Skip to main content
Log in

Formation of Active Metabolites of Anticonvulsant Drugs

A Review of Their Pharmacokinetic and Therapeutic Significance

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

All of the commonly used anticonvulsant drugs, except possibly primidone, are cleared from the human body mainly by metabolism. The metabolites of phenytoin, phenobarbital and ethosuximide have so far not been shown to possess significant pharmacological activity. However, carbamazepine-10,11-epoxide, derived from carbamazepine, has anticonvulsant activity comparable with that of its progenitor, while oxcarbazepine, a new anticonvulsant congener of carbamazepine, is essentially a prodrug for its 10-hydroxy derivative. Valproic acid forms numerous metabolites through a variety of pathways; 2-en valproic acid, a β-oxidation derivative, probably contributes to its anticonvulsant action, though the extent of the contribution is uncertain. Another metabolite, 4-en-valproic acid, has been considered a possible hepatotoxin and teratogen. N-Methyl-phenobarbital and primidone, though both anticonvulsants in their own right, are metabolised to phenobarbital, which probably mediates much of their antiseizure effect. Primidone also yields the weaker anticonvulsant phenylethylmalonamide. The various benzodiazepine anticonvulsants form numerous metabolites, some of which possess both antiseizure and other forms of pharmacological activity.

As yet, there is little understanding of how best to interpret simultaneous plasma concentration measurements of anticonvulsant drug and its active metabolite (or metabolites) in the clinical situation, and the possible roles of anticonvulsant metabolites in the idiosyncratic toxicity of these drugs remain largely unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert KS, Hallmark MR, Sakmar E, Weidler DJ, Wagner JG. Plasma concentrations of diphenylhydantoin, its para-hydroxylated metabolite and corresponding glucuronide in man. Research Communications in Chemical Pathology and Pharmacology 9: 463–469, 1974

    PubMed  CAS  Google Scholar 

  • Ashley JJ, Levy G. Kinetics of diphenylhydantoin elimination in rats. Journal of Pharmacokinetics and Biopharmaceutics 1: 99–102, 1973

    PubMed  CAS  Google Scholar 

  • Baillie TA. Metabolic activation of valproic acid and drug-mediated hepatotoxicity: role of the terminal olefin, 2-n-propyl-4-pentenoic acid. Chemical Research in Toxicology 1: 195–199, 1988

    Article  PubMed  CAS  Google Scholar 

  • Baumel IP, Gallagher BB, Mattson RH. Phenylethylmalonamide (PEMA): an important metabolite of primidone. Archives of Neurology 27: 34–41, 1972

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10 11-epoxide: an update. Clinical Pharmcokinetics 11: 177–198, 1986

    Article  CAS  Google Scholar 

  • Bochner F, Hooper WD, Sutherland JM, Eadie MJ, Tyrer JH. The renal handling of diphenylhydantoin and 5-(p-hydroxy-phenyl)-5′-phenylhydantoin. Clinical Pharmacology and Therapeutics 14: 791–796, 1973

    PubMed  CAS  Google Scholar 

  • Borondy P, Chang T, Glazko AJ. Inhibition of diphenylhydantoin (DPH) hydroxylation by 5-(p-hydroxyphenyl)-5′-phenylhydantoin (p-HPPH). Federation Proceedings 31: 582, 1972

    Google Scholar 

  • Bourgeois BFD. Primidone: biotransformation and mechanisms of action. In Levy et al. (Eds) antiepileptic drugs, 3rd ed., pp. 401–412, Raven, New York, 1989

    Google Scholar 

  • Bourgeois BFD, Wad N. Carbamazepine-10,11-diol steady-state serum levels and renal excretion during carbamazepine therapy in adults and children. Therapeutic Drug Monitoring 6: 259–265, 1984

    Article  PubMed  CAS  Google Scholar 

  • Butler TC. The metabolic conversion of 5,5′-diphenhylhydantoin to 5-(p-hydroxyphenyl)-5′-phenylhydantoin. Journal of Pharmacology and Experimental Therapeutics 119: 1–11, 1957

