Skip to main content
Log in

Concentration-Controlled Trials

What Does the Future Hold?

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Conclusions

There can be no doubt that the introduction of measures to control the drug concentration in clinical trials results in additional complexity and increases cost. However, these disadvantages may be balanced by increased study power, a possible reduction in patient numbers and the gain of additional information relating drug concentrations to pharmacodynamics during drug development. Also, the measurement of drug concentrations rationalises the sometimes criticised intention-to-treat analysis,[39] by eliminating the non- or poorly compliant patient from the evaluated study data. There is a need to integrate pharmacokinetics and pharmacodynamics during drug development.[40] Concentration-controlled studies may be one of the ways to do this, but the few, non phase I studies, which have been completed and published, have involved only compliance checking,[41] relatively straight-forward therapeutic drug monitoring[19,42,43] or have been undertaken in single centres.[16,17,21,44–47] Before the potential benefits of concentration-controlled trials can be realised in a wider arena, the practical problems, such as those discussed in section 3, must be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mueller EA, Kovarik JM, van Bree JB, et al. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res 1994; 11: 304–10

    Google Scholar 

  2. Lieberman R, Nelson R. Dose-response and concentration-response relationships: clinical and regulatory perspectives. Ther Drug Monit 1993; 15: 498–502

    Article  PubMed  CAS  Google Scholar 

  3. Miller L, Dalton M, Vestal R, et al. Delays in the drug approval process: recent trends. J Clin Res Drug Dev 1988; 2: 31–45

    Google Scholar 

  4. Kaye SB, Workman P, Graham MA, et al. Pharmacokinetics and early clinical studies of selected new drugs. Cancer Surv 1993; 17: 371–96

    PubMed  CAS  Google Scholar 

  5. Newell DR. Phase I clinical studies with cytotoxic drugs: pharmacokinetic and pharmacodynamic considerations. Br J Cancer 1990; 61: 189–91

    Article  PubMed  CAS  Google Scholar 

  6. Estey E, Hoth D, Simon R, et al. Therapeutic response in phase I trials of antineoplastic agents. Can Treat Rep 1986; 70: 1105–15

    CAS  Google Scholar 

  7. Kerr DJ, Kaye SB, Graham J, et al. Phase I and pharmacokinetic study of LM985 (flavone acetic acid ester). Cancer Res 1986; 46: 3142–6

    PubMed  CAS  Google Scholar 

  8. Collins JM, Zaharko DS, Dedrick RL, et al. Potential roles for preclinical pharmacology in phase I clinical trials. Can Treat Rep 1986; 70: 73–80

    CAS  Google Scholar 

  9. van Hennik MB, van der Vijgh WJ, Klein I, et al. Comparative pharmacokinetics of cisplatin and three analogues in mice and humans. Cancer Res 1987; 47: 6297–301

    PubMed  Google Scholar 

  10. EORTC Pharmacokinetics and Metabolism Group. Pharmacokinetically guided dose escalation in phase I clinical trials. Eur J Cancer Clin Oncol 1987; 23: 1083–7

    Article  Google Scholar 

  11. Graham MA, Workman P. The impact of pharmacokinetically guided dose escalation strategies in phase I clinical trials: critical evaluation and recommendations for future studies. Ann Oncol 1992; 3: 339–47

    PubMed  CAS  Google Scholar 

  12. Fuse E, Kobayashi S, Inaba M, et al. Application of pharmacokinetically guided dose escalation with respect to cell cycle phase specificity. J Natl Cancer Inst 1994; 86: 989–96

    Article  PubMed  CAS  Google Scholar 

  13. Lønning PE. Dose response evaluation: use of plasma concentration confidence intervals as a tool to predict optimal drug dose ratio. Clin Pharmacokinet 1993; 25: 1–5

    Article  PubMed  Google Scholar 

  14. Sanathanan LP, Peck CC. The randomized concentration-controlled trial: an evaluation of its sample size efficiency. Control Clin Trials 1991; 12: 780–94

