Skip to main content
Log in

Clinical Pharmacokinetics of Slow-Acting Antirheumatic Drugs

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The pharmacokinetics of the slow acting antirheumatic drugs (SAARDs), hydroxychloroquine, chloroquine, penicillamine, the gold complexes and sulphasalazine, in humans have been studied. For all these drugs, both in controlled clinical trials and in empirical observations from rheumatological practice, delays of several months are reported before full clinical effects are achieved. Variability in response is also characteristic of these agents. Pharmacokinetic factors may partially explain these clinical observations. Delays in the achievement of steady-state concentrations or of concentrations likely to have a therapeutic benefit may occur because of slow drug accumulation. Variable concentrations may arise after standard administered doses because of interindividual pharmacokinetic variability. These factors are likely to contribute to the delay in response and the variable response, respectively.

Pharmacokinetics of the antimalarials, hydroxychloroquine and chloroquine, are characterised by extensive tissue sequestration with reported volumes of distribution in the thousands of litres. Both drugs have reported elimination half-lives of greater than 1 month. A 2- to 3-fold range occurs in the fraction of an oral dose absorbed from a tablet formulation. Variable interindividual clearance is also reported. Hydroxychloroquine and chloroquine are administered as racemates. Enantioselective disposition of both compounds occurs, again with notable interindividual variability.

Sulphasalazine is split in the large intestine into sulphapyridine, proposed to be the active compound in rheumatoid arthritis, and mesalazine (5-aminosalicylic acid). Sulphapyridine is metabolised partly by acetylation, the rate of which is under genetic control. A wide range of sulphapyridine steady-state concentrations are reported after standard doses of sulphasalazine.

The gold complexes are administered either intramuscularly or in an oral form (auranofin). Gold is widely distributed in the body. Very long terminal elimination half-lives and slow accumulation rates are reported. Penicillamine is administered orally. Its bioavailability is variable and may decrease by as much as 70% in the presence of food, antacids and iron salts. Penicillamine forms disulphide bonds with many proteins in the blood and tissues, creating potential slow release reservoirs of the drug. Like the other SAARDs, gold complexes and penicillamine are found in a wide range of blood concentrations after administration in standard doses to different individuals.

More research must be conducted into the concentration-effect relationships of the SAARDs before the pharmacokinetic characteristics of these drugs can be used effectively to optimise patient therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akintonwa A, Odutola TA, Edeki T, Mabadeje AFB. Hemodialysis clearance of chloroquine in uremic patients. Therapeutic Drug Monitoring 8: 285–287, 1986

    PubMed  CAS  Google Scholar 

  • Astbury C, Taggart AJ, Juby L, Zebouni L, Bird HA. Comparison of the single dose pharmacokinetics of sulphasalazine in rheumatoid arthritis and inflammatory bowel disease. Annals of the Rheumatic Diseases 49: 587–590, 1990

    PubMed  CAS  Google Scholar 

  • Augustijns P, Geusens P, Verbeke N. Chloroquine levels in blood during chronic treatment of patients with rheumatoid arthritis. European Journal of Clinical Pharmacology 42: 429–433, 1992

    PubMed  CAS  Google Scholar 

  • Bachrach WH. Sulfasalazine: an historical perspective. American Journal of Gastroenterology 83: 487–496, 1988

    PubMed  CAS  Google Scholar 

  • Benn H-P, Schnier C, Seiler KU, Bauer E, Loffler H. Pharmacokinetics of auranofin a single dose study in man. Journal of Rheumatology 17: 466–468, 1990

    PubMed  CAS  Google Scholar 

  • Berglof FE, Nerglof K, Walz DT. Auranofin: new oral gold compound for the treatment of rheumatoid arthritis. Journal of Rheumatology 5: 68–74, 1978

    PubMed  CAS  Google Scholar 

  • Bergqvist Y, Domeij-Nyberg D. Distribution of chloroquine and its metabolite desethylchloroquine in human blood cells and its implication for the quantitative determination of these compounds in serum and plasma. Journal of Chromatography 272: 137–148, 1983

    PubMed  CAS  Google Scholar 

  • Bergstrom RF, Kay DR, Harkcom TM, Wagner JG. Penicillamine kinetics in normal subjects. Clinical Pharmacology and Therapeutics 30: 404–413, 1981

