosage in patients with epilepsy. Ther Drug Monit 1981; 3: 271–4

    Article  PubMed  CAS  Google Scholar 

  4. Thomson AH, Brodie MJ. Pharmacokinetic optimisation of anticonvulsant therapy. Clin Pharmacokinet 1992; 23: 216–30

    Article  PubMed  CAS  Google Scholar 

  5. Brodie MJ, Feely J. Practical clinical pharmacology. Therapeutic drug monitoring and clinical trials. BMJ 1988; 296: 1110–4

    CAS  Google Scholar 

  6. Larkin JG, Herrick AL, McGuire GM, et al. Antiepileptic drug monitoring at the epilepsy clinic: a prospective evaluation. Epilepsia 1991; 32: 89–95

    Article  PubMed  CAS  Google Scholar 

  7. Nelson E, Powell JR, Conrad K, et al. Phenobarbital pharmacokinetics and bioavailability in adults. J Clin Pharmacol 1982; 22: 141–8

    PubMed  CAS  Google Scholar 

  8. Welinsky AJ, Freil PN, Levy RH, et al. Kinetics of phenobarbital in normal subjects and epileptic patients. Eur J Clin Pharmacol 1982; 23: 87–92

    Article  Google Scholar 

  9. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drug in paediatric patients. Part I: phenobarbital, primidone, valproic acid, ethosuximide and mesuximide. Clin Pharmacokinet 1995; 29: 257–86

    CAS  Google Scholar 

  10. Heimann G, Galdtke E. Pharmacokinetics of phenobarbital in childhood. Eur J Clin Pharmacol 1977; 12: 305–10

    Article  PubMed  CAS  Google Scholar 

  11. Browne TR, Von Langenhove A, Castello CE, et al. Pharmacokinetic equivalence of stable-isotope-labeled and unlabeled drugs. Phenobarbital in man. J Clin Pharmacol 1982; 22: 309–15

    Article  PubMed  CAS  Google Scholar 

  12. Dodson WE, Rust Jr RS. Phenobarbital: absorption, distribution, and excretion, In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 379–87

    Google Scholar 

  13. Guelen PJM, Van Der Kleijn E, Woudstra U. Statistical analysis of pharmacokinetic parameters in epileptic patients chronically treated with antiepileptic drugs. In: Schneider H, Janz D, Gardner-Thorpe C, et al., editors. Clinical pharmacology of antiepileptic drugs. Berlin: Springer-Verlag, 1975: 2–10

    Chapter  Google Scholar 

  14. Yukawa E, Higuchi S, Aoyama T. Phenobarbitone population pharmacokinetics from routine clinical data: role of patient characteristics for estimating dosing regimens. J Pharm Pharmacol 1992; 44: 755–60

    Article  PubMed  CAS  Google Scholar 

  15. Martin PR, Kapur BM, Whiteside EA, et al. Intravenous phenobarbital therapy in barbiturate and other hypnosedative withdrawal reactions: a kinetic approach. Clin Pharmacol Ther 1979; 26: 256–64

    PubMed  CAS  Google Scholar 

  16. Fischer JH, Lockman LA, Zaske D, et al. Phenobarbital maintenance dose requirements in treating neonatal seizures. Neurology 1981; 31: 1042–4

    Article  PubMed  CAS  Google Scholar 

  17. Minagawa K, Miura K, Chiba K, et al. Pharmacokinetics and relative bioavailability of intramuscular phenobarbital sodium or acid in infants. Pediatr Pharmacol 1981; 1: 279–89

    CAS  Google Scholar 

  18. Painter MJ, Gaus LM. Phenobarbital: clinical use. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 401–7

    Google Scholar 

  19. Hooper WD, Bochner F, Eadie MJ, et al. Plasma protein binding of diphenylhydantoin: effects of sex hormones, renal and hepatic disease. Clin Pharmacol Ther 1974; 15: 276–82

    PubMed  CAS  Google Scholar 

  20. Lunde PKM, Rane A, Yaffe SJ, et al. Plasma protein binding of diphenylhydantoin in man: interaction with other drugs and the effect of temperature and plasma dilution. Clin Pharmcol Ther 1970; 11: 846–55

    CAS  Google Scholar 

  21. Hvidberg EF, Dam M. Clinical pharmacokinetics of anticonvulsants. Clin Pharmacokinet 1976; 1: 161–88

    Article  PubMed  CAS  Google Scholar 

  22. Bochner F, Hooper WD, Sutherland JM, et al. The renal handling of dihenylhydantoin and 5-(p-hydroxyphenyl)-5-phenylhydantoin. Clin Pharmacol Ther 1973; 14: 791–6

