Skip to main content
Log in

The Fate of Exogenous Surfactant in Neonates with Respiratory Distress Syndrome

  • Review Article
  • Clinical Pharmacokinetics in Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Respiratory distress syndrome (RDS) in newborn neonates is characterised by deficient secretion of surfactant from type III alveolar cells. Administration of surfactant to airways acutely decreases the degree of respiratory failure and increases the survival rate in neonates with RDS. Clinically available surfactants are lipid extracts derived from animal lung lavage or from whole lung. Synthetic surfactants contain phospholipids or additional spreading agents. An optimal exogenous surfactant would be efficacious, nontoxic and nonimmunogenic, resistant to oxidants and proteolytic agents, widely available at reasonable cost and manufactured with little batch-to-batch variability.

Surfactant has been instilled into the airways as a bolus infusion through the endotracheal tube. In addition, surfactant may be given by aerosolisation or continuous infusion into the airways. Suggested dosages range from 50 to 200 mg/kg. Exogenous surfactant is cleared from the epithelial lining fluid (ELF) mainly by alveolar epithelial cells, although alveolar macrophages and the central airways may also contribute to clearance of the drug. Only small quantities of surfactant actually enter the blood stream. A significant fraction of surfactant is taken up, processed, and secreted back into the alveolar space by type II alveolar cells. This process is termed recycling.

Phosphatidylglycerol, given to small premature neonates as a component of exogenous human surfactant, has an apparent pulmonary half-life of 31 ± 3 hours (n=11). The apparent pulmonary half-life of the main surfactant component dipalmitoyl phosphatidylcholine is 45 hours (n=3) and that of surfactant protein A is about 9 hours (n=4). A relationship between the dose of exogenous surfactant and its concentration in the ELF has been demonstrated.

Some neonates with RDS respond poorly to surfactant therapy. The reasons for this include insufficient levels of surfactant in the ELF, uneven distribution of exogenous surfactant, inability of exogenous surfactant to enter the metabolic pathways, inhibition of surface activity by plasma-derived proteins, or inactivation of surfactant as a result of proteases, phospholipases, or oxygen free radicals. In addition, surfactant therapy may be ineffective in neonates with respiratory failure caused by factors other than surfactant deficiency. The efficacy of exogenous surfactant can be improved by increasing the dosage of surfactant and by administration of surfactant very early in respiratory failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams FH, Fujiwara T, Emmanouilides GC, Raiha N. Lung phospholipids of human fetuses and infants with and without hyaline membrane disease. Journal of Pediatrics 77: 833–841, 1970

    Article  PubMed  CAS  Google Scholar 

  • Ashton MR, Postle AD, Hall MA, Austin NC, Smith DE, et al. Turnover of exogenous artificial surfactant. Archives of Disease in Childhood 67: 383–387, 1992

    Article  PubMed  CAS  Google Scholar 

  • Bartmann P, Bamberger U, Pohland F, Gortner L. Immunogenicity and immunomodulatory activity of bovine surfactant (SF-RI 1). Acta Paediatrica 81: 383–388, 1992

    Article  PubMed  CAS  Google Scholar 

  • Batenburg JJ. Surfactant phospholipids: synthesis and storage. American Journal of Physiology 262: L367–L385, 1992

    PubMed  CAS  Google Scholar 

  • Charon A, Taeusch W, Fitzgibbon C, Smith G, Treves ST, et al. Factors associated with surfactant treatment response in infants with severe respiratory distress syndrome. Pediatrics 83: 348–354, 1989

    PubMed  CAS  Google Scholar 

  • Chida S, Phelps DS, Cordle C, Soll R, Floros J, et al. Surfactant-associated proteins in tracheal aspirates of infants with respiratory distress syndrome after surfactant therapy. American Review of Respiratory Disease 137: 943–947, 1988