    PubMed  CAS  Google Scholar 

  • Butler TC, Dudley KC, Johnson D, Roberts SB. Studies on the metabolism of 5,5′-diphenylhydantoin relating principally to the stereoselectivity of the hydroxylation reaction in man and the dog. Journal of Pharmacology and Experimental Therapeutics 199: 82–92, 1976

    PubMed  CAS  Google Scholar 

  • Callaghan N, Kenny RA, O’Neill B, Crowley M, Goggin T. A prospective study between carbamazepine, phenytoin and sodium valproate as monotherapy in previously untreated and recently diagnosed patients with epilepsy. Journal of Neurology, Neurosurgery and Psychiatry 48: 639–644, 1985

    Article  CAS  Google Scholar 

  • Chadwick DW. Concentration-effect relationship of valproic acid. Clinical Pharmacokinetics 10: 155–163, 1985

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Portman R. Titration of central nervous system depression. Archives of Neurology and Psychiatry 68: 498–505, 1952

    PubMed  CAS  Google Scholar 

  • Cottrell PR, Streete JM, Berry DJ. Pharmacokinetics of phenylethylmalonamide (PEMA) in normal subjects and in patients treated with antiepileptic drugs. Epilepsia 23: 307–313, 1982

    Article  PubMed  CAS  Google Scholar 

  • Covanis A, Gupta AK, Jeavons PM. Sodium valproate: monotherapy and polytherapy. Epilepsia 23: 693–720, 1982

    Article  PubMed  CAS  Google Scholar 

  • Craig CR, Shideman FE. Metabolism and anticonvulsant properties of mephobarbital and phenobarbital in rats. Journal of Pharmacology and Experimental Therapeutics 176: 35–41, 1971

    PubMed  CAS  Google Scholar 

  • Cramer JA, Mattson RH, Benmnett DM, Swick CT. Variable free and total valproic acid concentration in sole- and multi-drug therapy. Therapeutic Drug Monitoring 8: 411–415, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RG, Hooper WD, Dunstan PR, Eadie MJ. First dose and steady-state pharmacokinetics of oxcarbazepine and its 10-hydroxy metabolite. European Journal of Clinical Pharmacology 37: 69–74, 1989a

    PubMed  CAS  Google Scholar 

  • Dickinson RG, Hooper WD, Dunstan PR, Eadie MJ. Urinary excretion of valproate and some metabolites in chronically treated patients. Therapeutic Drug Monitoring 11 (Suppl. 1): 127–133, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Eadie MJ, McKinnon GE, Dunstan PR, MacLaughlin D, Dickinson RG. Valproate metabolism during hepatotoxicity associated with the drug. Quarterly Journal of Medicine 77: 1229–1240, 1990

    Article  PubMed  CAS  Google Scholar 

  • Eadie MJ, Tyrer JH, Bochner F, Hooper WD. The elimination of phenytoin in man. Clinical and Experimental Pharmacology and Physiology 3: 217–224, 1976

    Article  PubMed  CAS  Google Scholar 

  • Eadie MJ, Tyrer JH, Smith GA, McKauge L. Pharmacokinetics of drugs used for petit mal absence epilepsy. Clinical and Experimental Neurology 14: 172–183, 1977

    PubMed  CAS  Google Scholar 

  • Eichelbaum M, Tomson T, Tybring G, Bertilsson L. Carbamazepine metabolism in man: induction and pharmacogenetic aspects. Clinical Pharmacokinetics 10: 80–90, 1985

    Article  PubMed  CAS  Google Scholar 

  • Faigle JW, Feldmann KF, Balzer V, Pippenger CE. Anticonvulsant effect of carbamazepine: an attempt to distinguish between the potency of the parent drug and its epoxide metabolite. In Gardner-Thorpe et al. (Eds) Antiepileptic drug monitoring, pp. 104–109, Pitman, Avon, 1977