    PubMed  CAS  Google Scholar 

  • Blocka K. Auranofin versus injectable gold. Comparison of pharmacokinetic properties. American Journal of Medicine 75 (6A): 114–122, 1983

    PubMed  CAS  Google Scholar 

  • Blocka K, Furst DE, Landaw E, Dromgoole SH, Blomberg A, et al. Single dose pharmacokinetics of auranofin in rheumatoid arthritis. Journal of Rheumatology 9 (Suppl. 8): 110–119, 1982

    Google Scholar 

  • Brocks DR, Pasutto FM, Jamali F. Analytical and semi-preparative high-performance liquid Chromatographic separation and assay of hydroxychloroquine enantiomers. Journal of Chromatography 581: 83–92, 1992

    PubMed  CAS  Google Scholar 

  • Brooks PM, Miners JO, Smith K, Smith MD, Fearnley I, et al. Dose, plasma concentrations and response relationships of D-penicillamine in patients with rheumatoid arthritis. Journal of Rheumatology 11: 772–775, 1984

    PubMed  CAS  Google Scholar 

  • Cats A. A multicentre controlled trial of the effects of different dosages of gold therapy, followed by a maintenance dosage. Agents and Actions 6: 355–363, 1976

    PubMed  CAS  Google Scholar 

  • Champion GD, Cairns DR, Bieri D, Adena MA, Browne CD, et al. Dose response studies and longterm evaluation of auranofin in rheumatoid arthritis. Journal of Rheumatology 15: 28–34, 1988

    PubMed  CAS  Google Scholar 

  • Champion GD, Graham GG, Ziegler JB. The gold complexes. In Brooks PM (Ed.) Balliere’s Clinical rheumatology: slow-acting antirheumatic drugs and immunosuppressives, pp. 491–534, Balliere Tindall, London, 1990

    Google Scholar 

  • Corey AE, Rose GM, Conklin JD. Bioavailability of single and multiple doses of enteric-coated mesalamine and sulphasalazine. Journal of International Medical Research 18: 441–453, 1990

    PubMed  CAS  Google Scholar 

  • Danpure C, Fyfe DA, Gumpel JM. Distribution of gold among plasma fractions in rheumatoid patients undergoing chrysotherapy compared with its distribution in plasma incubated with aurothiomalate in vitro. Annals of the Rheumatic Diseases 38: 364–370, 1979

    PubMed  CAS  Google Scholar 

  • Ette EI, Essien EE, Brown-Awala EE. Pharmacokinetics of chloroquine: saliva and plasma levels relationship. European Journal of Drug Metabolism and Pharmacokinetics 11: 275–281, 1986

    PubMed  CAS  Google Scholar 

  • Fink VE, Minet G, Nickel P. Chloroquin-Enantiomere: Wirkung gegen Nagetiermalaria (P. vinckei) und Bindung an DNS. Arzneimittel-Forschung 29: 163–164, 1979

    PubMed  CAS  Google Scholar 

  • Finkelstein AE, Walz DT, Batista V, Mizraji M, Roisman F, et al. Auranofin, a new oral gold compound for the treatment of rheumatoid arthritis. Annals of the Rheumatic Diseases 35: 251–257, 1976

    PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Bergqvist Y, Domeij-Nyberg B, Hellstrom L, Jansson F. Chloroquine serum concentration and side effects: evidence for dose-dependent kinetics. Clinical Pharmacology and Therapeutics 25: 345–350, 1979

    PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Bergqvist Y, Domeij-Nyberg D. Steady state disposition of chloroquine in patients with rheumatoid arthritis. European Journal of Clinical Pharmacology 24: 837–839, 1983

    PubMed  CAS  Google Scholar 

  • Frisk-Holmberg M, Bergqvist Y, Termond E, Domeij-Nyberg B. The single dose kinetics of chloroquine and its major metabolite desethylchloroquine in healthy subjects. European Journal of Clinical Pharmacology 26: 521–530, 1984

    PubMed  CAS  Google Scholar 

  • Fu S, Bjorkman A, Wahlin B, Ofori-Adjei D, Ericsson O, et al. In vitro activity of chloroquine, the two enantiomers of chloroquine, desethylchloroquine and pyronadine against Plasmodium falciparum. British Journal of Clinical Pharmacology 22: 93–96, 1986

