Clinical Pharmacokinetics of Cyclophosphamide

Summary

Cyclophosphamide has been in clinical use for the treatment of malignant disease for over 30 years. It remains one of the most useful anticancer agents, and is also widely used for its immunosuppressive properties. Cyclophosphamide is inactive until it undergoes hepatic transformation to form 4-hydroxycyclophosphamide, which then breaks down to form the ultimate alkylating agent, phosphoramide mustard. Sensitive and specific methods are now available for the measurement of cyclophosphamide, its metabolites and its stereoisomers in plasma and urine. The pharmacokinetics of cyclophosphamide have been understood for many years; those of the cytotoxic metabolites have been described more recently. The pharmacokinetics are not significantly altered in the presence of hepatic or renal insufficiency. As activity resides exclusively in the metabolites, whose pharmacokinetics are not predicted by those of the parent compound, correlations between cyclophosphamide pharmacokinetics and pharmacodynamics have not been demonstrated.

Cyclophosphamide is used in doses that range from 1.5 to 60 mg/kg/day. A steep dose-response curve exists, and reductions in dose can lead to unfavourable outcomes. Myelosuppression is the dose-limiting toxicity, although in the setting of bone marrow transplantation, escalation beyond that dosage range is limited by cardiac toxicity. Longer term complications of cyclophosphamide therapy include infertility and an increased incidence of second malignancies.

Cellular sensitivity to cyclophosphamide is a function of cellular thiol concentration, metabolism by aldehyde dehydrogenases to form inactive metabolites, and the ability of DNA to repair alkylated nucleotides. Whether alteration of these cellular functions will lead to further improvements in clinical outcomes is an area of active investigation.

This is a preview of subscription content, access via your institution.

References

  1. Alberts DS, Van Daalen T. The effect of allopurinol on cyclophosphamide antitumour activity. Cancer Research 36: 2790–2794, 1976

    PubMed  CAS  Google Scholar 

  2. Alberts DS, Wetters TD. The effect of phenobarbital on cyclophosphamide antitumour activity. Cancer Research 36: 2785–2789, 1976

    PubMed  CAS  Google Scholar 

  3. Anthony LB, Long Q, Nickel L, Hande KR. Limited sampling model predicts cyclophosphamide area under the curve but not cyclophosphamide metabolite exposure. Proceedings of the American Society of Clinical Oncology 9: 270, 1990

    Google Scholar 

  4. Ataya K, Pydyn E, Young J, Struck R. The uptake and metabolism of cyclophosphamide by the ovary. Selective Cancer Therapeutics 6: 83–91, 1990

    PubMed  Article  CAS  Google Scholar 

  5. Bagley CM, Bostick FW, De Vita VD. Clinical pharmacology of cyclophosphamide. Cancer Research 33: 226–235, 1973

    PubMed  Google Scholar 

  6. Bode U, Seif SM, Levine AS. Studies of the antidiuretic effect of cyclophosphamide. Medical and Pediatric Oncology 8: 295–303, 1980

    PubMed  Article  CAS  Google Scholar 

  7. Bonadonna G. Conceptual and practical advances in the management of breast cancer. Journal of Clinical Oncology 7: 1380–1397, 1989

    PubMed  CAS  Google Scholar 

  8. Bonadonna G, Valagussa P. Dose response effect of adjuvant chemotherapy in breast cancer. New England Journal of Medicine 304: 10–15, 1981

    PubMed  Article  CAS  Google Scholar 

  9. Boston Collaborative Drug Surveillance Program. Allopurinol and cytotoxic drugs. Journal of the American Medical Association 227: 1036–1040, 1974

    Article  Google Scholar 

  10. Boyd VL, Robbins JD, Egan W, Ludeman SM. Nuclear magnetic resonance spectroscopic observation of the intracellular transformations of oncostatic cyclophosphamide metabolites. Journal of Medicinal Chemistry 29: 1206–1210, 1986

    PubMed  Article  CAS  Google Scholar 

  11. Bramwell V, Calvert RT, Edwards G, Scarffe H, Crowther D. The disposition of cyclophosphamide in a group of myeloma patients. Cancer Chemotherapy and Pharmacology 3: 253–259, 1979

