Skip to main content
Log in

Clinical Pharmacokinetics of the Newer ACE Inhibitors

A Review

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The orally active angiotensin-converting inhibitors (ACE inhibitors) such as captopril and enalapril represent a significant therapeutic advance in the treatment of hypertension and congestive heart failure. Enalapril differs from captopril in several respects. It is a prodrug converted by hepatic esterolysis to the active (but more poorly absorbed) diacid, enalaprilat. Enalaprilat is more potent than captopril, more slowly eliminated and does not possess a sulfhydryl (SH) group.

Enalapril was rapidly followed by a number of newer ACE inhibitors, the majority of which are similar to enalapril in that they are prodrugs, converted by hepatic esterolysis to a major active but poorly absorbed diacid metabolite. In one case (delapril) there are 2 active metabolites; in another (alacepril) the prodrug is converted in vivo to captopril. Lisinopril is an exception in that it is an enalaprilat-like diacid but with acceptable oral bioavailability, so that the prodrug route is not employed. The newer ACE inhibitors are at widely different stages of development, and it is not yet clear how many will reach regular clinical use. Of these newer drugs, lisinopril is the longest established and is the subject of the widest published literature. For a number there is as yet little published pharmacokinetic information.

A variety of assay methods have been employed to characterise the pharmacokinetics of the ACE inhibitors, including enzymatic techniques, radioimmunoassay and chromatography. The peak plasma concentrations of the prodrugs are generally observed at around 1 hour and those of the diacid metabolites at about 2 to 4 hours. However, there is considerable variation within and between drugs, with benazepril and benazeprilat reaching peak concentrations early and enalapril and enalaprilat typical of later times to peak. Absorption of the active diacids is generally poor, and moderate (typically 30 to 70%) for the prodrugs. The bioavailability of lisinopril is about 25%.

It is difficult to talk meaningfully about half-lives of the active drugs. The declines in their plasma concentrations are polyphasic and, if analytical sensitivity allows, active drug may be found at 48 hours or more following administration. This may reflect binding to ACE in plasma. Half-lives of accumulation are of the order of 12 hours; protein binding varies from little (lisinopril) to 90% (benazeprilat). Elimination is mostly renal but there may be biliary elimination for some, such as benazeprilat and fosinopril. The half-lives of the prodrugs are short.

Impaired renal function decreases the elimination rate of the diacids. The largest effects on plasma concentrations are associated with severe renal impairment (glomerular filtration rate; < 30 ml/min). Increasing renal impairment is associated with longer times to peak of the diacids. Lisinopril and enalaprilat have been shown to be dialysable. Increasing age has variable effects, but is often accompanied by a decreased rate of elimination related to renal function, best demonstrated in population pharmacokinetic studies. Congestive heart failure may be associated with higher plasma concentrations but the pharmacokinetics of these agents in uncomplicated essential hypertension appear to be normal. The effects of hepatic impairment have been little studied, but severe hepatic impairment would be expected to result in impaired esterolysis of the prodrugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajayi AA, Campbell BC, Kelman AW, Howie C, Meredith PA, et al. Pharmacodynamics and population pharmacokinetics of enalapril and lisinopril. International Journal of Clinical Pharmacological Research 5: 419–427, 1985

    CAS  Google Scholar 

  • Attwood MR. Chemical design of cilazapril. British Journal of Clinical Pharmacology 27: 133S–137S, 1989

    Article  PubMed  CAS  Google Scholar 

  • Aurell M, Delin K, Herlitz H, Ljungman S, Witte PU, et al. Pharmacokinetics and pharmacodynamics of ramipril in renal failure. American Journal of Cardiology 59: 65D–69D, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bathala MS, Weinstein SH, Meeker FS, Singhvi SM, Migdalof BH. Quantitative determination of captopril in blood and captopril and its disulfide metbolites in plasma by gas chromatography. Journal of Pharmaceutical Sciences 73: 340–344, 1984

    Article  PubMed  CAS  Google Scholar 

  • Beermann B, Till AE, Gomez HJ, Hichens M, Bolognese JA, et al. Pharmacokinetics of lisionopril (iv/po) in healthy volunteers. Biopharmaceutics and drug disposition, in press, 1990