    Google Scholar 

  • Farnbach GC. Efficacy of primidone in dogs with seizures unresponsive to phenobarbital. Journal of the American Veterinary Medicine Association 185: 867–868, 1984

    CAS  Google Scholar 

  • Glazko AJ. Diphenylhydantoin metabolism: a prospective review. Drug Metabolism and Disposition 1: 711–714, 1973

    PubMed  CAS  Google Scholar 

  • Glazko AJ. Antiepileptic drugs: biotransformation, metabolism and serum half-life. Epilepsia 16: 367–391, 1975

    Article  PubMed  CAS  Google Scholar 

  • Goodman LS, Swinyard EA, Brown WC, Schiffman DO, Grewal MS, et al. Anticonvulsant properties of 5-phenyl-5-ethyl-hexahydropyrimidine-4,6-dione. (Mysoline), a new anticonvulsant. Journal of Pharmacology and Experimental Therapeutics 108: 428–436, 1953

    PubMed  CAS  Google Scholar 

  • Gram L. Potential antiepileptic drugs: lamotrigine. In Levy et al. (Eds) Antiepileptic drugs, 3rd ed., pp. 947–953, Raven, New York, 1989

    Google Scholar 

  • Granneman GR, Wang SI, Kesterson JW, Machinist JM. The hepatotoxicity of valproic acid and its metabolites in rats: II. Intermediary and valproic acid metabolism. Hepatology 4: 1153–1158, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Granneman GR, Wang SI, Machinist JM, Kesterson JW. Aspects of the metabolism of valproic acid. Xenobiotica 14: 375–387, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Hooper WD, King AR, Patterson M, Dickinson RG, Eadie MJ. Simultaneous plasma carbamazepine and carbamazepine-epoxide concentrations in pharmacokinetic and bioavailability studies. Therapeutic Drug Monitoring 7: 36–40, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hoppel C, Garle M, Rane A, Sjöqvist F. Plasma concentrations of 5-(4-hydroxyphenyl)-5′-phenylhydantoin in phenytoin-treated patients. Clinical Pharmacology and Therapeutics 21: 294–300, 1977

    PubMed  CAS  Google Scholar 

  • Jeavons PM, Clark JE, Maheshwari MC. Treatment of generalised epilepsies of childhood and adolescence with sodium valproate (Epilim). Developmental Medicine and Child Neurology 19: 9–25, 1977

    Article  PubMed  CAS  Google Scholar 

  • Johnson DD, Davis HL, Crawford RD. Epileptiform seizures in domestic fowl: VIII. Anticonvulsant activity of primidone and its metabolites phenobarbital and phenylethylmalonamide. Canadian Journal of Physiology and Pharmacology 56: 630–633, 1978

    Article  PubMed  CAS  Google Scholar 

  • Jones TD, Jacobs JL. The treatment of obstinate chorea with Nirvanol with notes on its mode of action. Journal of the American Medical Association 99: 18–21, 1932

    Article  Google Scholar 

  • Kaplan SA, Jack ML, Alexander K, Weinfeld RE. Pharmacokinetic profile of diazepam in man following single intravenous and oral and chronic oral administrations. Journal of Pharmaceutical Science 62: 1789–1796, 1973

    Article  CAS  Google Scholar 

  • Karlaganis G, Kupfer A, Bircher J, Schlunegger UP, Gfeller H, et al. Identification of mephenytoin metabolites in the dog. Drug Metabolism and Disposition 8: 173–177, 1980

    PubMed  CAS  Google Scholar 

  • Kerr BM, Levy RH. Carbamazepine: carbamazepine epoxide. In Levy et al. (Eds) Antiepileptic drugs, 3rd ed., pp. 505–520, Raven, New York, 1989