    PubMed  CAS  Google Scholar 

  • Corbet A, Bucciarelli R, Goldman S, Mammel M, Wold D, et al. Decreased mortality rate among small premature infants treated at birth with a single dose of synthetic surfactant: a multicenter controlled trial. Journal of Pediatrics 118: 277–284, 1991

    Article  PubMed  CAS  Google Scholar 

  • Curstedt T, Johansson J, Persson P, Eklund A, Robertson B, et al. Hydrophobic surfactant-associated peptides: SP-C is a lipopeptide with two palmitoylated cysteine residues, whereas SP-B lacks covalently linked fatty acyl groups. Proceedings of the National Academy of Sciences of the United States of America 87: 2985–2989, 1990

    Article  PubMed  CAS  Google Scholar 

  • Dunn MS, Shennan AT, Possmayer F. Single- versus multiple-dose surfactant replacement therapy in neonates of 30 to 36 weeks’ gestation with respiratory distress syndrome. Pediatrics 86: 564–571, 1990

    PubMed  CAS  Google Scholar 

  • Dunn MS, Shennan AT, Zayack, Possmayer F. Bovine surfactant replacement therapy in neonates of less than 30 week’s gestation: a randomized controlled trial of prophylaxis versus treatment. Pediatrics 87: 377–386, 1991

    PubMed  CAS  Google Scholar 

  • Enhorning G, Grossmann G, Robertson B. Tracheal deposition of surfactant before the first breath. American Review of Respiratory Disease 107: 921–927, 1973

    PubMed  CAS  Google Scholar 

  • Enhorning G, Shennan A, Possmayer F, Dunn M, Chen CP, et al. Prevention of neonatal respiratory distress syndrome by tracheal instillation of surfactant: a randomized clinical trial. Pediatrics 76: 145–153, 1985

    PubMed  CAS  Google Scholar 

  • Floros J, Steinbrink R, Jacobs K, Phelps D, Kriz R, et al. Isolation and characterization of cDNA clones for the 3kDa pulmonary surfactant-associated protein. Journal of Biological Chemistry 261: 9029–9033, 1986

    PubMed  CAS  Google Scholar 

  • Fujiwara T, Chida S, Watabe YJ, Maeta H, Morita T, et al. Artificial surfactant therapy in hyaline membrane disease. Lancet 1: 55–59, 1980

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Robertson B. Pharmacology of exogenous surfactant. In Robertson et al. (Eds) Pulmonary surfactant: from molecular biology to clinical practice, pp. 561–592, Elsevier Science Publishers, Amsterdam, 1992

    Google Scholar 

  • Gerdes J, Cook L, Beaumont E, Corbet A, Long W, et al. Effects of three vs. one prophylactic doses of exosurf neonatal in 700–1100gm neonates. Paediatric Research 29: 214A, 1991

    Article  Google Scholar 

  • Gerdes J, Whitsett J, Long W. Elastase activity and surfactant protein concentration in tracheal aspirates from neonates receiving synthetic surfactant. Journal of Pediatrics 120: S34–339, 1992

    Article  PubMed  CAS  Google Scholar 

  • Gilliard N, Richman P, Merritt TA, Spragg R. Effect of volume and dose on the pulmonary distribution of exogenous surfactant administered to normal rabbits or to rabbits with oleic acid lung injury. American Review of Respiratory Disease 141: 743–747, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gluck L, Kulovich MV, Eidelman AI, Cordero L, Khazin AF. Biochemical development of surface activity in mammalian lung: IV. Pulmonary lecithin synthesis in the human fetus and the newborn and etiology of respiratory distress syndrome. Pediatric Research 6: 81–99, 1972

    Article  PubMed  CAS  Google Scholar 

  • Gortner L, Bartmann P, Pohlandt F, Bernsau U, Porz F, et al. Early treatment of respiratory distress syndrome with bovine surfactant in very preterm infants: a multicenter controlled clinical trial. Pediatric Pulmonology 14: 4–9, 1992