    PubMed  Article  CAS  Google Scholar 

  12. Brock N. The oxazaphosphorines. Cancer Treatment Reviews 10A: 3–15, 1983

    Article  Google Scholar 

  13. Buckner CD, Rudolph RJ, Fefer A, Clift RA, Epstein RB, et al. High dose cyclophosphamide therapy for malignant disease. Cancer 29: 357–364, 1972

    Article  Google Scholar 

  14. Burton LC, James CA. Rapid method for detection of ifosfamide and cyclophosphamide in plasma by high-performance liquid chromatography with solid phase extraction. Journal of Chromatography 431: 450–454, 1989

    Google Scholar 

  15. Byfield JE, Murnane J, Ward JF, Calabre-Jones P, Lynch M, et al. Mice, men, mustards and methylated xanthines: the potential role of caffeine and related drugs in the sensitization of human tumours to alkylating agents. British Journal of Cancer 43: 669–683, 1981

    PubMed  Article  CAS  Google Scholar 

  16. Coleman CN, Glover DJ, Turrisis AT. Radiation and chemotherapy sensitizers. In Chabner & Collins (Eds) Cancer chemotherapy, pp. 424–448, JB Lippincott, Philadelphia, 1990

    Google Scholar 

  17. Colvin M, Brundrett RB, Kan MN, Jardine I, Fenselau C. Alkylating properties of phosphoramide mustard. Cancer Research 36: 1121–1128, 1976

    PubMed  CAS  Google Scholar 

  18. Colvin M, Chabner BA. Alkylating agents. In Chabner & Collins (Eds) Cancer chemotherapy, pp. 276–313, JB Lippincott, Philadelphia, 1990

    Google Scholar 

  19. Cox PJ, Farmer PB, Jarman M, Jones M. Observations on the differential metabolism and biological activity of the optical isomers of cyclophosphamide. Biochemical Pharmacology 25: 993–996, 1976

    PubMed  Article  CAS  Google Scholar 

  20. DeBruijn EA, Geng Y, Hermans J, Driessen O. The CMF regimen. Modulation of cyclophosphamide uptake and clearance by methotrexate and fluorouracil. International Journal of Cancer 45: 935–939, 1990

    Article  CAS  Google Scholar 

  21. D’Incalci M, Bolis G, Facchinetti T, Mangioni C, Morasca L, et al. Decreased half-life of cyclophosphamide in patients under continual treatment. European Journal of Cancer 19: 7–10, 1979

    Google Scholar 

  22. Dooley JS, James CA, Rogers HJ, Stuart-Harris R. Biliary elimination of cyclophosphamide in man. Cancer Chemotherapy and Pharmacology 9: 26–29, 1982

    PubMed  Article  CAS  Google Scholar 

  23. Dorr RT, Soble MJ, Alberts DS. Interaction of cimetidine but not ranitidine with cyclophosphamide in mice. Cancer Research 46: 1795–1799, 1986

    PubMed  CAS  Google Scholar 

  24. Douay L, Mary J-Y, Giarratana MC, Najman A, Gorin NC. Establishment of a reliable experimental procedure for bone marrow purging with mafosfamide. Experimental Hematology 17: 429–432, 1989

    PubMed  CAS  Google Scholar 

  25. Edwards G, Calvert RT, Crowther D, Bramwell V, Scarffe H. Repeated investigations of cyclophosphamide disposition in myeloma patients receiving intermittent chemotherapy. British Journal of Clinical Pharmacology 10: 281–285, 1980

    PubMed  Article  CAS  Google Scholar 

  26. Egorin MJ, Forrest A, Belani CP, Ratain MJ, Abrams JS, et al. A limited sampling strategy for cyclophosphamide pharmacokinetics. Cancer Research 49: 3129–3133, 1989

    PubMed  CAS  Google Scholar 

  27. Egorin MJ, Kaplan RS, Salcman M, Aisner J, Colvin M, et al. Cyclophosphamide plasma and CSF kinetics with and without dimethyl sulfoxide. Clinical Pharmacology and Therapeutics 32: 122–127, 1982

    PubMed  Article  CAS  Google Scholar 

  28. El-Yazigi A, Martin C. Improved analysis of cyclophosphamide by capillary gas chromatography with thermionic specific detection and silica sample purification. Journal of Chromatography 374: 177–182, 1986

