Skip to main content
Log in

Testing for Drugs of Abuse

Pharmacokinetic Considerations for Cocaine in Urine

  • Leading Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Conclusions

The detection of a drug in a urine sample is usually a sound analytical procedure. However, pharmacologists and toxicologiest continue to uncover new and interesting circumstances that may influence the analytical results, or more likely, its interpretation. Future studies are needed to elucidate the pharmacological actions of drugs of abuse, both in the clinical overdose situation and upon workplace performance, and to define pharmacokinetic variables that influence the disposition of these drugs in the body and in the analytical specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron CK, Hirschman Z, Smilkstein MJ. Street pharmacology: a dangerous new way to prolong the high. Veterinary and Human Toxicology 31: 375, 1989

    Google Scholar 

  • Altieri M, Bogema S, Schwartz RH. TAC topical anesthesia produces positive urine tests for cocaine. Annals of Emergency Medicine 19: 577–579, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ambre J. The urinary excretion of cocaine and metabolites in humans: a kinetic analysis of published data. Journal of Analytical Toxicology 9: 241–245, 1985

    PubMed  CAS  Google Scholar 

  • Ambre JJ, Belknap SM, Nelson J, Ruo TI, Shin SG, et al. Acute tolerance to cocaine in humans. Clinical Pharmacology and Therapeutics 44: 1–8, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Ambre JJ, Connelly TJ, Ruo TI. A kinetic model of benzoylecgonine disposition after cocaine administration in humans. Journal of Analytical Toxicology 15: 17–20, 1991

    PubMed  CAS  Google Scholar 

  • Ambre J, Fischman M, Ruo TI. Urinary excretion of ecgonine methyl ester, a major metabolite of cocaine in humans. Journal of Analytical Toxicology 8: 23–25, 1984

    PubMed  CAS  Google Scholar 

  • Ambre J, Ruo TI, Nelson J, Belknap S. Urinary excretion of cocaine, benzoylecgonine and ecgonine methyl ester in humans. Journal of Analytical Toxicology 12: 301–306, 1988a

    PubMed  CAS  Google Scholar 

  • Arufe-Martinez MI, Romero-Palanco JL. Identification of cocaine in cocaine-lidocaine mixtures (‘rock cocaine’) and other illicit cocaine preparations using derivative absorption spectroscopy. Journal of Analytical Toxicology 12: 192–196, 1988

    PubMed  CAS  Google Scholar 

  • Baselt RC, Baselt DR. Little cross reactivity of local anesthetics with Abuscreen, EMIT d.a.u., and TDX immunoassays for cocaine metabolite. Clinical Chemistry 33: 747, 1987

    PubMed  CAS  Google Scholar 

  • Baselt RC, Shaw RF, McEvilly R. Effect of sodium fluoride on cholinesterase activity in postmortem blood. Journal of Forensic Science 30: 1206–1209, 1985

    CAS  Google Scholar 

  • Benet LZ, Massoud N, Gambertoglio JG (Eds). Pharmacokinetic basis for drug treatment, Raven Press, New York, 1984

    Google Scholar 

  • Boyer CS, Petersen DR. Enzymatic basis for the transesterification of cocaine in the presence of ethanol: evidence for the participation of microsomal carboxylesterases. Journal of Pharmacology and Experimental Therapeutics 260: 939–946, 1992

    PubMed  CAS  Google Scholar 

  • Bralliar BB, Skarf B, Owens JB. Ophthalmic use of cocaine and the urine test for benzoylecgonine. New England Journal of Medicine 320: 1757–1758, 1989

    PubMed  CAS  Google Scholar 

  • Brewer LM, Allen A. N-Formyl cocaine: a study of cocaine comparison parameters. Journal of Forensic Science 36: 697–707, 1991

    CAS  Google Scholar 

  • Caplan YH. Cocaine, Abused drugs monograph series, Abbott Laboratories, Diagnostics Division, Irving, 1988

    Google Scholar 

  • Casale JF, Waggoner Jr RW. A Chromatographic impurity signature profile analysis for cocaine using capillary gas chromatography. Journal of Forensic Science 36: 1312–1330, 1991