    PubMed  CAS  Google Scholar 

  23. Edeki TI, Brase DA. Phenytoin disposition and toxicity: Role of pharmacogenetic and interethnic factors. Drug Metab Rev 1995; 27: 449–69

    Article  PubMed  CAS  Google Scholar 

  24. Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm 1980; 8: 553–71

    CAS  Google Scholar 

  25. Grasela TH, Sheiner LB, Rambeck B, et al. Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clin Pharmacokinet 1983; 8: 355–64

    Article  PubMed  CAS  Google Scholar 

  26. Miller R, Rheeders M, Klein C, et al. Population pharmacokinetics of phenytoin in South African black patients. S Afr Med J 1987; 72: 188–90

    PubMed  CAS  Google Scholar 

  27. Chan E, Ti TY, Lee HS. Population pharmacokinetics of phenytoin in Singapore Chinese. Eur J Clin Pharmacol 1990; 39: 177–81

    Article  PubMed  CAS  Google Scholar 

  28. Hori R, Okumura K, Kitazawa S, et al. Estimation of population pharmacokinetic parameters in Japanese patients. III. Phenytoin [in Japanese]. Yakuzaigaku 1990; 50: 292–9

    Google Scholar 

  29. Yukawa E, Higuchi S, Aoyama T. Population pharmacokinetics of phenytoin from routine clinical data in Japan: an update. Chem Pharm Bull 1990; 38: 1973–6

    Article  PubMed  CAS  Google Scholar 

  30. Bauer LA, Blouin RA. Phenytoin Michaelis-Menten pharmacokinetics in Caucasian paediatric patients. Clin Pharmacokinet 1983; 8: 545–9

    Article  PubMed  CAS  Google Scholar 

  31. Graves NM, Leppik IE, Termond E, et al. Phenytoin clearances in a compliant population: description and application. Ther Drug Monit 1986; 8: 427–33

    Article  PubMed  CAS  Google Scholar 

  32. Yukawa E, Higuchi S, Aoyama T. Phenytoin dosage adjustment method using population clearance. Chem Pharm Bull 1990; 38: 510–2

    Article  PubMed  CAS  Google Scholar 

  33. Morselli PL. Carbamazepine: absorption, distribution, and excretion, In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 515–28

    Google Scholar 

  34. Riad LE, Chan KKH, Wagner Jr WE, et al. Simultaneous firstand zero-order absorption of carbamazepine tablets in humans. J Pharm Sci 1986; 75: 897–900

    Article  PubMed  CAS  Google Scholar 

  35. Sanchez A, Duran JA, Serrano JS. Steady-state carbamazepine plasma concentration-dose ratios in epileptic patients. Clin Pharmacokinet 1986; 11: 411–4

    Article  PubMed  CAS  Google Scholar 

  36. Bertilsson L. Clinical pharmacokinetics of carbamazepine. Clin Pharmacokinet 1978; 3: 128–43

    Article  PubMed  CAS  Google Scholar 

  37. Hori R, Okumura K, Kitazawa S, et al. Estimation of population pharmacokinetic parameters in Japanese patients. II. Carbamazepine [in Japanese]. Yakuzaigaku 1989; 49: 304–12

    Google Scholar 

  38. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drug in paediatric patients. Part II: phenytoin, carbamazepine, sulthiame, lamotrigine, vigabatrin, oxcarbazepine and felbamate. Clin Pharmacokinet 1995; 29: 341–69

    CAS  Google Scholar 

  39. Sumi M, Watari N, Umezawa O, et al. Pharmacokinetic study of carbamazepine and its epoxide metabolite in humans. J Pharmacobiodynamics 1987; 10: 652–61

    Article  CAS  Google Scholar 

  40. Mikati MA, Browne TR, Collins JF, et al. Time course of carbamazepine autoinduction. Neurology 1989; 39: 592–4

    Article  PubMed  CAS  Google Scholar 

  41. Bertilsson L, Tomson T, Tybring G. Pharmacokinetics: time-dependent changes (autoinduction of carbamazepine epoxidation). J Clin Pharmacol 1986; 26: 459–62

    PubMed  CAS  Google Scholar 

  42. Cotter LM, Eadie MJ, Hooper WD, et al. The pharmacokinetics of carbamazepine. Eur J Clin Pharmacol 1977; 12: 451–6

    Article  PubMed  CAS  Google Scholar 

  43. Eichelbaum M, Kothe KW, Hoffman F, et al. Kinetics and metabolism of carbamazepine during combined antiepileptic drug therapy. Clin Pharmcol Ther 1979; 26: 366–71