    PubMed  CAS  Google Scholar 

  • Furst DE, Levine S, Srinivasan R, Metzger AL, Bangent R, et al. A double blind trial of high versus conventional dosages of gold salts for rheumatoid arthritis. Arthritis and Rheumatism 20: 1473–1480, 1977

    PubMed  CAS  Google Scholar 

  • Furst DE. Mechanism of action, pharmacology, clinical efficacy and side effects of auranofin. Pharmacotherapy 3: 284–296, 1983

    PubMed  CAS  Google Scholar 

  • Gerber RC, Paulus HE, Jennrich RI, Lederer M, Bluestone R, et al. Gold kinetics following aurothiomalate therapy: use of a whole body radiation counter. Journal of Laboratory and Clinical Medicine 83: 778–789, 1974

    PubMed  CAS  Google Scholar 

  • Gottlieb NL, Smith PM, Smith EM. Tissue gold concentration in a rheumatoid arthritic receiving chrysotherapy. Arthritis and Rheumatism 15: 16–22, 1972

    PubMed  CAS  Google Scholar 

  • Gottlieb NL, Smith PM, Smith EM. Pharmacodynamics of Au197 and Au195 labeled aurothiomalate in blood: correlation with course of rheumatoid arthritis, gold toxicity and gold excretion. Arthritis and Rheumatism 17: 171–183, 1974

    PubMed  CAS  Google Scholar 

  • Gottlieb NL. Comparative pharmacokinetics of parenteral and oral gold compounds. Journal of Rheumatology 9 (Suppl. 8): 99–109, 1982

    Google Scholar 

  • Graham GG, Haavisto TM, McNaught PJ, Browne CD, Champion GD. The effect of smoking on the distribution of gold in blood. Journal of Rheumatology 9: 527–531, 1982

    PubMed  CAS  Google Scholar 

  • Graham GG, Haavisto TM, Jones HM, Champion GD. The effect of cyanide on the uptake of gold by red blood cells. Biochemical Pharmacology 33: 1257–1262, 1984

    PubMed  CAS  Google Scholar 

  • Griffin AJ, Gibson T, Huston G. A comparison of conventional and low dose sodium aurothiomalate treatment in rheumatoid arthritis. British Journal of Rheumatology 22: 82–88, 1983

    PubMed  CAS  Google Scholar 

  • Gustafsson LL, Rombo L, Alvan G, Bjorkman A, Lind M, et al. On the question of dose-dependent chloroquine elimination of a single dose. Clinical Pharmacology and Therapeutics 34: 383–385, 1983a

    PubMed  CAS  Google Scholar 

  • Gustafsson LL, Walker O, Alvan G, Beerman B, Estevez F, et al. Disposition of chloroquine in man after single intravenous and oral doses. British Journal of Clinical Pharmacology 15: 471–479, 1983b

    PubMed  CAS  Google Scholar 

  • Gustafsson LL, Lindstrom B, Grahen A, Alvan G. Chloroquine excretion following malaria prophylaxis. British Journal of Clinical Pharmacology 24: 221–224, 1987

    PubMed  CAS  Google Scholar 

  • Haberkorn A, Kraft HP, Blaschke G. Antimalarial activity in animals of the optical isomers of chloroquine diphosphate. Tropical Medicine and Parasitology 30: 308–312, 1979

    CAS  Google Scholar 

  • Harkness JAL, Blake DR. Penicillamine nephropathy and iron. Lancet 2: 1368–1369, 1982

    PubMed  CAS  Google Scholar 

  • Harron DWG, Ali AA, Mohmed SS, Collier PS. Chloroquine interaction with food and analgesics in Sudanese men. Acta Pharmacologica et Toxicologica (Suppl. V): 219, 1986

    Google Scholar 

  • Husain Z, Runge LA. Treatment complications of rheumatoid arthritis with gold, hydroxychloroquine, D-penicillamine and levamisole. Journal of Rheumatology 7: 825–830, 1980

    PubMed  CAS  Google Scholar 

  • Ianuzzi L, Dawson N, Zein N, Kushner I. Does drug therapy slow radiographic deterioration in rheumatoid arthritis? New England Journal of Medicine 309: 1023–1028, 1983

