Skip to main content
Log in

Clinical Pharmacokinetic Considerations in the Treatment of Patients with Leprosy

  • Review Article
  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

On the basis of the efficacy of the available agents, the World Health Organization has recommended only 4 drugs for combined chemotherapy of leprosy: rifampicin, dapsone, clofazimine and ethionamide/prothionamide. Thiacetazone and isoniazid are also used to a lesser extent by some physicians. Pyrazinamide may find a place in treating ‘persister’ bacilli.

Dapsone is absorbed slowly after oral administration. Peak plasma drug concentration is reached at about 4 hours; absorption half-life is 1.1 hours; elimination half-life is about 30 hours. Oral availability is around 90%. Dapsone is approximately 70% protein-bound, while its monoacetylated metabolite is amost entirely bound. Dapsone crosses the placenta and is excreted into breast milk. It is metabolised via acetylation and N -hydroxylation, but acetylation polymorphism has no effect on dapsone handling by leprosy patients. Dapsone penetrates into sciatic nerves of experimental animals but its presence has not been demonstrated in Schwann cells.

Oral doses of rifampicin are rapidly and completely absorbed. The bioavailability is greater when the drug is given before meals; peak concentrations occur at 1 to 2 hours. 80 to 90% of rifampicin is bound to plasma proteins, and the drug is found in saliva, cerebrospinal fluid and breast milk. Its main metabolite, desacetyl rifampicin, also exhibits antimycobacterial activity in tuberculosis. Rifampicin induces its own metabolism, as well as that of dapsone and steroids. Absorption of dapsone and rifampicin is reported to be reduced in leprosy patients.

Clofazimine has been in use in leprosy treatment since 1960. In higher doses it exerts an anti-inflammatory action which is useful in treating leprosy patients in reaction. Oral absorption of the drug is slow and dose-dependent; faecal excretion also increases with dose. Single- and multiple-dose studies have shown a plasma half-life of around 10 days. Bioavailability of the drug is higher when given with food than when fasting; the peak plasma concentration occurs at 4 to 8 hours when the drug is administered with breakfast. After absorption, the drug is thought to circulate in protein-bound form, accounting for the fact that it is deposited in various tissues. Uneven distribution and prolonged retention in the tissues are special features of clofazimine metabolism. One unconjugated and 2 conjugated metabolites have been detected in urine, and the urinary excretion of both the parent compound and its metabolites is around 1% of the dose. Clofazimine crosses the placental barrier and is excreted into breast milk, but does not cross the blood-brain barrier. Small amounts of the drug are found in sebum and sweat.

The pharmacokinetic properties of ethionamide and prothionamide are similar in man. Both are absorbed rapidly and completely following oral administration. Peak plasma concentration of prothionamide occurs at around 18 minutes; plasma half-life is about 2 hours. The sulphoxide metabolite of the drug is active against Mycobacterium leprae.

The pharmacokinetics of thiacetazone, isoniazid and pyrazinamide are reviewed briefly. All 3 drugs are well absorbed after oral administration.

Haematological, dermatological and neurological effects and gastrointestinal symptoms are some of the side effects of the drugs reviewed. These may not pose serious problems at therapeutic dosages in leprosy, but the increased incidence of hepatotoxicity on combining rifampicin and ethionamide/prothionamide causes serious concern.

Rifampicin increases the excretion of dapsone, although this is not of therapeutic significance. Dapsone plus clofazimine reduces the absorption of rifampicin, while rifampicin plus dapsone does not affect absorption of clofazimine. Isoniazid treatment lowers the tissue concentration of clofazimine and increases its urinary excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acocella G. Clinical pharmacokinetics of rifampicin. Clinical Pharmacokinetics 3: 108–127, 1978

    Article  PubMed  CAS  Google Scholar 

  • Acocella G, Conti R, Luisetti M, Pozzi E, Grassi C. Pharmacokinetic studies on antituberculosis regimens in humans. 1. Absorption and metabolism of the compounds used in the initial intensive phase of the short course regimens: single administration study. American Review of Respiratory Diseases 132: 510–515, 1985

    CAS  Google Scholar 

  • Acocella G, Pagani V, Marchetti M, Baroni GC, Nicolis FB. Kinetic studies on rifampicin. 1. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy (Basel) 16: 356–370, 1971

    CAS  Google Scholar 

  • Ahmad RA, Rogers HJ. Plasma and salivary pharmacokinetics of dapsone estimated by thin layer Chromatographic method. European Journal of Clinical Pharmacology 17: 129–133, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Ahmad RA, Rogers HJ. Pharmacokinetics and protein binding of dapsone and pyrimethamine. British Journal of Clinical Pharmacology 10: 519–524, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Alexander JO’D, Young E, McFayden T, Fraser NG, Duguid WP, et al. Absorption and excretion of 35S-dapsone in dermatitis herpetiformis. British Journal of Dermatology 83: 620–631, 1970