  • Belz GG, Essig J, Kleinbloesem CH, Hoogkamer JFW, Weigand UW, et al. Interactions between cilazapril and propranolol in man: plasma drug concentrations, hormone and enzyme responses, haemodynamics, agonist dose-effect curves and baroreceptor reflex. British Journal of Clinical Pharmacology 26: 547–556, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Belz GG, Kirch W, Kleinbloesem CH. Angiotensin-converting enzyme inhibitors: relationship between pharmacodynamics and pharmacokinetics. Clinical Pharmacokinetics 15: 295–318, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen F, Henriksen JH. Comparative pharmacokinetics and pharmacodynamics of lisinopril and enalapril, alone and in combination with propranolol. Journal of Human Hypertension 3 (Suppl. 1): 139–145, 1989

    PubMed  Google Scholar 

  • Biollaz J, Burnier M, Turini GA, Brunner DB, Porchet M, et al. Three new long-acting converting enzyme inhibitors: relationship between plasma converting-enzyme activity and response to angiotensin 1. Clinical Pharmacology and Therapeutics 29: 665–670, 1981

    Article  PubMed  CAS  Google Scholar 

  • Biollaz J, Schelling JL, Jacot des Combes B, Brunner DB, Desponds G, et al. Enalapril maleate and a lysine analogue (MK-521) in normal volunteers: relationship between plasma drug levels and the renin angiotensin system. British Journal of Clinical Pharmacology 14: 363–368, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brunner DB, Desponds G, Biollaz J, Keller I, Ferber F, et al. Effect of a new angiotensin converting enzyme inhibitor MK-421 and its lysine analogue on the components of the renin system in healthy subjects. British Journal of Clinical Pharmacology 11: 461–467, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brunner HR, Gavras H, Laragh JH, Keenan R. Hypertension in man. Exposure of the renin and sodium components using angiotensin II blockade. Circulation Research 1 (Suppl): 34–43, 1974

    Google Scholar 

  • Burnier M, Mooser V, Nussberger B, Waeber B, Brunner HR. Correlation between plasma concentration of cilazapril and haemodynamic and hormonal effects in healthy man. British Journal of Clinial Pharmacology 27: 189S–197S, 1989

    Article  CAS  Google Scholar 

  • Chen DS, Dotson RA, Burrell RD, Watkins BE, Two potent angiotensin converting enzyme (ACE) inhibitors: CGS 14824A and CGS 14831. Pharmacologist 25: 240, 1983

    Google Scholar 

  • Christensen HR, Betz D, Grass P, Kutz K, Kampmann JP. The pharmacokinetics of a new ACE-inhibitor spirapril and its main metabolite spiraprilate. European Journal of Clinical Pharmacology 36: A301, 1989

    Google Scholar 

  • Cleland JGF, Dargie HJ, Hodsman GP, Robertson JIS, Ball SG. interaction of digoxin and captopril. British Journal of Clinical Pharmacology 17: 214P, 1984

    Google Scholar 

  • Corvol P, Michel JB, Evin G, Gardes J, Bensala-Alaoui A, et al. The role of the renin-angiotensin system in blood pressure regulation in normotensive animals and man. Journal of Hypertension 2 (Suppl. 2): 25–30, 1984

    CAS  Google Scholar 

  • Cushman DW, Wang FL, Fung WC, Harvey CM, DeForrest JM. Differentiation of angiotensin-converting enzyme (ACE) inhibitors by their selective inhibition of ACE in physiologically important target organs. American Journal of Hypertension 2: 294–306, 1989

    PubMed  CAS  Google Scholar 

  • Debusmann ER, Pujadas JO, Lahn W, Irmisch R, Jane F, et al. Influence of renal function on the pharmacokinetics of ramipril (Hoe 498). American Journal of Cardiology 59: 70D–77D, 1987

    Article  PubMed  CAS  Google Scholar 

  • Deforrest JM, Waldron TL, Powell JR. Floyd DM, Sundeen JE, SQ 27,786 and SQ 28,853: two angiotensin converting enzyme inhibitors with potent diuretic activity. Journal of Cardiovascular Pharmacology 9: 154–159, 1987

    Article  PubMed  CAS  Google Scholar 

  • De Lepeleire I, Van Hecken A, Verbesselt R, Kaiser G, Barner A. Interaction between furosemide and the converting enzyme inhibitor benazeprilat in healthy volunteers. European Journal of Clinical Pharmacology 34: 465–468, 1988

    Article  PubMed  Google Scholar 

  • Dickstein K, Haemodynamic, hormonal and pharmacokinetic aspects of treatment with lisinopril in congestive heart failure. Journal of Cardiovascular Pharmacology 9 (suppl. 3): S73–S81, 1987

    Article  PubMed  Google Scholar 

  • Dieterle W, Ackermann R, Kaiser G, Pharmacokinetics of benazeprilat after intravenous administration in healthy volunteers. European Journal of Clinical Pharmacology 36 (Suppl): A303, 1989