    CAS  Google Scholar 

  44. Summers B, Summers RS. Carbamazepine clearance in paediatric epilepsy patients: influence of body mass, dose, sex and co-medication. Clin Pharmacokinet 1989; 17: 208–16

    Article  PubMed  CAS  Google Scholar 

  45. Battino D, Bossi L, Croci D, et al. Carbamazepine plasma levels in children and adults: influence of age, dose, and associated therapy. Ther Drug Monit 1980; 2: 315–22

    PubMed  CAS  Google Scholar 

  46. Christiansen J, Dam M. Influence of phenobarbital and diphenylhydantoin on plasma carbamazepine levels in patients with epilepsy. Acta Neurol Scand 1973; 49: 543–6

    Article  PubMed  CAS  Google Scholar 

  47. Baciewicz AM. Carbamazepine drug interactions. Ther Drug Monit 1986; 8: 305–17

    Article  PubMed  CAS  Google Scholar 

  48. Eichelbaum M, Ekbom K, Bertilsson L, et al. Plasma kinetics of carbamazepine and its epoxide metabolite in man after single and multiple doses. Eur J Clin Pharmacol 1975; 8: 337–41

    Article  PubMed  CAS  Google Scholar 

  49. Eichelbaum M, Kothe KW, Hoffman F, et al. Use of stable labelled carbamazepine to study its kinetics during chronic carbamazepine treatment. Eur J Clin Pharmacol 1982; 23: 241–4

    Article  PubMed  CAS  Google Scholar 

  50. Choonara IA, Rane A. Therapeutic drug monitoring of anticonvulsants: state of the art. Clin Pharmacokinet 1990; 18: 318–28

    Article  PubMed  CAS  Google Scholar 

  51. Levy RH, Shen DD. Valproic acid: absorption, distribution, and excretion, In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 605–19

    Google Scholar 

  52. Ohdo S, Nakano S, Ogawa N. Circadian changes of valproate kinetics depending on meal condition in humans. J Clin Pharmacol 1992; 32: 822–6

    PubMed  CAS  Google Scholar 

  53. Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid: 1988. Clin Pharmacokinet 1988; 15: 367–89

    Article  PubMed  CAS  Google Scholar 

  54. Hori R, Okumura K, Kitazawa S, et al. Estimation of population pharmacokinetic parameters in Japanese patients: I. Valproic acid [in Japanese]. Yakuzaigaku 1989; 49: 148–56

    CAS  Google Scholar 

  55. Kodama Y, Koike Y, Kimoto H, et al. Binding parameters of valproic acid to serum protein in healthy adults at steady state. Ther Drug Monit 1992; 14: 50–60

    Google Scholar 

  56. Chiba K, Suganuma T, Ishizaki T, et al. Comparison of steadystate pharmacokinetics of valproic acid in children between monotherapy and multiple antiepileptic drug treatment. J Pediatr 1985; 106: 653–8

    Article  PubMed  CAS  Google Scholar 

  57. Hall K, Otten N, Johnston B, et al. A multivariable analysis of factors governing the steady-state pharmacokinetics of valproic acid in 52 young epileptics. J Clin Pharmacol 1985; 25: 261–8

    PubMed  CAS  Google Scholar 

  58. Cloyd JC, Fisher JH, Kriel RL, et al. Valproic acid pharmacokinetics in children: IV. Effects of age and antiepileptic drugs on protein binding and intrinsic clearance. Clin Pharmacol Ther 1993; 53: 22–9

    CAS  Google Scholar 

  59. Schappel GJ, Beran RG, Doecke CJ, et al. Pharmacokinetics of sodium valproate in epileptic patients: prediction of maintenance dosage by single-dose study. Eur J Clin Pharmacol 1980; 17: 71–7

    Article  Google Scholar 

  60. Perucca E, Gatti G, Frigo GM, et al. Disposition of sodium valproate in epileptic patients. Br J Clin Pharmacol 1978; 5: 495–9

    Article  PubMed  CAS  Google Scholar 

  61. Gugler R, Schell A, Eichelbaum M, et al. Disposition of valproic acid in man. Eur J Clin Pharmacol 1977; 12: 125–32

    Article  PubMed  CAS  Google Scholar 

  62. Bowdle TA, Patel IH, Levy RH, et al. Valproic acid dosage and plasma protein binding and clearance. Clin Pharmacol Ther 1980; 28: 486–92