    Google Scholar 

  • Klotz U, Antonin KH, Brugel H, Bieck PR. Disposition of diazepam and its major metabolite desmethyldiazepam in patients with liver disease. Clinical Pharmacology and Therapeutics 21: 430–436, 1977

    PubMed  CAS  Google Scholar 

  • Kristensen O, Klitgaard NA, Jönsson B, Sindrup S. Pharmacokinetics of 10-OH-carbazepine, the main metabolite of the antiepileptic oxcarbazepine, from serum and saliva concentrations. Acta Neurologica Scandinavica 68: 145–150, 1983

    Article  PubMed  CAS  Google Scholar 

  • Kupfer A, Bircher J. Stereoselectivity of differentail routes of drug metabolism: the fate of enantiomers of [14C]-mephenytoin in the dog. Journal of Pharmacology and Experimental Therapeutics 209: 190–195, 1979

    PubMed  CAS  Google Scholar 

  • Kupfer A, Desmond P, Patwardhan R, Schenker S, Branch RA. Mephenytoin hydroxylation deficiency: kinetics after repeated doses. Clinical Pharmacology and Therapeutics 35: 33–39, 1983

    Google Scholar 

  • Kupfer A, Desmond PV, Schenker S, Branch RA. Stereoselective metabolism and disposition of the enantiomers of mephenytoin during chronic oral administration of the racemic drug in man. Journal of Pharmacology and Experimental Therapeutics 221: 590–597, 1982

    PubMed  CAS  Google Scholar 

  • Leal KW, Rapport RL, Wilensky AJ, Friel PN. Single dose pharmacokinetics and anticonvulsant efficacy of primidone in mice. Annals of Neurology 5: 470–474, 1979

    Article  PubMed  CAS  Google Scholar 

  • Lertratanangkoon K, Horning MG. Metabolism of carbamazepine. Drug Metabolism and Distribution 10: 1–10, 1982

    CAS  Google Scholar 

  • Levy RH, Schmidt D. Utility of free level monitoring of antiepileptic drugs. Epilepsia 26: 199–205, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lim WH, Hooper WD. Stereoselective metabolism and pharmacokinetics of racemic methylphenobarbital in humans. Drug Metabolism and Disposition 17: 212–217, 1989

    PubMed  CAS  Google Scholar 

  • Löscher W. Anticonvulsant activity of metabolites of valproic acid. Archives Internationales de Pharmacodynamie et de Thérapie 249: 158–163, 1981

    PubMed  Google Scholar 

  • Löscher W, Boehme G, Schaefer H, Kochen W. Effects of metabolites of valproic acid on the metabolism of GABA in brain and brain nerve endings. Neuropharmacology 20: 1187–1192, 1981

    Article  PubMed  Google Scholar 

  • Löscher W, Nau H. Valproic acid: metabolite concentrations in plasma and brain anticonvulsant activity and effects on GABA metabolism during subacute treatment in mice. Archives Internationales de Pharmacodynamie et de Thérapie 257: 20–31, 1982

    PubMed  Google Scholar 

  • Löscher W, Nau H. Pharmacological evaluation of various metabolites and analogues of valproic acid. Neuropharmacology 24: 427–435, 1985

    Article  PubMed  Google Scholar 

  • Lynn RK, Bauer JE, Gordon W, Smith RG, Griffin D, et al. Characterization of mephenytoin metabolites in human urine by gas chromatography and mass spectrometry. Drug Metabolism and Disposition 7: 138–144, 1979

    PubMed  CAS  Google Scholar 

  • McKauge L, Tyrer JH, Eadie MJ. Factors influencing simultaneous concentrations of carbamazepine and its epoxide in plasma. Therapeutic Drug Monitoring 3: 63–70, 1981

    PubMed  CAS  Google Scholar 

  • McQueen JK, Blackwood DHR, Minns RA, Brown JK. Plasma levels of sodium valproate in childhood epilepsy. Scottish Medical Journal 27: 312–317, 1982