    Google Scholar 

  • Doering W, Maass L, Irmisch R, Konig E, Pharmacokinetic study with ramipril and digoxin in healthy volunteers. American Journal of Cardiology 59: 60D–63D, 1987

    Article  PubMed  CAS  Google Scholar 

  • Drummer OF, Jarrott B, Louis WJ. Combined gas chromatographic-mass spectrometric procedure for the measurement of captopril and sulfur-conjugated metabolites of captopril in plasma and urine. Journal of Chromatography 305: 83–93, 1984

    Article  PubMed  CAS  Google Scholar 

  • Duchin KL, Singhvi SM. Willard DA, Migdalof BH, McKinstry DN. Captopril kinetics. Clinical Pharmacology and Therapeutics 31: 452–458, 1982

    Article  PubMed  CAS  Google Scholar 

  • Duchin K, Tu J, Frantz M, Willard D. Pharmacodynamics and pharmacokinetics of SQ 28,555, a new angiotensin converting enzyme (ACE) inhibitor in healthy subjects. Clinical Pharmacology and Therapeutics 37: 192, 1985

    Google Scholar 

  • Duncan FM, Martin VI, Williams BC, Al-Dujaili EAS, Edwards CRW. Development and optimisation of a radioimmunoassay for plasma captopril. Clinica Chimica Acta 131: 295–303, 1983

    Article  CAS  Google Scholar 

  • Eckert HG, Badian MJ, Gantz D, Kellner HM, Volz M. Pharmacokinetics and biotransformation of 2-(N-((S)-1-ethoxycarboxyl-3-phenylpropyl)-L-alanyl)-(1S, 3S, 5S)-2-azabicyclo (3.3.0) octane-3-carboxylic acid (Hoe 498) in rat, dog and man. Arzneimittel-Forschung 34: 1435–1447, 1984

    PubMed  CAS  Google Scholar 

  • Eckert HG, Munscher G, Oekonomopulas R, Strecker H, Urbach H, et al. A radioimmunoassay for the angiotensin converting enzyme inhibitor ramipril and its active metabolite. Arzneimittel-Forschung 35: 1251–1256, 1985

    PubMed  CAS  Google Scholar 

  • Essig J, Belz GG, Wellstein A. The assessment of ACE activity in man following angiotensin I challenges: a comparison of cilazapril, captopril and enalapril. British Journal of Clinical Pharmacology 27: 217S–223S, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH. A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. British Journal of Pharmacology and Chemotherapy 24: 164–169, 1965

    Google Scholar 

  • Ferry JJ, Cetnarowski AB, Sedman AJ, Thomas RW, Horvath AM. Multiple dose cimetidine administration does not influence the single-dose pharmacokinetics of quinapril and its active metabolite (C1-928). Journal of Clinical Pharmacology 28: 48–51, 1988

    PubMed  CAS  Google Scholar 

  • Ferry JJ, Horvath AM, Easton-Taylor M, Toothaker RD, Colburn WA. Determination of quinapnl and its active metabolite (C1-928) in human plasma and urine by gas liquid chromatography with electron capture detection. Journal of Chromatography 421: 187–191, 1987

    Article  PubMed  CAS  Google Scholar 

  • Francis RJ, Brown AN, Kler L, Fasanella d’Amore T, Nussberger J, et al. Pharmacokinetics of the converting enzyme inhibitor cilazapril in normal volunteers and the relationship to enzyme inhibition: development of a mathematical model. Journal of Cardiovascular Pharmacology 9: 32–38, 1987

    PubMed  CAS  Google Scholar 

  • Ganten D, Unger TL, Lang RE. Pharmacological interferences with the renin-angiotensin system. Arzneimittel-Forschung 34: 1391–1398, 1984

    PubMed  CAS  Google Scholar 

  • Gautam PC, Vargas E, Lye M. Pharmacokinetics of lisinopril (MK-521) in healthy young and elderly subjects and in elderly patients with cardiac failure. Journal of Pharmacy and Pharmacology 39: 929–931, 1987

    Article  PubMed  CAS  Google Scholar 

  • Gavras H, Brunner HR, Laragh JH, Sealey JE, Gavras I, et al. An angiotensin converting enzyme inhibitor to identify and treat vasoconstricter and volume factors in hypertensive patients. New England Journal of Medicine 291: 817–821, 1974

    Article  PubMed  CAS  Google Scholar 

  • Gerckens U, Grube E, Mengden T, Sigel H, Wagner WL, et al. Pharmacokinelic and pharmacodynamic properties of ramipril in patients with congestive heart failure (NYHA III-IV). Journal of Cardiovascular Pharmacology 13 (Suppl. 3): 49–51, 1989