    PubMed  Article  CAS  Google Scholar 

  29. Evans WE, Relling MV. Clinical pharmacokinetics-pharmacodynamics of anticancer drugs. Clinical Pharmacokinetics 16: 327–336, 1989

    PubMed  Article  CAS  Google Scholar 

  30. Fingert HJ, Chang JD, Pardee AB. Cytotoxic, cell cycle and chromosomal effects of methylxanthines in human tumor cells treated with alkylating agents. Cancer Research 46: 2463–2467, 1986

    PubMed  CAS  Google Scholar 

  31. Fingert HJ, Pu AT, Chen Z, Googe PB, Alley MC, et al. In vivo and in vitro enhanced antitumor effects by pentoxifylline in human cancer cells treated with thiotepa. Cancer Research 48: 4375–4381, 1988

    PubMed  CAS  Google Scholar 

  32. Fox M, Roberts JJ. Drug resistance and DNA repair. Cancer and Metastasis Reviews 6: 261–281, 1987

    PubMed  Article  CAS  Google Scholar 

  33. Frei E, Teicher BA, Holden SA, Cathcart KN, Wang YY. Preclinical studies and clinical correlation of the effect of alkylating dose. Cancer Research 48: 6417–6423, 1988

    PubMed  CAS  Google Scholar 

  34. Friedman HS, Griffith OW, Popp J, Colvin OM, Bossen EH, et al. Acute toxicity resulting from combination therapy with cyclophosphamide and BSO. Proceedings of the American Association of Cancer Research 30: 1846, 1989

    Google Scholar 

  35. Garcia ST, McQuillan A, Panasci L. Correlation between the cytotoxicity of melphalan and DNA crosslinks as detected by the ethidium bromide fluorescence assay. Biochemical Pharmacology 37: 3189–3196, 1988

    PubMed  Article  CAS  Google Scholar 

  36. Glover DJ, Glick J, Weiler C, Hurowitz S, Kligerman MM. WR-2721 protects against the hematologic toxicity of cyclophosphamide: a controlled phase II trial. Journal of Clinical Oncology 4: 584–548, 1986

    PubMed  CAS  Google Scholar 

  37. Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics 4: 380–394, 1978

    Article  Google Scholar 

  38. Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. In Ames et al. (Eds) Pharmacokinetics of anticancer agents in humans, pp. 135–154, Elsevier, Amsterdam, 1983

    Google Scholar 

  39. Hadidi AH, Coulter CE, Idle JR. Phenotypically deficient urinary elimination of carboxyphosphamide after cyclophosphamide administration to cancer patients. Cancer Research 48: 5167–5171, 1988

    PubMed  CAS  Google Scholar 

  40. Hadidi AH, Idle JR. Combined thin layer chromatography-photography densitometry for the quantitation of cyclophosphamide and its four principal urinary metabolites. Journal of Chromatography 427: 121–130, 1988

    PubMed  Article  CAS  Google Scholar 

  41. Hardy RW, Erlichman C, Soldin SJ. High-performance liquid chromatography of cyclophosphamide in serum. Therapeutic Drug Monitoring 6: 313–318, 1984

    PubMed  Article  CAS  Google Scholar 

  42. Hardy RW, Moore MJ, Erlichman C, Soldin SJ. Analysis of phosphoramide mustard by reversed-phase ion pair high pressure liquid chromatography. Therapeutic Drug Monitoring 9: 221–226, 1987

    PubMed  Article  CAS  Google Scholar 

  43. Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide resistant L1210 leukemia. Cancer Research 44: 5156–5160, 1984

    PubMed  CAS  Google Scholar 

  44. Hohorst HJ, Draeger U, Peter G. The problem of oncostatic specificity of cyclophosphamide. Cancer Treatment Reports 60: 309–315, 1976

    PubMed  CAS  Google Scholar 

  45. Holm KA, Kindberg CG, Stobaugh JF, Slavik M, Riley CM. Stereoselective pharmacokinetics and metabolism of the enantiomers of cyclophosphamide. Biochemical Pharmacology 39: 1375–1384, 1990