    Article  PubMed  CAS  Google Scholar 

  15. Sanathanan LP, Peck CC, Temple R, et al. Randomization, PK-controlled dosing, and titration: an integrated approach for designing clinical trials. Drug Inform J 1991; 25: 425–31

    Article  Google Scholar 

  16. Vožeh S, Kewitz G, Perruchoud A, et al. Theophylline serum concentration and therapeutic effect in severe acute bronchial obstruction: the optimal use of intravenously administered theophylline. Am Rev Respir Dis 1982; 125: 181–4

    PubMed  Google Scholar 

  17. Holford N, Black P, Couch R, et al. Theophylline target concentrations in severe airways obstruction — 10 or 20 mg/L: a randomised concentration-controlled trial. Clin Pharmacokinet 1993; 25: 495–505

    Article  PubMed  CAS  Google Scholar 

  18. Leppik IE. Compliance during treatment of epilepsy. Epilepsia 1988; 29 Suppl. 2: S79–84

    Article  PubMed  Google Scholar 

  19. Temkin NR, Dikmen SS, Wilensky AJ, et al. A randomized, double-blind study of phenytoin for the prevention of posttraumatic seizures. N Engl J Med 1990; 323: 497–502

    Article  PubMed  CAS  Google Scholar 

  20. Vozeh S, Koelz A, Martin E, et al. Predictability of phenytoin serum levels by nomograms and clinicians. Eur Neurol 1980; 19: 345–52

    Article  PubMed  CAS  Google Scholar 

  21. Gelenberg AJ, Kane JM, Keller MB, et al. Comparison of Standard and low serum levels of lithium for maintenance treatment of bipolar disorder. N Engl J Med 1989; 321: 1489–93

    Article  PubMed  CAS  Google Scholar 

  22. Levy G. Concentration-controlled versus concentration-defined clinical trials [letter]. Clin Pharmacol Ther 1993; 53: 385

    Article  PubMed  CAS  Google Scholar 

  23. Peck CC. Concentration-controlled versus concentration defined clinical trials — a reply [letter]. Clin Pharmacol Ther 1993; 53: 385–7

    Article  Google Scholar 

  24. Levy G. Concentration-controlled versus concentration-defined clinical trials [rebuttal]. Clin Pharmacol Ther 1993; 53: 387–8

    Article  Google Scholar 

  25. Johnston A, Sketris I, Marsden JT, et al. A limited sampling strategy for the measurement of cyclosporine AUC. Transplant Proc 1990; 22: 1345–6

    PubMed  CAS  Google Scholar 

  26. Egorin MJ, Forrest A, Belani CP, et al. A limited sampling strategy for cyclophosphamide pharmacokinetics. Cancer Res 1989; 49: 3129–33

    PubMed  CAS  Google Scholar 

  27. Grevel J, Kahan BD. Abbreviated kinetic profiles in area-under-the-curve monitoring of cyclosporine therapy. Clin Chem 1991; 37: 1905–8

    PubMed  CAS  Google Scholar 

  28. Shaw LM, Bonner HS, Fields L, et al. The use of concentration measurements of parent drug and metabolite during clinical trials. Ther Drug Monk 1994; 15: 483–7

    Article  Google Scholar 

  29. Cipolle RJ, Zaske DE, Crossley K. Gentamicin/tobramycin: therapeutic use and serum concentration monitoring. In: Taylor WJ, Finn AL, editors. Individualizing drug therapy: practical applications of drug monitoring. New York: Gross Townsend Frank Inc., 1981; 4: 113–48

    Google Scholar 

  30. Smith DB, Ewen C, Mackintosh J, et al. A phase I and pharmacokinetic study of amphethinile. Br J Cancer 1988; 57: 623–7

    Article  PubMed  CAS  Google Scholar 

  31. Hantel A, Donehower RC, Rowinsky EK, et al. Phase I study and pharmacodynamics of piroxantrone (NSC 349174), a new anthrapyrazole. Cancer Res 1990; 50: 3284–8