    Article  Google Scholar 

  • Gilchrist WJ, Beard K, Manhem P, Thomas EM, Robertson JIS, et al. Pharmacokinelics and effects on the renin-angiotensin system of ramipril in elderly patients. American Journal of Cardiology 59: 28D–32D, 1987

    Article  PubMed  CAS  Google Scholar 

  • Graf P, Frueh F, Schmid K. Determination of the angiotensin converting enzyme inhibitor benazeprilat in plasma and urine by an enzymic method. Journal of Chromatography 425: 353–361, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gronhagen-Riska C, Tikkanen I, Fyhrquist F. Competitive inhibitor binding assay (CIBA) of ACE inhibitors. Acta Medica Scandinavica 714: 43–47, 1986

    PubMed  CAS  Google Scholar 

  • Gross DM, Sweet CS, Ulm EH, Backlund EP, Morris AA, et al. Effect of N-[(S)-1-carboxyl-3-phenylpropyl]-L-Ala-L-Pro and its ethyl ester (MK-421) on angiotensin converting enzyme in vitro and angiotensin I pressor responses in vivo. Journal of Pharmacology and Experimental Therapeutics 216: 552–557, 1981

    PubMed  CAS  Google Scholar 

  • Hayashi K, Miyamoto M, Sekine Y. Determination of captopril and its mixed disulphides in plasma and urine by high performance liquid chromatography. Journal of Chromatography 338: 161–169, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hayes PC, Plevris JN, Bouchier IA, Pharmacokinetics of enalapril and lisinopril in subjects with normal and impaired renal function. Journal of Human Hypertension 3 (Suppl. 1): 153–158, 1989

    PubMed  Google Scholar 

  • Hichens M, Hand EL, Mulcahy WS. Radioimmunoassay for angiotensin converting enzyme inhibitors. Ligand Quarterly 4: 43, 1981

    Google Scholar 

  • Hinohara Y, Tanaka S, Wakabayashi K. A radioimmunoassay for MC-838 (altiopril calcium), a novel angiotensin-converting enzyme inhibitor. Journal of Pharmacobio-Dynamics 11: 411–415, 1988

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Yasumatsu M, Usui Y. Determination of a new angiotensin converting enzyme inhibitor (CV-3317) and its metabolites in serum and urine by high performance liquid chromatography. Fukuoka Acta Medica 76: 441–450, 1985

    CAS  Google Scholar 

  • Jacot des Combes B, Turini GA, Brunner HR, Porchet M, Chen DS, et al. CGS 13945: a new orally active angiotensin converting enzyme inhibitor in normal volunteers. Journal of Cardiovascular Pharmacology 5: 511–516, 1983

    Article  PubMed  CAS  Google Scholar 

  • Jackson B, Carbela R, Johnston CI. Angiotensin-converting enzyme inhibitors: measurement of relative inhibiting potency and serum drug levels by radioinhibitor binding displacement assay. Journal of Cardiovascular Pharmacology 9: 699–704, 1987

    Article  PubMed  CAS  Google Scholar 

  • Jarrott B, Anderson A, Hooper R, Louis WJ. High performance liquid Chromatographic analysis of captopril in plasma. Journal of Pharmaceutical Sciences 70: 685–689, 1981

    Article  Google Scholar 

  • Jemal M, Ivashkiv E, Teitz D, Cohen Al. Simultaneous determination of the prodrug zofenopril and its active drug in plasma by capillary gas chromatography-mass-selectivc detection. Journal of Chromatography 428: 81–92, 1988

    Article  PubMed  CAS  Google Scholar 

  • Johnston CI, Fabris B, Yamada H, Mendelsohn FA, Cubela R, et al. Comparative studies of tissue inhibition by angiotensin converting enzyme inhibitors. Journal of Hypertension 7 (Suppl. 5): S11–S16, 1989

    PubMed  CAS  Google Scholar 

  • Johnston CI, Jackson B, McGrath B, Matthews G, Arnolda L. Relationship of antihypertensive effect of enalapril to serum MK-422 levels and angiotensin converting enzyme inhibition. Journal of Hypertension 1 (Suppl. 1): 71–75, 1983

    PubMed  CAS  Google Scholar 

  • Kaiser G, Ackermann R, Brechbuhler S, Dieterle W. Pharmacokinetics of the angiotensin-converting enzyme inhibitor, benazepril HCI (CGS 14824A). in healthy volunteers after single and repeated administration. Biopharmaceutics and Drug Disposition 10: 365–376, 1989a