    Google Scholar 

  • Iredale J, Wainer IW. Determination of hydroxychloroquine and its major metabolites in plasma using sequential achiral-chiral high-performance liquid chromatography. Journal of Chromatography 573: 253–258, 1992

    PubMed  CAS  Google Scholar 

  • Joyce DA. D-Penicillamine. In Brooks PM (Ed.) Balliere’s Clinical rheumatology: slow-acting antirheumatic drugs and immunosuppressives, pp. 553–574, Balliere Tindall, London, 1990

    Google Scholar 

  • Joyce DA, Day RO. D-penicillamine and D-penicillamine-protein disulphide in plasma and synovial fluid of patients with rheumatoid arthritis. British Journal of Clinical Pharmacology 30: 511–517, 1990

    PubMed  CAS  Google Scholar 

  • Joyce DA, Day RO, Murphy BR. The pharmacokinetics of albumin conjugates of D-penicillamine in humans. Drug Metabolism and Disposition 19: 309–311, 1991

    PubMed  CAS  Google Scholar 

  • Julkunen H, Rokkanen P, Laine H. Chloroquine treatment and bone changes in rheumatoid arthritis. Scandinavian Journal of Rheumatology 5: 36–38, 1976

    PubMed  CAS  Google Scholar 

  • Khan A, Truelove S. The disposition and metabolism of sulphasalazine (salicylazosulpha-pyridine) in man. British Journal of Clinical Pharmacology 13: 523–528, 1982

    Google Scholar 

  • Khan A, Nurazzaman M, Truelove S. The effect of the acetylator phenotype on the metabolism of sulphasalazine in man. Journal of Medical Genetics 1: 30–36, 1983

    Google Scholar 

  • Klotz U. Clinical pharmacokinetics of sulphasalazine, its metabolites and other pro-drugs of 5-aminosalicylic acid. Clinical Pharmacokinetics 10: 285–302, 1985

    PubMed  CAS  Google Scholar 

  • Koppel C, Tenczer J, Ibe K. Urinary metabolism of chloroquine. Arzneimittel-Forschung 37: 208–211, 1987

    PubMed  CAS  Google Scholar 

  • Kukovetz WR, Beubler E, Kreuzig F, Moritz AJ, Nirnberger G et al. Bioavailability and pharmacokinetics of D-penicillamine. Journal of Rheumatology 10: 90–94, 1983

    PubMed  CAS  Google Scholar 

  • Laaksonen AL, Koskiahde V, Juva K. Dosage of antimalarial drugs for children with juvenile rheumatoid arthritis and systemic lupus erythematosus. Scandinavian Journal of Rheumatology 3: 103–108, 1975

    Google Scholar 

  • Lagrave M, Stachel E, Betschart B. The influence of various types of breakfast on chloroquine levels. Transactions of the Royal Society of Tropical Medicine and Hygiene 79: 559, 1985

    PubMed  CAS  Google Scholar 

  • Lewkonia RM, Schroder H, Evans DA. Pharmacokinetics and azolink cleavage of salazopyrine in man. Gut 14: 426–427, 1973

    PubMed  CAS  Google Scholar 

  • Lorber A. Monitoring gold plasma levels in rheumatoid arthritis. Clinical Pharmacokinetics 2: 127–146, 1977

    PubMed  CAS  Google Scholar 

  • MacIntyre AC, Cutler DJ. The potential role of lysosomes in tissue distribution of weak bases. Biopharmaceutics and Drug Disposition 9: 513–526, 1988

    CAS  Google Scholar 

  • Mainland D, Sutcliffe MI. Hydroxychloroquine sulfate in rheumatoid arthritis, a six month, double-blind trial. Bulletin of the Rheumatic Diseases 13: 287–290, 1962

    Google Scholar 

  • Mascarhenas BR, Granda JL, Freyberg RH. Gold metabolism in patients with rheumatoid arthritis treated with gold compounds reinvestigated. Arthritis and Rheumatism 15: 391–402, 1972

    Google Scholar 

  • McChesney EW, Conway WD, Banks WF, Rogers JE, Shekosky JM. Studies of the metabolism of some compounds of the 4-amino-7-chloroquinoline series. Journal of Pharmacology and Experimental Therapeutics 151: 482–493, 1966