    Article  PubMed  CAS  Google Scholar 

  63. Klotz U, Antonin KH. Pharmacokinetics and bioavailability of sodium valproate. Clin Pharmacol Ther 1977; 21: 736–43

    PubMed  CAS  Google Scholar 

  64. Cloyd JC, Kriel RL, Fisher JH, et al. Pharmacokinetics of valproic acid in children: I. Multiple antiepileptic drug therapy. Neurology 1983; 33: 185–91

    CAS  Google Scholar 

  65. Guger R, von Unruh GE. Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 1980; 5: 67–83

    Article  Google Scholar 

  66. Buchanan RA, Fernandey L, Kinkel AW. Absorption and elimination of ethosuximide in children. J Clin Pharmacol 1969; 9: 393–8

    CAS  Google Scholar 

  67. Buchanan RA, Kinkel AW, Smith TC. The absorption and excretion of ethosuximide. Int J Clin Pharmacol Ther Toxicol 1973; 7: 213–8

    CAS  Google Scholar 

  68. Bauer LA, Harris C, Wilensky AJ, et al. Ethosuximide kinetics: possible interaction with valproic acid. Clin Pharmacol Ther 1982; 31: 741–5

    Article  PubMed  CAS  Google Scholar 

  69. Sherwin AL. Ethosuximide: clinical use. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 667–73

    Google Scholar 

  70. Greenblatt DJ, Miller LG, Shader RI. Clonazepam pharmacokinetics, brain uptake, and receptor interactions. J Clin Psychiatry 1987; 48 Suppl.: 4–11

    PubMed  CAS  Google Scholar 

  71. Eadie MJ, Tyrer JM, Smith GA, et al. Pharmacokinetics of drugs used for petit mal ‘absence’ epilepsy. Clin Exp Neurol 1977; 14: 172–83

    PubMed  CAS  Google Scholar 

  72. Lockman LA, Kriel R, Zaske D, et al. Phenobarbital dosage for control of neonatal seizures. Neurology 1979; 29: 1445–9

    Article  PubMed  CAS  Google Scholar 

  73. Yukawa E, Higuchi S, Aoyama T. Influence of age and co-medication on steady-state phenobarbital serum level-dose ratios in Japanese paediatric patients. J Clin Pharm Ther 1992; 17: 249–53

    Article  PubMed  CAS  Google Scholar 

  74. Levine M, Chang T. Therapeutic drug monitoring of phenytoin: rationale and current status. Clin Pharmacokinet 1990; 19: 341–58

    Article  PubMed  CAS  Google Scholar 

  75. Chiba K, Ishizaki T, Miura H, et al. Michaelis-Menten pharmacokinetics of diphenylhydantoin and application in the pediatric age patient. J Pediatr 1980; 96: 479–84

    Article  PubMed  CAS  Google Scholar 

  76. Richens A, Dunlop A. Phenytoin dosage nomogram. Lancet 1975; II: 1305–6

    Google Scholar 

  77. Rambeck B, Boenigk HE, Dunlop A, et al. Predicting phenytoin dose: a revised nomogram. Ther Drug Monit 1982; 1: 325–33

    Article  Google Scholar 

  78. Wagner JG. New and simple method to predict dosage of drugs obeying simple Michaelis-Menten elimination kinetics and to distinguish such kinetics from simple first order and from parallel Michaelis-Menten and first order kinetics. Ther Drug Monit 1985; 7: 377–86

    Article  PubMed  CAS  Google Scholar 

  79. Bryson SM, Ai-Lanqawi Y, Kelman AW, et al. Comparison of a Bayesian forecasting technique with a new method for estimating phenytoin dose requirements. Ther Drug Monit 1988; 10: 80–4

    PubMed  CAS  Google Scholar 

  80. Yukawa E, Higuchi S, Aoyama T. Clinical utility of a new and simple technique for individualizing phenytoin dosage. J Pharmacobiodynamics 1989; 12: 187–92

    Article  CAS  Google Scholar 

  81. Burton ME, Vasco MR, Brater DC. Comparison of drug dosing methods. Clin Pharmacokinet 1985; 10: 1–37

    Article  PubMed  CAS  Google Scholar 

  82. Toscano JP, Jameson JP. Comparison of four single-point phenytoin dosage prediction techniques using computer-simulated pharmacokinetic values. Clin Pharm 1986; 5: 396–402

    PubMed  CAS  Google Scholar 

  83. Vozeh S, Muir KT, Sheiner LB, et al. Predicting individual phenytoin dosage. J Pharmacokinet Biopharm 1981; 9: 131–46

    PubMed  CAS  Google Scholar 

  84. Yuen GJ, Taylor JW, Ludden TM, et al. Predicting phenytoin dosages using Bayesian feedback: a comparison with other methods. Ther Drug Monit 1983; 5: 437–41