    Article  CAS  Google Scholar 

  • Kaiser G, Ackermann R, Dieterle W, Fleiss PM. Benazepril and benazeprilat in human plasma and breast milk. European Journal of Clinical Pharmacology 36 (Suppl.): A303, 1989b

    Google Scholar 

  • Kaiser G, Ackermann R, Sioufi A. Pharmacokinetics of a new angiotensin-converting enzyme inhibitor, benazepril hydrochloride in special populations. American Heart Journal 117: 746–751, 1989c

    Article  PubMed  CAS  Google Scholar 

  • Kaplan HR, Taylor DG, Olson SC, Andres LK. Quinapril — a preclinical review of the pharmacology, pharmacokinetics and toxicology. Angiology 40: 335–350, 1989

    PubMed  CAS  Google Scholar 

  • Kelly JG, Doyle G, Carmody M, Glover DR, Cooper WD. Pharmacokinetics of lisinopril, cnalapril and enalaprilat in renal failure: effects of haemodilaysis. British Journal of Clinical Pharmacology 26: 781–786, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kelly JG, Doyle G, Donohue J, Laher M, Long C, et al. Acute and chronic dose pharmacokinetics of lisinopril effects of renal impairment. British Journal of Clinical Pharmacology 23: 629P–630P, 1987

    Google Scholar 

  • Kelly JG, Doyle G, Donohue J, Laher M, Vandenburg MJ. et al. Pharmacokinetics of enalapnl in normal subjects and patients with renal impairment. British Journal of Clinical Pharmacology 21: 63–69, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita H, Nakamaru R, Tanaka S, Tohira Y, Sawada M. Enzyme immunoassay for captopril. Journal of Pharmaceutical Sciences 75: 711–713, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kochak GM, Rakhit A, Thompson TN, Hurley ME. Pentoprilcimetidine interaction caused by a reduction in hepatic blood flow. Journal of Clinical Pharmacology 28: 222–227, 1989

    Google Scholar 

  • Kubo SH, Cody RJ. Clinical pharmacokinetics of the angiotensin converting enzyme inhibitors: a review. Clinical Pharmacokinetics 10: 377–391, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lecocq B, Funck-Brentano C, Lecocq V, Ferry A, Gardin ME, et al. Influence of food on the pharmacokinetics of perindopril and the time course of angiotensin converting enzyme inhibition in scrum. Clinical Pharmacology and Therapeutics 47: 397–402, 1989

    Google Scholar 

  • Lees KR, Green ST, Reid JL. Influence of age on the pharmacokinetics and pharmacodynamics of perindopril. Clinical Pharmacology and Therapeutics 44: 418–425, 1988

    Article  PubMed  CAS  Google Scholar 

  • Lees KR, Hughes DM, McNeill CA, Reid JL. Pharmacokinetics of perindopril: therapeutic consequences. Archives des Maladies du Coeur et des Vaisseaux 82 (Suppl. 1): 31–34, 1989

    PubMed  Google Scholar 

  • Lees KR, Reid JL. Haemodynamic and humoral effects of oral perindopril, an angiotensin converting enzyme inhibitor, in man. British Journal of Clinical Pharmacology 23: 159–164, 1987a

    Article  PubMed  CAS  Google Scholar 

  • Lees KR, Reid JL. The haemodynamic and humoral effects of treatment for one month with the angiotensin converting enzyme inhibitor perindopril in salt-replete hypertensive patients. European Journal of Clinical Pharmacology 31: 519–524, 1987b

    Article  PubMed  CAS  Google Scholar 

  • MacDonald NJ, Elliott HL, Howie CA, Reid JL, Age and the pharmacodynamics and pharmacokinetics of benazepril. British Journal of Clinical Pharmacology 27: 707P–708P, 1989

    Google Scholar 

  • Manhem PjO, Ball SG, Morton JJ, Murray GD, Leckie BJ, et al. A dose-response study of HDE 498, a new non-sulphydryl converting enzyme inhibitor on blood pressure, pulse rate and the renin-angiotensin-aldosterone system in normal man. British Journal of Clinical Pharmacology 20: 27–35, 1985

    Article  PubMed  CAS  Google Scholar 

  • Massarella J, Defeo T, Lui A, Limjuco R, Brown A. The pharmacokinetics and dose proportionality of cilazapril. British Journal of Clinical Pharmacology 27: 199S–204S, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Massarella JW, Defeo TM, Brown AN, Lui A, Willis RJ. The influence of food on the pharmacokinetics and ACE inhibition of cilazapril. British Journal of Clinical Pharmacology 27: 205S–209S, 1989b