    PubMed  CAS  Google Scholar 

  • Morselli PL, Gerna M, De Maio D, Zanda G. Pharmacokinetic studies on carbamazepine in volunteers and in epileptic patients. In Schneider et al. (Eds) Clinical Pharmacology of antiepileptic drugs, pp. 166–172, Springer, Berlin, 1975

    Google Scholar 

  • Naestoft J, Lung M, Larsen NE, Hvidberg E. Assay and pharmacokinetics of clonazepam in humans. Acta Neurologica Scandinavica 49: 103–108, 1973

    Article  CAS  Google Scholar 

  • Nau H. Transfer of valproic acid and its main active unsaturated metabolite to the gestational tissue: correlation with neural tube defect formation in the mouse. Teratology 33: 21–27, 1986

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Hlege H, Luck W. Valproic acid in the perinatal period: decreased maternal serum protein binding results in fetal accumulation and neonatal displacement of the drug and some metabolites. Journal of Pediatrics 104: 627–634, 1984

    Article  PubMed  CAS  Google Scholar 

  • Nau H, Löscher W. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and γ-aminobutyric acid (GABA) metabolism in the mouse. Journal of Pharmacology and Experimental Therapeutics 220: 654–659, 1982

    PubMed  CAS  Google Scholar 

  • Nau H, Löscher W. Pharmacologic evaluation of various metabolites and analogs of valproic acid: teratogenic potencies in mice. Fundamental and Applied Toxicology 6: 669–676, 1986

    Article  PubMed  CAS  Google Scholar 

  • Pendlebury SC, Moses DK, Eadie MJ. Hyponatraemia during oxcarbazepine therapy. Human Toxicology 8: 337–344, 1989

    Article  PubMed  CAS  Google Scholar 

  • Perucca E, Makki K, Richens A. Is phenytoin metabolism dose-dependent by enzyme saturation or by feedback inhibition? Clinical Pharmacology and Therapeutics 24: 45–51, 1978

    Google Scholar 

  • Pisani F, Richens A. Pharmacokinetics of phenylethylmalonamide (PEMA) after oral and intravenous administration. Clinical Pharmacokinetics 8: 272–276, 1983

    Article  PubMed  CAS  Google Scholar 

  • Pollack GM, McHugh WB, Gengo FM, Ermer JC, Shen DD. Accumulation and washout kinetics of valproic acid and its active metabolites. Clinical Pharmacology 26: 668–676, 1986

    CAS  Google Scholar 

  • Pullar T, Haigh JRM, Peaker S, Feely MP. Pharmacokinetics of N-desmethylclobazam in healthy volunteers and patients with epilepsy. British Journal of Clinical Pharmacology 24: 793–797, 1987

    Article  PubMed  CAS  Google Scholar 

  • Rettie AE, Rettenmeier AW, Beyer BK, Baillie TA, Juchau MR. Valproate hydroxylation by human fetal tissues and embryotoxicity of metabolites. Clinical Pharmacology and Therapeutics 40: 172–177, 1986

    Article  PubMed  CAS  Google Scholar 

  • Richens A. Potential antiepileptic drugs: vigabatrin. In Levy et al. (Eds) Antiepileptic drugs, 3rd ed., pp. 937–946, Raven, New York, 1989

    Google Scholar 

  • Sato S. Benzodiazepines: clonazepam. In Levy et al. (Eds) Antiepileptic drugs, 3rd ed., pp. 765–784, Raven, New York, 1989

    Google Scholar 

  • Schafer H, Luhrs R. Responsibility of the metabolite pattern for potential side-effects in the rat being treated with valproic acid, 2-propylpenten-2-oic acid, and 2-propylpenten-4-oic acid. In Levy et al. (Eds) Metabolism of antiepileptic drugs, pp. 73–83, Raven, New York, 1984

    Google Scholar 

  • Scheffner D, Konig ST, Rauterberg-Ruland I, Kocen W, Hofman WJ, et al. Fatal liver failure in 16 children with valproate therapy. Epilepsia 29: 530–542, 1988