    Article  PubMed  CAS  Google Scholar 

  • Gross NJ, Schultz RM. Requirements for extracelluar metabolism of pulmonary surfactant: tentative identification of serine protease. American Journal of Physiology 262: L446–L453, 1992

    PubMed  CAS  Google Scholar 

  • Haagsman HP, Van Golde LMG. Synthesis and assembly of lung surfactant. Annual Review of Physiology 53: 441–464, 1991

    Article  PubMed  CAS  Google Scholar 

  • Hallman M. Treatment of established respiratory distress syndrome with surfactant. In Ekelund et al. (Eds) Surfactant and the respiratory tract, pp. 187–195, Elsevier, Amsterdam, 1988

    Google Scholar 

  • Hallman M. Lung surfactant in respiratory distress syndrome. Acta Anaesthesiologica Scandinavica 35 (Suppl. 95): 15–21, 1991

    Article  Google Scholar 

  • Hallman M, Arjomaa P, Tahvanainen J, Lachmann B, Spragg R. Endobronchial surface active phospholipids in various pulmonary diseases. European Journal of Respiratory Diseases 142: 37–47, 1985a

    CAS  Google Scholar 

  • Hallman M, Epstein BL, Gluck L. Analysis of labelling and clearance of lung surfactant phospholipids in rabbit: evidence of bidirectional surfactant flux between lamellar bodies and alveolar lavage. Journal of Clinical Investigation 68: 742–751, 1981

    Article  PubMed  CAS  Google Scholar 

  • Hallman M, Merritt TA, Akino T, Bry K. Surfactant protein A, phosphatidylcholine and surfactant inhibitors in epithelial lining fluid: correlation with surface activity, severity of respiratory distress syndrome and outcome of small premature infants. American Review of Respiratory Disease 144: 1376–1384, 1991

    PubMed  CAS  Google Scholar 

  • Hallman M, Merritt TA, Bry K, Berry C. Association between neonatal care practices and efficacy of exogenous human surfactant: results of a bicenter randomized trial. Pediatrics 91: 552–556, 1993

    PubMed  CAS  Google Scholar 

  • Hallman M, Merritt TA, Jarvenpaa A-L, Boynton B, Mannino F, et al. Exogenous human surfactant for treatment of severe respiratory distress syndrome: a randomized prospective trial. Journal of Pediatrics 106: 963–969, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Hallman M, Merritt TA, Pohjavuori M, Gluck L. Effect of surfactant substitution on lung effluent phospholipids in respiratory distress syndrome: evaluation of surfactant phospholipid turnover, pool size, and the relationship to severity of respiratory failure. Paediatric Research 20: 1228–1235, 1986

    Article  CAS  Google Scholar 

  • Hallman M, Merritt TA, Schneider H, Epstein BL, Mannino F, et al. Isolation of human surfactant from amniotic fluid and a pilot study of its efficacy in respiratory distress syndrome. Pediatrics 71: 473–482, 1983

    PubMed  CAS  Google Scholar 

  • Hawgood S, Clements JA. Pulmonary surfactant and its apoproteins. Journal of Clinical Investigation 86: 1–6, 1990

    Article  PubMed  CAS  Google Scholar 

  • Holm BA, Enhorning G, Notter RH. A biophysical mechanism by which plasma proteins inhibit lung surfactant activity. Chemistry and Physics of Lipids 49: 49–55, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hörbar JD, Soll RF, Schachinger H, Kewitz G, Versmold HT, et al. European multicenter randomized controlled trial of single dose surfactant therapy for idiopathic respiratory distress syndrome. European Journal of Pediatrics 149: 416–423, 1990

    Article  PubMed  Google Scholar 

  • Horbar JD, Wright LL, Soll RF, Wright EC, Fanaroff AA, et al. A multicenter randomized trial comparing two surfactants for the treatment of neonatal respiratory distress syndrome. Journal of pediatrics 123: 757–766, 1993