    Article  PubMed  CAS  Google Scholar 

  • McLean AJ, Drummer OH, Smith HJ, Froomes P, McNeil JJ. Comparative pharmacokinetics of enalapril and lisinopril, alone and with hydralazine. Journal of Human Hypertension 3 (Suppl. 1): 147–151, 1989

    PubMed  Google Scholar 

  • Metzger H, Maier R, Sitter C, Stern HO. 2-(N-((S)-l-ethoxycarboxyl-3-phenylpropyl)-(1S, 3S, 5S)-2-azabicyclo (3.3.0) octane-3-carboxylic acid (HOE 498), a new and highly effective angiotensin I converting enzyme inhibitor. Arzneimittel-Forschung 34: 1402–1406, 1984

    PubMed  CAS  Google Scholar 

  • Meyer BH, Muller O, Badian M, Eckert HG, Hajdu P, et al. Pharmacokinetics of ramipril in the elderly. American Journal of Cardiology 59: 33D–37D, 1987

    Article  PubMed  CAS  Google Scholar 

  • Millar JA, Derkx FHM, McLean K, Reid JL. Pharmacodynamics of converting enzyme inhibition: the cardiovascular, endocrine and autonomic effects of MK421 (enalapril) and MK521. British Journal of Clinical Pharmacology 14: 347–355, 1982

    Article  PubMed  CAS  Google Scholar 

  • Mojaverian P, Rocci ML, Vlasses PH, Hoholick RA, Clementi RA, et al. Effect of food on the bioavailability of lisinopril, a nonsulfhydryl angiotensin-converting enzyme-inhibitor. Journal of Pharmaceutical Sciences 75: 395–397, 1986

    Article  PubMed  CAS  Google Scholar 

  • Neub M, Vollmer K, Anderton J, Darragh A, Frank GJ, et al. Pharmacokinetics of the ACE-inhibitor quinapril in young and elderly volunteers. European Journal of Clinical Pharmacology 36 (Suppl.): A222, 1989

    Google Scholar 

  • Ng KKF, Vane JR. Conversion of angiotensin 1 to angiotensin II. Nature 215: 762–766, 1967

    Article  Google Scholar 

  • Nussberger J, Fasanella d’Amore T, Porchet M, Waeber B, Brunner DB, et al. Repeated administration of the converting enzyme inhibitor cilazapril to normal volunteers. Journal of Cardiovascular Pharmacology 9: 39–44, 1987

    PubMed  CAS  Google Scholar 

  • Olson SC, Horvath AM, Michniewicz BM, Sedman AT, Colburn WA, et al. The clinical pharmacokinetics of quinapril. Angiology 40: 351–359, 1989

    PubMed  CAS  Google Scholar 

  • Ondetti MA, Structural relationships of angiotensin converting enzyme inhibitors to pharmacological activity. Circulation 77 (Suppl. I): 174–178, 1988

    Google Scholar 

  • Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-converting enzyme. New class of orally effective antihypertensive agents. Science 196: 441–444, 1977

    Article  PubMed  CAS  Google Scholar 

  • Ondetti MA, Williams NJ, Sabo EF, Pluscec J, Weaver ER, et al. Angiotensin converting enzyme inhibitors from the venom of Bothrops jararaca: isolation, elucidation of structure and synthesis. Biochemistry 10: 4033–4039, 1971

    Article  PubMed  CAS  Google Scholar 

  • Onoyama K, Hirakata H, Tsuruda H, Ohchi N, Tomooka S, et al. Pharmacokinetics of a new angiotensin I converting enzyme inhibitor (alacepril) after oral dosing in fasted or fed states. Clinical Pharmacology and Therapeutics 38: 462–468, 1985

    Article  PubMed  CAS  Google Scholar 

  • Onoyama K, Kumagi H, Inenaga T. Pharmacokinetic properties of a new angiotensin 1 converting enzyme inhibitor in patients with chronic renal failure. Current Therapeutic Research 39: 671–680, 1986

    Google Scholar 

  • Onoyama K, Nanishi F, Okuda S, Oh Y, Fujishima M, et al. Pharmacokinctics of a new angiotensin I converting enzyme inhibitor (delapril) in patients with deteriorated kidney function and in normal control subjects. Clinical Pharmacology and Therapeutics 43: 242–249, 1988