    CAS  Google Scholar 

  • Cone EJ, Menchen SL, Paul BD, Mell LD, Mitchell J. Validity testing of commercial urine cocaine metabolite assays: I. Assay detection times, individual excretion patterns, and kinetics after cocaine administration to humans. Journal of Forensic Science 34: 15–31, 1989

    CAS  Google Scholar 

  • Cone EJ, Weddington Jr WW. Prolonged occurrence of cocaine in human saliva and urine after chronic use. Journal of Analytical Toxicology 13: 65–68, 1989

    PubMed  CAS  Google Scholar 

  • Cook C, Jeffcoat R, Perez-Reyes M. Pharmacokinetic studies of cocaine and phencyclidine in man. IN Barnett & Chiang (Eds) Pharmacokinetics and pharmacodynamics of psychoactive drugs, pp. 48–74, Biomedical Publications, Foster City, 1985

    Google Scholar 

  • Dasta JF. Pharmacokinetics of drugs in critically ill patients. Syva Monitor (June): 11, 1982

  • de la Torre R, Farre M, Ortuno J, Cami J, Segura J. The relevance of urinary cocaethylene following the simultaneous administration of alcohol and cocaine. Journal of Analytical Toxicology 15: 223, 1991

    PubMed  Google Scholar 

  • Department of Health and Human Services. Alcohol, drug abuse, and mental health administration: mandatory guidelines for federal workplace drug testing programs; final guidelines; notice. Federal Register 53(69): 11970–11989, 1988

    Google Scholar 

  • Devenyi P. Cocaine complications and pseudocholinesterase. Annals of Internal Medicine 110(2): 167–168, 1989

    PubMed  CAS  Google Scholar 

  • El Sohly MA, Brenneisen R, Jones AB. Coca paste: chemical analysis and smoking experiments. Journal of Forensic Science 36: 93–103, 1991

    Google Scholar 

  • El Sohly MA, Stanford DF, Elsohly HN. Coca tea and urinalysis for cocaine metabolites. Journal of Analytical Toxicology 10: 256, 1986

    Google Scholar 

  • Ensing JG, de Zeeuw RA. Detection, isolation, and identification of truxillines in illicit cocaine by means of thin-layer chromatography and mass spectrometry. Journal of Forensic Science 36: 1299–1311, 1991

    CAS  Google Scholar 

  • Fitzmaurice LS, Wasserman GS, Knapp JF, Roberts DK, Waeckerle JF, et al. TAC use and absorption of cocaine in a pediatric emergency department. Annals of Emergency Medicine 19: 515–518, 1990

    Article  PubMed  CAS  Google Scholar 

  • Frings CS, Battaglia W, White RM. Status of drug-of-abuse testing in urine under blind conditions: an AACC study. Clinical Chemistry 35: 891–894, 1989

    PubMed  CAS  Google Scholar 

  • Galen RS, Gambino SR. Beyond normality: the predictive value of medical diagnosis, John Wiley and Sons, New York, 1975

    Google Scholar 

  • Greenblat W, Sellers EM, Shader RI. Drug disposition in old age. New England Journal of Medicine 306: 1081–1088, 1982

    Article  Google Scholar 

  • Griner PF, Glaser RJ. Misuse of laboratory tests and diagnostic procedures. New England Journal of Medicine 307: 1336–1339, 1982

    Article  PubMed  CAS  Google Scholar 

  • Hearn WL, Flynn GW, Hime S, Rose JC, Cofino JC, et al. Cocaethylene: a unique cocaine metabolite displays high affinity for the dopamine transporter. Journal of Neurochemistry 56: 698–701, 1991a

    Article  PubMed  CAS  Google Scholar 

  • Hearn WL, Keran EE, Wei H, Hime G. Site-dependent postmortem changes in blood cocaine concentrations. Journal of Forensic Science 36: 673–684, 1991b