    PubMed  Article  CAS  Google Scholar 

  46. Hommes OR, Aerts F, Bahr U, Schulten HR. Cyclophosphamide levels in serum and spinal fluid of multiple sclerosis patients treated with immunosuppression. Journal of Neurologic Science 85: 297–303, 1983

    Article  Google Scholar 

  47. Hong PS, Chan KK. Analysis of 4-hydroxycyclophosphamide by gas chromatography-mass spectrometry in plasma. Journal of Chromatography 495: 131–138, 1989

    PubMed  Article  CAS  Google Scholar 

  48. Juma FD. Effect of liver failure on the pharmacokinetics of cyclophosphamide. European Journal of Clinical Pharmacology 26: 591–593, 1984

    PubMed  Article  CAS  Google Scholar 

  49. Juma FD, Rogers HJ, Trounce JR. Pharmacokinetics of cyclophosphamide and alkylating activity in man after intravenous and oral administration. British Journal of Clinical Pharmacology 8: 209–217, 1979a

    PubMed  Article  CAS  Google Scholar 

  50. Juma FD, Rogers HJ, Trounce JR. The kinetics of salivary elimination of cyclophosphamide in man. British Journal of Clinical Pharmacology 8: 455–458, 1979b

    PubMed  Article  CAS  Google Scholar 

  51. Juma FD, Rogers HJ, Trounce JR. Effect of renal insufficiency on the pharmacokinetics of cyclophosphamide. European Journal of Clinical Pharmacology 19: 443–451, 1981

    PubMed  Article  CAS  Google Scholar 

  52. Kastan MB, Schlaffer E, Russo JE, Colvin M, Civin C, et al. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75: 1947–1950, 1990

    PubMed  CAS  Google Scholar 

  53. Kohn FR, Sladek NE. Aldehyde dehydrogenase activity as the basis for the relative insensitivity of murine pluripotent hematopoietic stem cells to oxazaphosphorines. Biochemical Pharmacology 34: 3465–3471, 1987

    Article  Google Scholar 

  54. Korbling M, Hess AD, Tutschka PJ, Kaizer H, Colvin MO, et al. 4-hydroperoxycyclophosphamide, a model for eliminating residual human tumour cells and T-lymphocytes from the bone marrow graft. British Journal of Haematology 52: 89–96, 1982

    PubMed  Article  CAS  Google Scholar 

  55. Kregart GV, Lotocki RJ. Chemotherapy during pregnancy. In Allen & Nisker (Eds) Cancer in pregnancy, Futura Publications, New York, 1986

    Google Scholar 

  56. Levine MN, Gent M, Hirsh J, Arnold A, Goodyear MD, et al. The thrombogenic effect of anti-cancer drug therapy in women with stage II breast cancer. New England Journal of Medicine 318: 404–407, 1988

    PubMed  Article  CAS  Google Scholar 

  57. Lichtman S, Ratain M, Budman DR, Norton L, Egorin M, et al. Phase I trial of GM-CSF plus high dose cyclophosphamide in solid tumors. Proceedings of the American Society of Clinical Oncology 9: 256, 1990

    Google Scholar 

  58. Lind MJ, Roberts JL, Thatcher N, Idle JR. The effect of route of administration and fractionation of dose on the metabolism of ifosfamide. Cancer Chemotherapy and Pharmacology 26: 105–111, 1990

    PubMed  Article  CAS  Google Scholar 

  59. Lokich JJ, Bothe A. Phase I study of continuous infusion cyclophosphamide for protracted durations. Cancer Drug Delivery 1: 329–332, 1984

    PubMed  Article  CAS  Google Scholar 

  60. Manthey CL, Sladek NE. Aldehyde dehydrogenase catalyzed bioinactivation of cyclophosphamide. Progress in Clinical and Biological Research 290: 49–63, 1989

    PubMed  CAS  Google Scholar 

  61. Masurel D, Wainer IW. Analytical and preparative HPLC separation of the enantiomers of ifosfamide, cyclophosphamide and trofosfamide and their determination in plasma. Journal of Chromatography 490: 133–143, 1989

    PubMed  Article  CAS  Google Scholar 

  62. Matthias M, Saul G. Untersuchungen zur Ausscheidung alkylierender Cyclophosphamid Metabolite im Urin von Tumor Patienten. Onkologie 1: 41–44, 1978