    Article  PubMed  CAS  Google Scholar 

  • Onoyama K, Nanishi F, Okuda S, Oh Y, Fujishima M, et al. Pharmacokinetic properties of a new angiolensin converting enzyme inhibitor, altiopril calcium, in normal healthy volunteers and patients with renal dysfunction. Current Therapeutic Research 47: 297–305, 1990

    Google Scholar 

  • Rakhit A, Hurley ME, Tipnis V, Coleman J, Rommel A, et al. Pharmacokinetics and pharmacodynamics of pentopril, a new angiotensin-converting-enzyme inhibitor in humans. Journal of Clinical Pharmacology 26: 156–164, 1986

    PubMed  CAS  Google Scholar 

  • Rakhil A, Kochak GM, Tipnis V, Hurley ME. Inhibition of renal clearance of furosemide by pentopril, an angiotensin-converting-enzyme inhibitor. Clinical Pharmacology and Therapeutics 41: 580–586, 1987a

    Article  Google Scholar 

  • Rakhit A, Kochak GM, Tipnis V, Radensky P, Hurley ME, et al. Pharmacokinetics of penlopril in the elderly. British Journal of Clinical Pharmacology 24: 351–357, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Rakhit A, Radensky P, Szerlip HM, Kochak GM, Audel PR, et al. Effect of renal impairment of disposition of pentopril and its active metabolite. Clinical Pharmacology and Therapeutics 44: 39–48, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rakhit A, Tipnis V. Liquid Chromatographie determination of an angiotensin converting enzyme inhibitor (CGS 13945) and its active metabolite (CGS 13934) in plasma. Clinical Chemistry 30: 1237–1239, 1984

    PubMed  CAS  Google Scholar 

  • Reydel-Bax P, Redalieu E, Rakhit A. Direct determination of angiotensin-converting enzyme inhibitors in plasma by radioenzymatic assay. Clinical Chemistry 33: 549–553, 1987

    PubMed  CAS  Google Scholar 

  • Rosenthal E, Francis RJ, Brown AN, Rajaguru S, Williams PEO. et al. A pharmacokinetic study of cilazapril in patients with congestive heart failure. British Journal of Clinical Pharmacology 27: 267S–273S, 1989

    Article  PubMed  Google Scholar 

  • Sakai K, Aono J, Shiraki Y, Hinohara Y, Akamatsu A. et al. MC-838 (altiopril calcium): a novel orally active angiotensin converting enzyme inhibitor. Tohoku Journal of Experimental Medicine 152: 363–374, 1987

    Article  PubMed  CAS  Google Scholar 

  • Schaller MD, Nussberger J, Waeber J, Bussier JP, Turini GA. et al. Haemodynamic and pharmacological effects of the converting enzyme inhibitor CGS 14824A in normal volunteers. European Journal of Clinical Pharmacology 28: 267–272, 1985

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Tanaka M, Nambara T, Imai Y, Abe K. et al. Determination of captopril in human blood by high performance liquid chromatography with electrochemical detection. Journal of Chromatography 227: 445–451, 1982

    Article  PubMed  CAS  Google Scholar 

  • Shionoiri H, Gotoh E, Takagi N, Takeda K, Yabana M. et al. Antihypertensive effects and pharmacokinetics of single and consecutive doses of cilazapril in hypertensive patients with normal and impaired renal function. Journal of Cardiovascular Pharmacology 11: 242–249, 1988

    PubMed  CAS  Google Scholar 

  • Shionoiri H, Yasuda G, Abe Y, Yoshimura H, Kaneko Y. et al. Pharmacokinetics and acute effect on the renin-angiotensin system of delapril in patients with chronic renal failure. Clinical Nephrology 27: 65–70, 1987a

    PubMed  CAS  Google Scholar 

  • Shionoiri H, Yasuda G, Ikeda A, Ohta T, Miyajima E. et al. Pharmacokinetics and depressor effect of delapril in patients with essential hypertension. Clinical Pharmacology and Therapeutics 41: 74–79, 1987b

    Article  PubMed  CAS  Google Scholar 

  • Singhvi SM, Duchin KL, Morrison RA, Willard DA, Everett DW. et al. Disposition of fosinopril sodium in healthy subjects. British Journal of Clinical Pharmacology 25: 9–15, 1988

    Article  PubMed  CAS  Google Scholar 

  • Sybertz EJ, Watkins RW, Ahn HS, Baum T, La-Rocca P. et al. Pharmacologic, metabolic and toxicological profile of spirapril (SCH 33844). a new angiotensin convening inhibitor. Journal of Cardiovascular Pharmacology 10 (Suppl. 7): 105–108, 1987