    Article  PubMed  CAS  Google Scholar 

  • Ikegami M, Berry D, El Kady T, Pettenazzo A, Seidner S, et al. Corticosteroids and surfactant change lung function and protein leaks in the lungs of ventilated premature rabbits. Journal of Clinical Investigation 79: 1371–1378, 1987

    Article  PubMed  CAS  Google Scholar 

  • Ikegami M, Jobe A, Yamada T, Preistly A, Ruffini L, et al. Surfactant metabolism in surfactant-treated preterm ventilated lambs. Journal of Applied Physiology 67: 429–437, 1989

    PubMed  CAS  Google Scholar 

  • Jacobs H, Jobe A, Ikegami M, Jones S. Surfactant phophatidylcholine source, fluxes and turnover times in 3-day-old, 10-day-old, and adult rabbits. Journal of Biological Chemistry 258: 4156–4165, 1993

    Google Scholar 

  • Jobe A. Metabolism of endogenous surfactant and exogenous surfactants for replacement therapy. Seminars in Perinatology 12: 231–244, 1988

    PubMed  CAS  Google Scholar 

  • Jobe A, Ikegami M. Surfactant for the treatment of respiratory distress syndrome. American Review of Respiratory Diseases 136: 1256–1275, 1987

    Article  CAS  Google Scholar 

  • Jobe A, Ikegami M, Jacobs H, Jones S. Surfactant and pulmonary blood flow distributions following treatment of premature lambs with natural surfactant. Journal of Clinical Investigation 73: 848–856, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kankaanpää K, Hallman M. Respiratory distress syndrome in very low birth weight infants with occasionally normal surfactant phospholipids. European Journal of Pediatrics 139: 31–34, 1982

    Article  PubMed  Google Scholar 

  • Kari A, Hallman M, Eronen M, Teramo K, Virtanen M et al. Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant — a randomized placebo-controlled multicenter study. Pediatrics, in press, 1994

    Google Scholar 

  • Kattwinkel J, Bloom BT, Delmore P, Davis CL, Farrell E, et al. Prophylactic administration of calf lung surfactant extract (CLSE) is more effective than early treatment of respiratory distress syndrome in neonates of 29 through 32 weeks’ gestation. Pediatrics 92: 90–98, 1993

    PubMed  CAS  Google Scholar 

  • Kendig JW, Notter RH, Cox C, Reubens W, Davis JM, et al. A multicenter randomized trial comparing preventilatory and post-ventilatory surfactant therapy for the respiratory distress syndrome. New England Journal of Medicine 324: 805–871, 1991

    Article  Google Scholar 

  • Kharasch VS, Sweeney TD, Fredberg J, Lehr J, Damokosh Al, et al. Pulmonary surfactant as a vehicle to intratracheal delivery of technetium sulfur colloid and pentamidine in hamster lungs. American Review of Respiratory Disease 144: 909–913, 1991

    Article  PubMed  CAS  Google Scholar 

  • Konishi M, Fujiwara T, Naito T, Takeuchi Y, Ogawa Y, et al. Surfactant replacement therapy in neonatal respiratory distress syndrome: a multi-centre, randomized clinical trial. Comparison of high- versus low-dose of Surfactant TA. European Journal of Pediatrics 147: 20–25, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kuroki Y, Mason RJ, Voelker DR. Alveolar type II cells express a high-affinity receptor for pulmonary surfactant protein A. Proceedings of the National Academy of Sciences of the United States of America 85: 5410–5570, 1988

    Article  Google Scholar 

  • Lachmann N, Hallman M, Bergmann K-C. Respiratory failure following anti-lung serum: study of mechanisms associated with surfactant system damage. Experimental Lung Research 12: 163–180, 1987

    Article  PubMed  CAS  Google Scholar 

  • Lewis JF, Ikegami M, Jobe AH, Tabor B. Aerosolized surfactant treatment of preterm lambs. Journal of Applied Physiology 70: 869–876, 1991