    CAS  Google Scholar 

  • Hearn WL, Rose S, Wagner J, Ciarleglio A, Mash DC. Cocaethylene is more potent than cocaine in mediating lethality. Pharmacology Biochemistry and Behaviour 39: 531–533, 1991c

    Article  CAS  Google Scholar 

  • Hime GW, Hearn WL, Rose S, Cofino J. Analysis of cocaine and cocaethylene in blood and tissues by GC-NPD and GC-Ion trap mass spectrometry. Journal of Analytical Toxicology 15: 241–245, 1991

    PubMed  CAS  Google Scholar 

  • Hoffman RS, Henry GC, Howland MA, Weissman RS, Weil L, et al. Association between life-threatening cocaine toxicity and plasma cholinesterase activity. Annals of Emergency Medicine 21: 247–253, 1992

    Article  PubMed  CAS  Google Scholar 

  • Isenschmid DS, Levine BS, Caplan YH. A comprehensive study of the stability of cocaine and its metabolites. Journal of Analytical Toxicology 13: 250–256, 1989

    PubMed  CAS  Google Scholar 

  • Jackson GF, Saady JJ, Poklis A. Urinary excretion of benzoylecgonine following ingestion of health Inca tea. Forensic Science International 49: 57–64, 1991

    Article  PubMed  CAS  Google Scholar 

  • Jacob III P, Jones RT, Benowitz NL, Shulgin AT. Cocaine smokers inhale a pyrolysis product: anhydroecgonine methyl ester. Clinical Pharmacology Therapeutics 45: 186, 1989

    Google Scholar 

  • Janzen KE. Ethylbenzoylecgonine: a novel component in illicit cocaine. Journal of Forensic Science 36: 1224–1228, 1991

    Google Scholar 

  • Janzen KE, Walter L, Fernando AR. Comparison analysis of illicit cocaine samples. Journal of Forensic Science 37: 436–445, 1992

    CAS  Google Scholar 

  • Jatlow P, Barash PG, Van Dyke C, Radding J, Byck R. Cocaine and succinylcholine sensitivity: a new caution. Anesthesia and Analgesia 58: 235–238, 1979

    Article  PubMed  CAS  Google Scholar 

  • Javaid JI, Musa MN, Fischman M, Schuster CR, Davis JM. Kinetics of cocaine in humans after intravenous and intranasal administration. Biopharmaceutics and Drug Disposition 4: 9–18, 1983

    Article  CAS  Google Scholar 

  • Jover R, Ponsoda X, Gomez-Lochon MJ, Herrero C, del Pino J, et al. Potentiation of cocaine hepatotoxicity by ethanol in human hepatocytes. Toxicology and Applied Pharmacology 107: 526–534, 1991

    Article  PubMed  CAS  Google Scholar 

  • Knight SJ, Freedman T, Puskas A, Martel PA, O’Donnell CM. Industrial employee drug screening: a blind study of laboratory performance using commercially prepared controls. Journal of Occupational Medicine 32(8): 715–721, 1990

    PubMed  CAS  Google Scholar 

  • Koch-Weser J, Greenblatt DJ, Sellers EM, Shader RI. Drug disposition in old age. New England Journal of Medicine 306: 1081–1088, 1982

    Article  Google Scholar 

  • LeBelle M, Callahan S, Latham D, Lauriault G, Savard C. Comparison of illicit cocaine by determination of minor components. Journal of Forensic Science 36: 1102–1120, 1991

    CAS  Google Scholar 

  • LeBelle M, Lauriault G, Callahan S, Latham D, Chiarelli C, et al. The examination of illicit cocaine. Journal of Forensic Science 33: 662–675, 1988

    CAS  Google Scholar 

  • Madras BK, Fahey MA, Bergman J, Canfield DR, Spealman RD. Effects of cocaine and related drugs in nonhuman primates I: [3H]Cocaine binding sites in caudate-putamen. Journal of Pharmacology and Experimental Therapeutics 251: 131–141, 1989

    PubMed  CAS  Google Scholar 

  • Martin BR, Lue LP, Boni JP. Pyrolysis and volatilization of cocaine. Journal of Analytical Toxicology 13: 158–162, 1989