    PubMed  CAS  Google Scholar 

  • McKenzie JMM. Report on a double-blind trial comparing small and large doses of gold in the treatment of rheumatoid disease. Rheumatology and Rehabilitation 20: 198–202, 1981

    PubMed  CAS  Google Scholar 

  • McLachlan AJ, Tett SE, Cutler DJ. High-performance liquid Chromatographic separation of the enantiomers of hydroxychloroquine and its major metabolites in biological fluids using α1-acid glycoprotein stationary phase. Journal of Chromatography 570: 119–127, 1991

    PubMed  CAS  Google Scholar 

  • McLachlan AJ, Cutler DJ, Tett SE. Plasma protein binding of the enantiomers of hydroxychloroquine and metabolites. European Journal of Clinical Pharmacology 44: 481–484, 1993a

    PubMed  CAS  Google Scholar 

  • McLachlan AJ, Tett SE, Cutler DJ, Day RO. Bioavailability and in vivo dissolution of hydroxychloroquine tablets assessed using deconvolution techniques in fed volunteers. British Journal of Clinical Pharmacology, in press, 1993b

    Google Scholar 

  • McLachlan AJ, Tett SE, Cutler DJ, Day RO. Disposition of the enantiomers of hydroxychloroquine in patients with rheumatoid arthritis following multiple doses of the racemate. British Journal of Clinical Pharmacology 36: 78–81, 1993c

    PubMed  CAS  Google Scholar 

  • McLachlan AJ, Tett SE, Cutler DJ, Day RO. Bioavailability of hydroxychloroquine tablets in patients with rheumatoid arthritis. British Journal of Rheumatology, in press, 1993d

    Google Scholar 

  • Miller DR, Fiechtner JJ, Carpenter JR, Brown RR, Stroshane RM, Stecher VJ. Plasma hydroxychloroquine concentrations and efficacy in rheumatoid arthritis. Arthritis and Rheumatism 30: 567–571, 1987

    PubMed  CAS  Google Scholar 

  • Miller D, Fiechtner J. Hydroxychloroquine overdose. Journal of Rheumatology 16: 142–143, 1989

    PubMed  CAS  Google Scholar 

  • Miller DR, Khalil SKW, Nygard GA. Steady-state pharmacokinetics of hydroxychloroquine in rheumatoid arthritis patients. DICP, Annals of Pharmacotherapy 25: 1302–1305, 1991

    CAS  Google Scholar 

  • Morand EF, McCloud PI, Littlejohn GO. Life table analysis of 879 treatment episodes with slow acting antirheumatic drugs in community rheumatological practice. Journal of Rheumatology 19: 704–708, 1992

    PubMed  CAS  Google Scholar 

  • Muijsers AO, Van de Stadt RJ, Henrichs AMA, Ament HJW, Van der Korst JK. D-penicillamine in patients with rheumatoid arthritis. Arthritis and Rheumatism 27: 1362–1369, 1984

    PubMed  CAS  Google Scholar 

  • Netter P, Bannwarth B, Pere P, Nicolas A. Clinical pharmacokinetics of D-penicillamine. Clinical Pharmacokinetics 13: 317–333, 1987

    PubMed  CAS  Google Scholar 

  • Neumann VC, Grindulis KA, Hubbal S, McConkey B, Wright V. Comparison between penicillamine and sulphasalazine in rheumatoid arthritis: Leeds-Birmingham trial. British Medical Journal 287: 1099–1102, 1983

    PubMed  CAS  Google Scholar 

  • Ofori-Adjei D, Ericsson O, Lindstrom B, Sjoqvist F. Protein binding of chloroquine enantiomers and desethylchloroquine. British Journal of Clinical Pharmacology 22: 356–358, 1986a

    PubMed  CAS  Google Scholar 

  • Ofori-Adjei D, Ericsson O, Lindstrom B, Hermansson J, Adjepon-Yamoah K, et al. Enantioselective analysis of chloroquine and desethylchloroquine after oral administration of racemic chloroquine. Therapeutic Drug Monitoring 8: 457–461, 1986b

    PubMed  CAS  Google Scholar 

  • Osman MA, Patel RB, Schuna A, Sundstrom WR, Welling PG. Reduction in oral penicillamine absorption by food, antacid, and ferrous sulphate. Clinical Pharmacology and Therapeutics 33: 465–470, 1983