    Article  Google Scholar 

  • Tanaka H, Yoneyama Y, Sugawara M, Umeda I, Ohta Y, Enzyme immunoassay discrimination of a new angiotensin converting enzyme (ACE) inhibitor, cilazapril, and its active metabolite. Journal of Pharmaceutical Sciences 76: 224–227, 1987

    Article  PubMed  CAS  Google Scholar 

  • Thomson AH, Kelly JG, Whiting B. Lisinopril population pharmacokinetics in elderly and renal disease patients with hypertension. British Journal of Clinical Pharmacology 27: 57–65, 1989

    Article  PubMed  CAS  Google Scholar 

  • Thuillez C, Richer C, Giudicelli JF, Pharmacokinetics, converting enzyme inhibition and peripheral arterial haemodynamics of ramipril in healthy volunteers. American Journal of Cardiology 59: 38D–44D, 1987

    Article  PubMed  CAS  Google Scholar 

  • Till AE, Gomez HJ, Hichens M, Bolognese JA, McNabb WR. et al. Pharmacokinetics of repeated single oral doses of enalapril molcate (MK421) in normal volunteers. Biopharmaceutics and Drug Disposition 5: 273–280, 1984

    Article  CAS  Google Scholar 

  • Tocco DJ, Deluna FA, Duncan AEW, Vassil TC, Ulm EH. The physiological disposition and metabolism of enalapril maleate in laboratory animals. Drug Metabolism and Disposition 10: 15–19, 1982

    PubMed  CAS  Google Scholar 

  • Tsaconas C, Devissaguet M, Podieu P. Gas chromalography-mass spectrometry of perindopril and its active free metabolite, an angiotensin convertase inhibitor: choice of derivatives and ionizalion modes. Journal of Chromatography 17: 249–265, 1989

    Google Scholar 

  • Tsai HH, Lees KR, Howden CW, Reid JL. The pharmacokinetics and pharmacodynamics of perindopril in patients with hepatic cirrhosis. British Journal of Clinical Pharmacology 28: 53–59, 1989

    Article  PubMed  CAS  Google Scholar 

  • Ulm EH, Hichens M, Gomez HJ, Till AE, Hand E. et al. Enalapril maleate and a lysine analogue (MK52I): disposition in man. British Journal of Clinical Pharmacology 14: 357–362, 1982

    Article  PubMed  CAS  Google Scholar 

  • Vandenburg MJ, Morris F, Merks C, Kelly JG, Dews IM. et al. A study of the potential pharmacokinetic interactions of lisinopril and digoxin in normal volunteers. Xenobiotica 18: 1179–1184, 1988

    Article  PubMed  CAS  Google Scholar 

  • Van Schaik BAM, Geyskes GG, Boer P. Lisinopril in hypertensive patients with and without renal failure. European Journal of Clinical Pharmacology 32: 11–16, 1987

    Article  PubMed  Google Scholar 

  • Van Schaik BAM, Geyskes GG. Van der Wouw PA, Van Rooij HH, Porsius AJ. Pharmacokinetics of lisinopril in hypertensive patients with normal and impaired renal function. Clinical Pharmacology 34: 61–65, 1988

    Article  Google Scholar 

  • Waterfall JF. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor. British Journal of Clinical Pharmacology 27: 139S–150S, 1989

    Article  PubMed  CAS  Google Scholar 

  • Whitehead EM, Walters GE, Williams PEO, Johnston GD. Pharmacokinetics of intravenous cilazaprilal in normal volunteers. British Journal of Clinical Pharmacology 27: 873–875, 1989

    Article  PubMed  CAS  Google Scholar 

  • Williams PEO, Brown AN, Rajaguru S, Francis RJ, Walters GE. et al. The pharmacokinetics and bioavailability of cilazapril in normal man. British Journal of Clinical Pharmacology 27: 181S–188S, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Williams PEO, Brown AN, Rajaguru S, Walters GE, McEwen J. et al. A pharmacokinetic study of cilazapril in elderly and young volunteers. British Journal of Clinical Pharmacology 27: 211S–215S, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Witte PU, Irmisch R, Hajdu P, Metzger H. Pharmacokinetics and pharmacodynamics of a novel orally active angiotensin converting enzyme inhibitor (Hoe 498) in healthy subjects. European Journal of Clinical Pharmacology 27: 577–581, 1984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, J.G., O’Malley, K. Clinical Pharmacokinetics of the Newer ACE Inhibitors. Clin Pharmacokinet 19, 177–196 (1990). https://doi.org/10.2165/00003088-199019030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199019030-00003

Keywords

Navigation