    PubMed  CAS  Google Scholar 

  32. Graham MA, Bissett D, Setanoians A, et al. Preclinical and phase I studies with rhizoxin to apply a pharmacokinetically guided dose-escalation scheme. J Natl Cancer Inst 1992; 84: 494–500

    Article  PubMed  CAS  Google Scholar 

  33. Gianni L, Vigano L, Surbone A, et al. Pharmacology and clinical toxicity of 4′-iodo-4′-deoxydoxorubicin: an example of successful application of pharmacokinetics to dose escalation in phase I trials. J Natl Cancer Inst 1990; 82: 469–77

    Article  PubMed  CAS  Google Scholar 

  34. Johnston A, Holt DW. Calibration of the CYCLO-Trac SP cyclosporine radioimmunoassay. Clin Chem 1993; 39(12): 2532–3

    PubMed  CAS  Google Scholar 

  35. Johnston A, Holt DW. External quality assessment scheme for cyclosporin in body fluids. Scand J Clin Lab Invest 1993; 212: 48–53

    Article  CAS  Google Scholar 

  36. Levy G. Variability in animal pharmacodynamic studies. In: Rowland M, Sheiner LB, Steimer JL, editors. Variability in drug therapy: description, estimation and control. New York: Raven Press, 1985: 125–38

    Google Scholar 

  37. Levy G, Ebling WF, Forrest A. Concentration- or effect-controlled clinical trials with sparse data. Clin Pharmacol Ther 1994; 56(1): 1–8

    Article  PubMed  CAS  Google Scholar 

  38. Endrenyi L, Zha J. Comparative efficiencies of randomized concentration- and dose-controlled clinical trials. Clin Pharmacol Ther 1993; 56: 331–8.

    Article  Google Scholar 

  39. Sheiner LB. The intellectual health of clinical drug evaluation. Clin Pharmacol Ther 1991; 50: 4–9

    Article  PubMed  CAS  Google Scholar 

  40. Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Clin Pharmacol Ther 1992; 51: 465–73

    Article  PubMed  CAS  Google Scholar 

  41. β-Blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction. JAMA 1982; 247(12): 1707–14

    Article  Google Scholar 

  42. Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. N Engl J Med 1992; 327: 765–71

    Article  PubMed  CAS  Google Scholar 

  43. Mueller EA, Kovarik JM, van Bree JB, et al. Pharmacokinetics and tolerability of a microemulsion formulation of cyclosporine in renal allograft recipients — a concentration-controlled comparison with the commercial formulation. Transplantation 1994; 57(8): 1178–82

    Article  PubMed  CAS  Google Scholar 

  44. Eisenberger MA, Reyno LM, Jodrell DI, et al. Suramin, an active drug for prostate cancer: interim observations in a phase I trial [published erratum appears in J Natl Cancer Inst 1994 Apr; 86 (8): 639–40]. J Natl Cancer Inst 1993; 85: 611–21

    Article  PubMed  CAS  Google Scholar 

  45. Scher HI, Jodrell DI, Iversen JM, et al. Use of adaptive control with feedback to individualize suramin dosing. Cancer Res 1992; 52: 64–70

    PubMed  CAS  Google Scholar 

  46. Treiman DM, Pledger GW, DeGiorgio C, et al. Increasing plasma concentration tolerability study of flunarizine in comedicated epileptic patients. Epilepsia 1993; 34: 944–53

    Article  PubMed  CAS  Google Scholar 

  47. Volavka J, Cooper TB, Meisner M, et al. Haloperidol blood levels and effects in schizophrenia and schizoaffective disorder: a progress report. Psychopharmacol Bull 1990; 26: 13–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, A., Holt, D.W. Concentration-Controlled Trials. Clin. Pharmacokinet. 28, 93–99 (1995). https://doi.org/10.2165/00003088-199528020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199528020-00001

Keywords

Navigation