    Article  PubMed  CAS  Google Scholar 

  85. Yuen GJ, Latimer PT, Littlefield LC, et al. Phenytoin dosage predictions in paediatric patients. Clin Pharmacokinet 1989; 16: 254–60

    Article  PubMed  CAS  Google Scholar 

  86. Yukawa E, Higuchi S, Ohtsubo K, et al. Comparison of singlepoint phenytoin dosage prediction techniques. J Clin Pharm Ther 1988; 13: 293–305

    Article  PubMed  CAS  Google Scholar 

  87. Yukawa E, Higuchi S, Aoyama T. Evaluation of single-point phenytoin dosage prediction methods in paediatric patients. J Pharmacobiodynamics 1988; 11: 736–43

    Article  CAS  Google Scholar 

  88. Zaccara G, Messori A, Muscas GC, et al. Predictive performance of pharmacokinetic methods for phenytoin dosing: a multi-center evaluation in 282 patients with epilepsy. Epilep Res 1989; 3: 253–61

    Article  CAS  Google Scholar 

  89. Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. Part I: Phenytoin. Clin Pharmacokinet 1991; 20: 209–17

    CAS  Google Scholar 

  90. Macphee GJA, Brodie MJ. Carbamazepine substitution in severe partial epilepsy: implication of autoinduction of metabolism. Postgrad Med J 1985; 61: 779–83

    Article  PubMed  CAS  Google Scholar 

  91. Eichelbaum M, Tomson T, Tybring G, et al. Carbamazepine metabolism in man: induction and pharmacogenetic aspects. Clin Pharmacokinet 1985; 10: 80–90

    Article  PubMed  CAS  Google Scholar 

  92. Macphee GJA, Butler E, Brodie MJ. Intradose and circadian variation in circulating carbamazepine and its epoxide in epileptic patients: a consequence of autoinduction of metabolism. Epilepsia 1987; 28: 286–94

    Article  PubMed  CAS  Google Scholar 

  93. Levy RH, Kerr BM. Clinical pharmacokinetics of carbamazepine. J Clin Psychiatry 1988; 49 Suppl. 4: 58–62

    PubMed  Google Scholar 

  94. Yukawa E, Suzuki A, Higuchi S, et al. Influence of age and co-medication on steady-state carbamazepine serum leveldose ratios in Japanese paediatric patients. J Clin Pharm Ther 1992; 17: 65–9

    Article  PubMed  CAS  Google Scholar 

  95. Rylance GW, Moreland TA, Butcher GM. Carbamazepine dosefrequency requirements in children. Arch Dis Child 1979; 54: 454–8

    Article  PubMed  CAS  Google Scholar 

  96. Rapeport WG, Mclnnes GT, Thompson GG, et al. Hepatic enzyme induction and leucocyte delta-aminolaevulinic acid synthase activity: studies with carbamazepine. Br J Clin Pharmacol 1983; 16: 133–7

    Article  PubMed  CAS  Google Scholar 

  97. Garcia MJ, Alonso AC, Maza A, et al. Comparison of methods of carbamazepine dosage, individualization in epileptic patients. J Clin Pharm Ther 1988; 13: 375–80

    Article  PubMed  CAS  Google Scholar 

  98. Rambeck B, May T, Juergens U. Serum concentrations of carbamazepine and its epoxide and diol metabolites in epileptic patients: the influence of dose and co-medication. Ther Drug Monit 1987; 9: 298–303

    Article  PubMed  CAS  Google Scholar 

  99. Rowan AJ, Binnie CD, Warfield CA, et al. The delayed effect of sodium valproate on the photoconvulsive response in man. Epilepsia 1979; 20: 61–8

    Article  PubMed  CAS  Google Scholar 

  100. Yukawa E, Suzuki A, Higuchi S, et al. Influence of age and concurrent medication on steady-state valproic acid serum level-dose ratios in Japanese paediatric patients. J Clin Pharm Ther 1991; 16: 291–7

    Article  PubMed  CAS  Google Scholar 

  101. Haerer AF, Buchanan RA, Wiygul FM. Ethosuximide blood levels in epileptics. J Clin Pharmacol 1970; 10: 370–4

    CAS  Google Scholar 

  102. Eadie MJ. Plasma level monitoring of anticonvulsants. Clin Pharmacokinet 1976; 1: 52–66

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yukawa, E. Optimisation of Antiepileptic Drug Therapy. Clin-Pharmacokinet 31, 120–130 (1996). https://doi.org/10.2165/00003088-199631020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631020-00004

Keywords

Navigation