    PubMed  CAS  Google Scholar 

  • Long W, Thompson T, Sundeil H, Schumacher R, Volberg F, et al. Effects of two doses of a synthetic surfactant on mortality rate and survival without bronchopulmonary dysplasia in 700–1350 gram infants with respiratory distress syndrome. Journal of Pediatrics 118: 595–605, 1991

    Article  PubMed  CAS  Google Scholar 

  • Lotze A, Whitsett JA, Kammerman LA, Ritter M, Taylor GA, et al. Surfactant protein A concentrations in tracheal aspirate fluid from infants requiring extracorporeal membrane oxygenation. Journal of Pediatrics 116: 435–440, 1990

    Article  PubMed  CAS  Google Scholar 

  • Merritt TA, Cochrane CG, Holcomb K, et al. Elastase and proteinase inhibitor activity in tracheal aspirates during RDS: the role of inflammation in the pathogenesis of bronchopulmonary dysplasia. Journal of Clinical Investigation 72: 656–666, 1983

    Article  PubMed  CAS  Google Scholar 

  • Merritt TA, Hallman M. Surfactant replacement: a new era with many challenges for neonatal medicine. American Journal of Diseases in Children 142: 1333–1339, 1988

    CAS  Google Scholar 

  • Merritt TA, Hallman M, Berry C, Pohjavuori M, Edwards III DK, et al. A randomized, placebo-controlled trial of human surfactant at birth versus rescue administration in very low birthweight infants with lung immaturity. Journal of Pediatrics 118: 581–594, 1991

    Article  PubMed  CAS  Google Scholar 

  • Merritt TA, Soll R, Hallman M. Overview of exogenous surfactant replacement therapy. Journal of Intensive Care Medicine 8: 205–228, 1993

    Google Scholar 

  • Merritt TA, Strayer DS, Hallman M, Spragg RD, Wozniak P. Immunologic consequences of exogenous surfactant administration. Seminars in Perinatology 12: 221–230, 1988

    PubMed  CAS  Google Scholar 

  • Morley CJ, Bangham AD, Miller N, Davis JA. Dry artificial surfactant and its effect on very premature babies. Lancet 1: 64–68, 1981

    Article  PubMed  CAS  Google Scholar 

  • Morley CJ, Greenough A, Miller NG, Bangham AD, Pool J, et al. Randomized trial of artificial surfactant (ALEC) given at birth to babies from 23 to 34 weeks gestation. Early Human Development 17: 41–54, 1988

    Article  PubMed  CAS  Google Scholar 

  • Nogee LM, DeMello DE, Dehner LP, Colten HR. Brief report: deficiency of pulmonary surfactant protein B in congenital alveolar proteinosis. New England Journal of Medicine 328: 406–410, 1993

    Article  PubMed  CAS  Google Scholar 

  • Obladen M, Popp D, Scholl C, Schwartz H, Jahnig F. Studies on lung surfactant replacement in respiratory distress syndrome: rapid film formation from binary mixed liposomes. Biochimica et Biophysica Acta 735: 214–224, 1983

    Article  Google Scholar 

  • OSIRIS Collaborative Group. Early versus delayed neonatal administration of a synthetic surfactant — the judgment of OSIRIS. Lancet 340: 1363–1369, 1992

    Article  Google Scholar 

  • Pettenazzo A, Jobe A, Ikegami M, Seidner S. Clearance of treatment doses of surfactant: effect of lipid extraction and aggregate sizes. Biology of the Neonate 53: 23–31, 1988

    Article  PubMed  CAS  Google Scholar 

  • Revak SD, Merritt TA, Hallman M, Heidt G, La Polla RJ, et al. The use of synthetic peptides in the formation of biophysically and biologically active pulmonary surfactants. Pediatric Research 29: 460–465, 1991

    Article  PubMed  CAS  Google Scholar 

  • Robertson B. Animal models of neonatal surfactant function. In Robertson et al. (Eds) Pulmonary surfactant: from molecular biology to clinical practice, pp. 459–484, Elsevier, Amsterdam, 1992