    Article  PubMed  CAS  Google Scholar 

  • Schmidt B. Potential antiepileptic drugs: gabapentin. In Levy et al. (Eds) Antiepileptic drugs, 3rd ed., pp. 925–935, Raven, New York, 1989

    Google Scholar 

  • Schobben F, Van Der Kleijn E, Gabreels FJM. Pharmacokinetics of di-n-propylacetate in epileptic patients. European Journal of Clinical Pharmacology 8: 97–105, 1975

    Article  PubMed  CAS  Google Scholar 

  • Schobben F, Van Der Kleijn E, Vree TB. Therapeutic monitoring of valproic acid. Therapeutic Drug Monitoring 2: 61–71, 1980

    Article  PubMed  CAS  Google Scholar 

  • Schoeman JF, Elyans AA, Brett EM, Lascelles PT. Correlation between plasma carbamazepine-10,11-epoxide concentration and drug side-effects in children with epilepsy. Developmental Medicine and Child Neurology 26: 756–764, 1984

    Article  PubMed  CAS  Google Scholar 

  • Strandjord RE, Johanessen SI. Single-drug therapy with carbamazepine in patients with epilepsy. Serum levels and clinical effect. Epilepsia 21: 655–662, 1980

    Article  PubMed  CAS  Google Scholar 

  • Tang BK, Kalow W, Grey AA. Metabolic fate of phenobarbital in man: N-glucoside formation. Drug Metabolism and Disposition 7: 315–318, 1979

    PubMed  CAS  Google Scholar 

  • Tennison MB, Miles MV, Pollack GM, Thorn MD, Dupuis RE. Valproate metabolites and hepatotoxicity in an epileptic population. Epilepsia 29: 543–547, 1988

    Article  PubMed  CAS  Google Scholar 

  • Theodore WH, Neewmark ME, Desai BJ, Kupferberg HJ, Penry JK, et al. Disposition of mephenyton and its metabolite nirvanol in epileptic patients. Neurology 34: 1100–1102, 1984

    Article  PubMed  CAS  Google Scholar 

  • Tomson T, Bertilsson L. Potent therapeutic effect of carbamazepine-10,11-epoxide in trigeminal neuralgia. Archives of Neurology 41: 598–601, 1984

    Article  PubMed  CAS  Google Scholar 

  • Tomson T, Tybring G, Bertilsson L. Single-dose kinetics and metabolism of carbamazepine-10,11-epoxide. Clinical Pharmacology and Therapeutics 33: 58–65, 1983

    Article  PubMed  CAS  Google Scholar 

  • Troupin A, Friel P, Lovely MP, Wilensky AJ. Clinical pharmacology of mephenytoin and ethotoin. Annals of Neurology 6: 410–415, 1979

    Article  PubMed  CAS  Google Scholar 

  • Turnbull DM, Rawlins MD, Weightman D, Chadwick DW. Plasma concentrations of sodium valproate: their clinical value. Annals of Neurology 14: 38–42, 1983

    Article  PubMed  CAS  Google Scholar 

  • Van Der Kleijn E, Guelen PJM, Van Wijk C, Baars I. Clinical pharmacokinetics in monitoring chronic medication with antiepileptic drugs. In Schneider et al. (Eds) Clinical pharmacology of antiepileptic drugs, pp. 11–13, Springer, Berlin, 1975

    Google Scholar 

  • Wilson JT, Hojer B, Rane A. Loading and conventional dose therapy with phenytoin in children: kinetic profile of parent drug and main metabolite in plasma. Clinical Pharmacology and Therapeutics 20: 48–58, 1976

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eadie, M.J. Formation of Active Metabolites of Anticonvulsant Drugs. Clin. Pharmacokinet. 21, 27–41 (1991). https://doi.org/10.2165/00003088-199121010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199121010-00003

Keywords

Navigation