    PubMed  Article  CAS  Google Scholar 

  63. Matthias M, Sohr R, Preiss R, Brockmann B. Bioavailability of cyclophosphamide following oral administration in high doses. Onkologie 7: 48–49, 1984

    PubMed  Article  CAS  Google Scholar 

  64. Moore MJ, Hardy RW, Thiessen JJ, Soldin SJ, Erlichman C. Rapid development of enhanced clearance after high-dose cyclophosphamide. Clinical Pharmacology and Therapeutics 44: 622–628, 1988

    PubMed  Article  CAS  Google Scholar 

  65. Moscow JA, Cowan KH. Multidrug resistance. Journal of the National Cancer Institute 80: 14–20, 1988

    PubMed  Article  CAS  Google Scholar 

  66. Moskwa PS, Vadi H, Drewinko B. Mixed function oxidase activities of established human colon carcinoma cell lines in the inactivation of cyclophosphamide. Cancer Research 45: 5447–5451, 1985

    PubMed  CAS  Google Scholar 

  67. Mouridsen HT, Faber O, Skovsted L. The metabolism of cyclophosphamide. Cancer 37: 665–670, 1976

    PubMed  Article  CAS  Google Scholar 

  68. Pederson-Bjergaard J, Ersboll J, Hansen VL, Srensen BL, Christoffersen K, et al. Cancer of the urinary bladder after treatment with cyclophosphamide for non-Hodgkins lymphoma. New England Journal of Medicine 318: 1028–1032, 1988

    Article  Google Scholar 

  69. Pritchard KI, Pater J, Paul N, Paterson AH, Fine S. Thromboembolic complications related to chemotherapy in a randomized trial of tamoxifen versus tamoxifen plus chemotherapy. Proceedings of the American Society of Clinical Oncology 8: 92, 1989

    Google Scholar 

  70. Powis G, Reece P, Ahmann DL, Ingle JN. Effect of body weight on the pharmacokinetics of cyclophosphamide in breast cancer patients. Cancer Chemotherapy and Pharmacology 20: 219–222, 1987

    PubMed  Article  CAS  Google Scholar 

  71. Reid JM, Stobaugh JF, Sternson LA. Liquid Chromatographic determination of cyclophosphamide enantiomers in plasma by precolumn chiral derivatization. Analytical Chemistry 61: 441–446, 1989

    PubMed  Article  CAS  Google Scholar 

  72. Rhoads CP. Nitrogen mustards in treatment of neoplastic disease. Journal of the American Medical Association 131: 656, 1946

    PubMed  Article  CAS  Google Scholar 

  73. Russo JE, Hilton J, Colvin OM. The role of eldehyde dehydrogenase isozymes in cellular resistance to the alkylating agent cyclophosphamide. Progress in Clinical and Biological Research 290: 65–79, 1989

    PubMed  CAS  Google Scholar 

  74. Rustum AB, Hoffman. Determination of cyclophosphamide in whole blood and plasma by reverse phase high-performance liquid chromatography. Journal of Chromatography 422: 125–134, 1987

    PubMed  Article  CAS  Google Scholar 

  75. Seitz DE, Vinter MA, Pearce HL. Evaluation of the potential of glutathione-S-transferase to catalyze the reaction of phosphor-amide mustard, cyclophosphamide or ifosfamide and glutathione. Proceedings of the American Association of Cancer Research 30: 1978, 1989

    Google Scholar 

  76. Shepherd JD, Pringle LE, Barnett MJ, Klingemann HG, Reece DE, et al. 2-mercaptoethanesulfonate (mesna) versus hyperhydration for the prevention of cyclophosphamide induced hemorrhagic cystitis in bone marrow transplantation. Proceedings of the American Society of Clinical Oncology 9: 39, 1990

    Google Scholar 

  77. Sherins RJ, DeVita VT. Effect of drug treatment for lymphoma on male reproductive capacity. Annals of Internal Medicine 79: 216–220, 1973

    PubMed  CAS  Google Scholar 

  78. Sladek NE. Metabolism of oxazaphosphorines. Pharmacology and Therapeutics 37: 301–355, 1988

    PubMed  Article  CAS  Google Scholar 

  79. Sladek NE, Landkamer G. Restoration of sensitivity to oxazaphosphorines by inhibitors of aldehyde dehydrogenase in cultured oxazaphosphorine resistant L1210 and P388 cell lines. Cancer Research 45: 1549–1555, 1985