    PubMed  CAS  Google Scholar 

  • Palmer DG, Dunckley JV. Gold levels in serum during the treatment of rheumatoid arthritis with gold sodium thiomalate. Australian and New Zealand Journal of Medicine 3: 461–466, 1973

    PubMed  CAS  Google Scholar 

  • Paulus HE, Scott DL, Edmonds JP. Classification of antirheumatic drugs — a new proposal. Arthritis and Rheumatism 35: 364–365, 1992

    PubMed  CAS  Google Scholar 

  • Perrett D. The metabolism and pharmacology of D-penicillamine in man. Journal of Rheumatology 8 (Suppl. 7): 41–50, 1981

    Google Scholar 

  • Pinals RS. Sulfasalazine in the rheumatic diseases. Seminars in Arthritis and Rheumatism 17: 246–259, 1988

    PubMed  CAS  Google Scholar 

  • Porter DR, Capell HA. The use of sulphasalazine as a disease modifying antirheumatic drug. In Brooks PM (Ed.) Balliere’s Clinical rheumatology: slow-acting antirheumatic drugs and immunosuppressives, pp. 535–551, Balliere Tindall, London, 1990

    Google Scholar 

  • Pullar T, Hunter JA, Capell HA. Sulphasalazine in rheumatoid arthritis: a double-blind comparison of sulphasalazine with placebo and sodium aurothiomalate. British Medical Journal 287: 1102–1104, 1983

    PubMed  CAS  Google Scholar 

  • Pullar T, Hunter J, Capell HA. Which component of sulphasalazine is active in rheumatoid arthritis? British Medical Journal 290: 1535–1538, 1985a

    PubMed  CAS  Google Scholar 

  • Pullar T, Hunter JA, Capell HA. Sulphasalazine in the treatment of rheumatoid arthritis: relationship of dose and serum levels to efficacy. British Journal of Rheumatology 24: 269–276, 1985b

    PubMed  CAS  Google Scholar 

  • Rombo L, Ericsson D, Alvan G, Lindstrom B, Gustafsson LL, et al. Chloroquine and desethylchloroquine in plasma, serum, and whole blood: problems in assay and handling of samples. Therapeutic Drug Monitoring 7: 211–215, 1985

    PubMed  CAS  Google Scholar 

  • Rooney TW, Lorber A, Veng-Pedersen P, Herman RA, Meehan R, et al. Gold pharmacokinetics in breast milk and serum of a lactating woman. Journal of Rheumatology 14: 1120–1122, 1987

    PubMed  CAS  Google Scholar 

  • Scott DL, Greenwood A, Davies J, Maddison PJ, Maddison MC, et al. Radiological progression in rheumatoid arthritis: do D-penicillamine and hydroxychloroquine have different effects? British Journal of Rheumatology 29: 126–127, 1990

    PubMed  CAS  Google Scholar 

  • Seideman P, Lindstrom B. Pharmacokinetic interactions of penicillamine in rheumatoid arthritis. Journal of Rheumatology 16: 473–474, 1989

    PubMed  CAS  Google Scholar 

  • Svartz N. The treatment of rheumatic polyarthritis with acid azo compounds. Rheumatism 4: 56–60, 1948

    Google Scholar 

  • Taggart AJ. Sulphasalazine in arthritis — an old drug rediscovered. Clinical Rheumatology 6: 378–383, 1987

    PubMed  CAS  Google Scholar 

  • Taggart AJ, McDermott B, Delargy M, Elborn S, Forbes J, et al. The pharmacokinetics of sulphasalazine in young and elderly patients with rheumatoid arthritis. Scandinavian Journal of Rheumatology (Suppl. 64): 29–36, 1987

    Google Scholar 

  • Taggart AJ, McDermott BJ, Roberts SD. The effect of age and acetylator phenotype on the pharmacokinetics of sulfasalazine in patients with rheumatoid arthritis. Clinical Pharmacokinetics 23: 311–320, 1992

    PubMed  CAS  Google Scholar 

  • Taylor HG, Samanta A. Penicillamine in rheumatoid arthritis, a problem of toxicity. Drug Safety 7: 46–53, 1992

    PubMed  CAS  Google Scholar 

  • Tett SE, Cutler DJ, Brown KF. High-performance liquid Chromatographic assay of hydroxychloroquine and metabolites in blood and plasma, using a stationary phase of poly(styrene divinylbenzene) and a mobile phase at pH 11, with fluorimetric detection. Journal of Chromatography 344: 241–248, 1985