    Article  PubMed  CAS  Google Scholar 

  • Allen BW, Ellard GA, Gammon PT, King RC, Rees RJW, et al. The penetration of dapsone, rifampicin, isoniazid and pyrazinamide into peripheral nerves. British Journal of Clinical Pharmacology 55: 151–155, 1975

    CAS  Google Scholar 

  • Balakrishnan S, Desikan KV, Ramu G. Quantitative estimation of clofazimine in tissues. Leprosy in India 48 (Suppl. 4): 732–738, 1976

    PubMed  CAS  Google Scholar 

  • Balakrishnan S, Ramu G. Blood DDS levels and acetylation rates of sulfadimidine in leprosy patients. Leprosy in India 49: 59–64, 1977

    PubMed  CAS  Google Scholar 

  • Balakrishnan S, Seshadri PS. Drug interactions: the influence of rifampicin and clofazimine on the urinary excretion of DDS. Leprosy in India 53: 17–22, 1981

    PubMed  CAS  Google Scholar 

  • Banerjee DK, Ellard GA, Gammon PT, Waters MFR. Some observations on the pharmacology of clofazimine (B 663). American Journal of Tropical Medicine and Hygiene 23: 1110–1115, 1974

    PubMed  CAS  Google Scholar 

  • Barry VC, Buggle J, Byrne ML, Conalty ML, Winder F. Factors influencing the anti-tuberculosis activity of the rimino compounds. Bulletin of the International Union against Tuberculosis 29: 582–593, 1959

    Google Scholar 

  • Barry VC, Buggle J, Byrne ML, Conalty ML, Winder F. Absorption, distribution and retention of riminocompounds in the experimental animals. Irish Journal of Medical Sciences 410: 345–352, 1960

    Google Scholar 

  • Bawden D, Tute MS. Structure-activity relationships of anti-mycobacterial sulphones: a study using physicochemical constants. European Journal of Medicinal Chemistry 16: 299–300, 1981

    CAS  Google Scholar 

  • Biggs JT, Gordon GR, Peters JH. Disappearance rates and plasma protein-binding of dapsone (DDS) and monoacetyl dapsone (MADDS) in animals and man. Federation Proceedings 30: 629, 1971

    Google Scholar 

  • Boddingius J, Stolz E. Do anti-leprosy drugs reach Mycobacterium leprae in peripheral nerves? Lancet 1: 774–775, 1981

    Article  PubMed  CAS  Google Scholar 

  • Boman G. Serum concentrations and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. European Journal of Clinical Pharmacology 7: 217–225, 1974

    Article  PubMed  CAS  Google Scholar 

  • Boman G, Ringberger V-A. Binding of rifampicin by human plasma proteins. European Journal of Clinical Pharmacology 7: 369–373, 1974

    Article  PubMed  CAS  Google Scholar 

  • Browne SG. ‘B 663’-a possible anti-inflammatory action in lepromatous leprosy. Leprosy Review 36: 9–11, 1965

    PubMed  CAS  Google Scholar 

  • Browne SG, Harman DJ, Waudby H, McDougall AC. Clofazimine (Lamprene B 663) in the treatment of lepromatous leprosy in the United Kingdom: a 12-year review of 31 cases, 1966–1978. International Journal of Leprosy 49: 167–176, 1981

    CAS  Google Scholar 

  • Byrne J, Conalty ML, Jina A. Laboratory studies on the riminophenazines. Tubercle 50 (Suppl.): 22–28, 1969

    Article  PubMed  Google Scholar 

  • Cartel JL, Millan J, Guelpa-Lauras CC, Grosset JH. Hepatitis in leprosy patients treated by a daily combination of dapsone, rifampicin and a thioamide. International Journal of Leprosy 51: 461–465, 1983

    CAS  Google Scholar 

  • Chatterjee KR, Poddar RK. Radioactive tracer studies on uptake of DDS by leprosy patients. Proceedings of the Society for Experimental Biology and Medicine 94: 122–125, 1957

    PubMed  CAS  Google Scholar 

  • Colston MJ, Ellard GA, Gammon PT. Drugs for combined therapy: experimental studies on the anti-leprosy activity of ethionamide and prothionamide, a general review. Leprosy Review 49: 115–126, 1978a

    PubMed  CAS  Google Scholar 

  • Colston MJ, Hilson GRF. The activity of thiacetazone, thiambutosine and thiocarlide in the chemotherapy of experimental leprosy. International Journal of Leprosy 44: 123–128, 1976

    CAS  Google Scholar 

  • Colston MJ, Hilson GRF, Bannerjee DK. ‘The proportional bactericidal test’: a method for assessing the bactericidal activity of drugs against Mycobacterium leprae in mice. Leprosy Review 49: 7–15, 1978b