    PubMed  CAS  Google Scholar 

  80. Sladek NE, Powers JF, Krivit W. Plasma concentrations of 4-hydroxycyclophosphamide and phosphoramide mustard in patients repeatedly given high doses of cyclophosphamide in preparation for bone marrow transplantation. Cancer Treatment Reports 68: 1247–1254, 1984

    PubMed  CAS  Google Scholar 

  81. Struck RF, Alberts DS, Horne K, Phillips JG, Peng YM, et al. Plasma pharmacokinetics of cyclophosphamide and its cytotoxic metabolites after intravenous versus oral administration in a randomized, crossover trial. Cancer Research 47: 2723–2726, 1987

    PubMed  CAS  Google Scholar 

  82. Struck RF, Alberts DS, Plezia P, Phillips JG, Mason-Liddle N, et al. Effect of the antiulcer drug ranitidine on the pharmacokinetics and hematologic toxicity of cyclophosphamide and its cytotoxic metabolites. Proceedings of the American Association of Cancer Research 29: 743, 1988

    Google Scholar 

  83. Struck RF, Kirk MC, Mellett LB, el Dareer S, Hill DL. Urinary metabolites of the antitumor agent cyclophosphamide. Molecular Pharmacology 7: 519–525, 1971

    PubMed  CAS  Google Scholar 

  84. Struck RF, Kirk MC, Witt MH, Laster WR. Isolation and mass spectral identification of blood metabolites of cyclophosphamide. Biomedical Mass Spectrometry 2: 46–52, 1975

    PubMed  Article  CAS  Google Scholar 

  85. Tannock IF, Boyd NF, DeBoer G, Erlichman C, Fine S, et al. A randomized trial of two dose levels of cyclophosphamide, methotrexate and 5-fluorouracil chemotherapy for patients with metastatic breast cancer. Journal of Clinical Oncology 6: 1377–1387, 1988

    PubMed  CAS  Google Scholar 

  86. Tchekmedyian NS, Egorin MJ, Cohen BE, Kaplan RS, Poplin E, et al. Phase I clinical and pharmacokinetic study of cyclophosphamide administered by 5 day continuous infusion. Cancer Chemotherapy and Pharmacology 18: 33–38, 1986

    PubMed  Article  CAS  Google Scholar 

  87. Tucker MA, Coleman CN, Cox RS, Varghese A, Rosenberg SA. Risk of second cancers after treatment for Hodgkin’s disease. New England Journal of Medicine 318: 76–81, 1988

    PubMed  Article  CAS  Google Scholar 

  88. Tutsch K, Mulcahy RT, Trump D, Remcik S, Wilding G, et al. Phase I clinical and pharmacokinetic trial of SR-2508 and cyclophosphamide. Proceedings of the American Association of Cancer Research 30: 960, 1989

    Google Scholar 

  89. Wagner T, Feneberg K. Pharmacokinetics and bioavailability of cyclophosphamide from oral formulations. Arzneimittel-Forschung 34: 313–316, 1984

    PubMed  CAS  Google Scholar 

  90. Walker IR, Zapf PW, Mackay IR. Cyclophosphamide, cholinesterase and anaesthesia. Australian and New Zealand Journal of Medicine 2: 247–253, 1972

    PubMed  Article  CAS  Google Scholar 

  91. Wang LH, Lee CS, Majeske BL, Marbury TC. Clearance and recovery calculations in hemodialysis: application to plasma, red blood cell, and dialysate measurements for cyclophosphamide. Clinical Pharmacology and Therapeutics 29: 365–372, 1981

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Malcolm J. Moore.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moore, M.J. Clinical Pharmacokinetics of Cyclophosphamide. Clin. Pharmacokinet. 20, 194–208 (1991). https://doi.org/10.2165/00003088-199120030-00002

Download citation

Keywords

  • Cyclophosphamide
  • Ifosfamide
  • Clinical Pharmacokinetic
  • Aldehyde Dehydrogenase
  • Nitrogen Mustard