    PubMed  CAS  Google Scholar 

  • Tett SE, Cutler DJ. Apparent dose-dependence of chloroquine pharmacokinetics due to limited assay sensitivity and short sampling times. European Journal of Clinical Pharmacology 31: 729–731, 1987

    PubMed  CAS  Google Scholar 

  • Tett SE, Cutler DJ, Day RO, Brown KF. A dose-ranging study of the pharmacokinetics of hydroxychloroquine following intravenous administration to healthy volunteers. British Journal of Clinical Pharmacology 26: 303–313, 1988

    PubMed  CAS  Google Scholar 

  • Tett SE, Cutler DJ, Day RO, Brown KF. Bioavailability of hydroxychloroquine tablets in healthy volunteers. British Journal of Clinical Pharmacology 27: 771–779, 1989

    PubMed  CAS  Google Scholar 

  • Tett S, Cutler D, Day R. Antimalarials in rheumatic diseases. In Brooks PM (Ed.) Balliere’s Clinical rheumatology: slow-acting antirheumatic drugs and immunosuppressives, pp. 467–489, Balliere Tindall, London, 1990

    Google Scholar 

  • Tett SE, Cutler DJ, Day RO. Bioavailability of hydroxychloroquine assessed using deconvolution techniques. Journal of Pharmaceutical Sciences 81: 155–159, 1992

    PubMed  CAS  Google Scholar 

  • Tett SE, Day RO, Cutler DJ. Concentration-effect relationship of hydroxychloroquine in rheumatoid arthritis — a cross-sectional study. Journal of Rheumatology, in press, 1993

    Google Scholar 

  • Tulpule A, Krishnaswamy K. Chloroquine kinetics in the undernourished. European Journal of Clinical Pharmacology 24: 273–276, 1983

    PubMed  CAS  Google Scholar 

  • Van Der Heijde DM, Van Riel PL, Nuver-Zwart IH. Effects of hydroxychloroquine and sulphasalazine on progression of joint damage in rheumatoid arthritis. Lancet 1: 1036–1038, 1989

    PubMed  Google Scholar 

  • Verdier F, LeBras J, Clavier F. Blood samples and chloroquine assay. Lancet 1: 1227, 1983

    PubMed  CAS  Google Scholar 

  • Vernon-Roberts B, Dore JL, Jessop JD, Henderson WJ. Selective concentration and localization of gold in macrophages of synovial and other tissues during and after chrysotherapy. Annals of the Rheumatic Diseases 35: 477–486, 1976

    PubMed  CAS  Google Scholar 

  • Walker O, Birkett D, Alvan G, Gustafsson LL, Sjoqvist F. Characterisation of chloroquine plasma protein binding in man. British Journal of Clinical Pharmacology 15: 375–377, 1983

    PubMed  CAS  Google Scholar 

  • Walker O, Salako LA, Alvan G, Ericsson O, Sjoqvist F. The disposition of chloroquine in healthy Nigerians after single IV and oral doses. British Journal of Clinical Pharmacology 23: 205–301, 1987

    Google Scholar 

  • Walz DT, Griswold DE, DiMartino MJ, Bumbier EE. Distribution of gold in blood following administration of auranofin. Journal of Rheumatology 6 (Suppl. 5): 56, 1979

    Google Scholar 

  • Waring RH, Mitchell SC. The metabolism of 35S-D-penicillamine in man. Xenobiotica 18: 235–244, 1988

    PubMed  CAS  Google Scholar 

  • Wiesner RH, Dickson ER, Carlson GL, McPhaul LW, Go VLW. The pharmacokinetics of D-penicillamine in man. Journal of Rheumatology 8 (Suppl. 7): 51–55, 1981

    Google Scholar 

  • Wilske KR, Healey LA. Remodelling the pyramid — a concept whose time has come. Journal of Rheumatology 16: 565–567, 1989

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tett, S.E. Clinical Pharmacokinetics of Slow-Acting Antirheumatic Drugs. Clin. Pharmacokinet. 25, 392–407 (1993). https://doi.org/10.2165/00003088-199325050-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199325050-00005

Keywords

Navigation