    Google Scholar 

  • Robertson B, Kobayashi T, Ganzuka M, Grossmann G, Li WZ, et al. Experimental neonatal respiratory failure induced by a monoclonal antibody to the hydrophobic surfactant-associated protein SP-B. Pediatric Research 30: 239–243, 1991

    Article  PubMed  CAS  Google Scholar 

  • Segerer H, Stevens P, Schadow B, Maier R, Kattner E, et al. Surfactant substitution in ventilated very low birth weight infants: factors related to response types. Pediatric Research 30: 591–596, 1991

    Article  PubMed  CAS  Google Scholar 

  • Shapiro DL, Notter RH, Morin III FC, Deluga KS, Golub LM, et al. Double-blind, randomized trial of a calf lung surfactant extract administered at birth to premature infants for prevention of respiratory distress syndrome. Pediatrics 76: 593–599, 1985

    PubMed  CAS  Google Scholar 

  • Soll RF, McQueen MC. Respiratory distress syndrome. In Sinclair & Bracken (Eds) Effective care of the newborn infant, pp. 325–358, Oxford University Press, Oxford, 1992

    Google Scholar 

  • Speer CP, Robertson B, Curstedt T, Halliday H, Compagnone D, et al. Randomized European multicenter trial of surfactant replacement therapy for severe neonatal respiratory distress syndrome: single versus multiple doses of Curosurf. Pediatrics 89: 13–20, 1992

    PubMed  CAS  Google Scholar 

  • Strayer DS, Merritt TA, Lwebuga-Mukasa J, Hallman M. Surfactant-anti-surfactant immune complex in infants with respiratory distress syndrome. American Journal of Pathology 122: 353–362, 1986

    PubMed  CAS  Google Scholar 

  • Taeusch HW, Keough KMW, Williams M, Slavin R, Steele E, et al. Characterization of bovine surfactant for infants with respiratory distress syndrome. Pediatrics 77: 572–581, 1986

    PubMed  CAS  Google Scholar 

  • Van Iwaarden JF. Surfactant and the pulmonary defence system. In Robertson et al. (Eds) Pulmonary surfactant: from molecular biology to clinical practice, pp. 215–227, Elsevier Science Publishers, Amsterdam, 1992

    Google Scholar 

  • Van Iwaarden JF, Shimizu H, Van Golde PHM, Voelker DR, Van Golde LMG. Rat surfactant protein D enhances the production of oxygen radicals by rat alveolar macrophages. Biochemical Journal 286: 5–8, 1992

    PubMed  Google Scholar 

  • Venkitaraman AR, Hall SB, Whitsett JA, Hall SB, Notter RH. Enhancement of biophysical activity of synthetic phospholipid — lung surfactant apoprotein admixtures by plasma proteins. Chemistry and Physics of Lipids 57: 49–57, 1990

    Article  Google Scholar 

  • Wilkinson A, Jenkins PA, Jeffrey JA. Two controlled trials of dry artificial surfactant: early effects and later outcome in babies with surfactant deficiency. Lancet 2: 287–291, 1985

    Article  PubMed  CAS  Google Scholar 

  • Whitsett JA, Baatz JE. Hydrophobic surfactant proteins SP-B and SP-C molecular biology, structure and function. In Robertson et al. (Eds) Pulmonary surfactant: from molecular biology to clinical practice, pp. 55–75, Elsevier Science Publishers, Amsterdam, 1992

    Google Scholar 

  • Wright JR, Clements JA. Metabolism and turnover of lung surfactant. American Review of Respiratory Disease 135: 426–444, 1987

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hallman, M., Merritt, T.A. & Bry, K. The Fate of Exogenous Surfactant in Neonates with Respiratory Distress Syndrome. Clin. Pharmacokinet. 26, 215–232 (1994). https://doi.org/10.2165/00003088-199426030-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199426030-00005

Keywords

Navigation