    PubMed  CAS  Google Scholar 

  • McCurdy HH, Callahan LS, Williams RD. Studies on the stability and detection of cocaine, benzoylecgonine, and 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid in whole blood using AbuscreenX radioimmunoassay. Journal of Forensic Science 34: 858–870, 1989

    CAS  Google Scholar 

  • Nakahara Y, Ishigami A. Inhalation efficiency of free-base cocaine by pyrolysis of ‘crack’ and cocaine hydrochloride. Journal of Analytical Toxicology 15: 105–109, 1991

    PubMed  CAS  Google Scholar 

  • Osterloh JD. Utility and reliability of emergency toxicologic testing. Emergency Medical Clinics of North America 8: 693–723, 1990

    CAS  Google Scholar 

  • Perez-Reyes M, DiGuiseppi BS, Ondrusek G, Jeffcoat AR, Cook CE. Free-base cocaine smoking. Clinical Pharmacology and Therapeutics 32: 459–465, 1982

    Article  PubMed  CAS  Google Scholar 

  • Randall T. Cocaine, alcohol mix in body to form even longer lasting, more lethal drug. Journal of the American Medical Association 267: 1043–1044, 1992

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Tozer TN. Clinical pharmacokinetics — concepts and applications, Lea and Febiger, Philadelphia, 1980

    Google Scholar 

  • Smith RM. Ethyl esters of arylhydroxy- and arylhydroxy-methoxy-cocaines in the urines of simultaneous cocaine and ethanol users. Journal of Analytical Toxicology 8: 38–42, 1984

    PubMed  CAS  Google Scholar 

  • Spiehler VR, O’Donnell CM, Gokhale DV. Confirmation and certainty in toxicologic screening. Clinical Chemistry 34: 1535–1539, 1988

    PubMed  CAS  Google Scholar 

  • Stewart DJ, Inaba T, Lucassen M, Kalow W. Cocaine metabolism: cocaine and norcocaine hydrolysis by liver and serum esterases. Clinical Pharmacology and Therapeutics 25: 464–468, 1979

    PubMed  CAS  Google Scholar 

  • Stewart DJ, Inaba T, Tang BK, Kalow W. Hydrolysis of cocaine in human plasma by cholinesterase. Life Sciences 20: 1557–1564, 1977

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES. Complex effects of diet on drug disposition. Clinical Pharmacology and Therapeutics 36: 285–296, 1984

    Article  PubMed  CAS  Google Scholar 

  • Wilkerson P, Van Dyke C, Jatlow P, Barash P, Byck R. Intranasal and oral cocaine kinetics. Clinical Pharmacology and Therapeutics 27: 386–394, 1980

    Article  Google Scholar 

  • Wilkerson RD. Cardiovascular effects of cocaine: enhancement by yohimbine and atropine. Journal of Pharmacology and Experimental Therapeutics 248: 57–61, 1989

    PubMed  CAS  Google Scholar 

  • Wu AHB, Onigbinde TA, Johnson KG, Wimbish GH. Alcohol-specific cocaine metabolites in serum and urine of hospitalized patients. Journal of Analytical Toxicology 16: 132–136, 1992

    PubMed  CAS  Google Scholar 

  • Zhang JY, Foltz RL. Cocaine metabolism in man: identification of four previously unreported cocaine metabolites in human urine. Journal of Analytical Toxicology 14: 201–205, 1990

    PubMed  CAS  Google Scholar 

  • Zwerling C, Ryan J, Orav EJ. The efficacy of preemployment drug screening for marijuana and cocaine in predicting employment outcome. Journal of the American Medical Association 264: 2639–2678, 1990

    Article  PubMed  CAS  Google Scholar 

  • Zwerling C, Ryan J, Orav EJ. Costs and benefits of preemployment drug screening. Journal of the American Medical Association 267: 91–93, 1992

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osterloh, J. Testing for Drugs of Abuse. Clin. Pharmacokinet. 24, 355–361 (1993). https://doi.org/10.2165/00003088-199324050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199324050-00001

Navigation