    PubMed  CAS  Google Scholar 

  • Conalty ML, Jackson RD. Uptake by reticuloendothelial cells of riminophenazine B 663. British Journal of Experimental Pathology 43: 650–654, 1962

    CAS  Google Scholar 

  • DeGowin RL. A review of therapeutic and hemolytic effects of dapsone. Archives of Internal Medicine 120: 242–248, 1967

    Article  PubMed  CAS  Google Scholar 

  • Depasquale G. Rifampicin and isoprodian in combination in the treatment of leprosy. Leprosy Review 46 (Suppl. 2): 179–180, 1975

    PubMed  CAS  Google Scholar 

  • Desikan KV, Balakrishnan S. Tissue levels of clofazimine in a case of leprosy. Leprosy Review 47: 107–114, 1976

    PubMed  CAS  Google Scholar 

  • Ellard GA. Absorption, metabolism and excretion of di(p-ami-nophenyl sulphone (dapsone) and di(p-aminophenyl) sulphoxide in man. British Journal of Pharmacology 26: 212–217, 1966

    CAS  Google Scholar 

  • Ellard GA. Absorption, metabolism and excretion of pyrazinamide in man. Tubercle 50: 144–148, 1969

    Article  PubMed  CAS  Google Scholar 

  • Ellard GA. Rationale of the multi-drug regimens recommended by a WHO study group on chemotherapy of leprosy for control programmes. International Journal of Leprosy 52: 395–401, 1984

    CAS  Google Scholar 

  • Ellard GA, Dickinson JM, Gammon PT, Mitchison DA. Serum concentrations and antituberculosis activity of thiacetazone. Tubercle 55: 41–54, 1974

    Article  PubMed  CAS  Google Scholar 

  • Faget GH, Pogge RC, Johansen FA, Dinan JF, Prejean VM, et al. Promin treatment of leprosy. Public Health Reports 58: 1729–1741, 1943

    Article  CAS  Google Scholar 

  • Feng PCC, Fenselau CC, Jacobson RR. Metabolism of clofazimine in leprosy patients. Drug Metabolism and Disposition 9: 521–524, 1981

    PubMed  CAS  Google Scholar 

  • Feng PCC, Fenselau CC, Jacobson RR. A new urinary metabolite of clofazimine in leprosy patients. Drug Metabolism and Disposition 10: 286–288, 1982

    PubMed  CAS  Google Scholar 

  • Fox W, Robinson DK, Tall R, Mitchison DA, Kent PW, et al. A study of the intolerance to ethionamide, including a comparison with prothionamide, and the influence of a vitamin B-complex additive in prophylaxis. Tubercle 50: 125–143, 1969

    Article  PubMed  CAS  Google Scholar 

  • Freerksen E. Preliminary experience with combined therapy using rifampicin and isoprodian (L 73 A). Leprosy Review 46 (Suppl. 2): 316, 1975

    Google Scholar 

  • Furesz S. Chemical and biological properties of rifampicin. Antibiotica et Chemotherapia (Basle) 16: 316–319, 1970

    CAS  Google Scholar 

  • Garg SK, Kumar B, Bakaya V, Lal R, Shukla VK, et al. Plasma dapsone levels in leprotic patients. International Journal of Clinical Pharmacology, Therapy and Toxicology, 26: 552–554, 1988

    CAS  Google Scholar 

  • Gelber RH, Gooi HC, Rees RJW. The effect of rifampicin on dapsone metabolism. Proceedings of the Western Pharmacological Society 18: 330–334, 1975

    CAS  Google Scholar 

  • Gelber RH, Peters JH, Gordon RG, Glazko AJ, Levy L. The polymorphic acetylation of dapsone in man. Clinical Pharmacology and Therapeutics 12: 225–238, 1971

    PubMed  CAS  Google Scholar 

  • Gelber RH, Rees RJW. Dapsone metabolism in patients with dapsone-resistant leprosy. American Journal of Tropical Medicine and Hygiene 24: 963–967, 1975

    PubMed  CAS  Google Scholar 

  • George J, Balakrishnan S. Blood dapsone levels in leprosy patients treated with acedapsone. Indian Journal of Leprosy 58: 401–406, 1986

    PubMed  CAS  Google Scholar 

  • George J, Balakrishnan S, Bhatia VN. Drug interactions during multidrug regimens for treatment of leprosy. Indian Journal of Medical Research 87: 151–156, 1988

    PubMed  CAS  Google Scholar 

  • Gidoh M, Tsutsumi S. Determination of three main anti-leprosy drugs and their main metabolites in serum by high performance liquid chromatography. Journal of Chromatography 223: 379–392, 1981

    Article  PubMed  CAS  Google Scholar 

  • Glazko AJ, Chang T, Baukema J, Chang SF, Savory A, et al. Central role of MADDS in the metabolism of DDS. International Journal of Leprosy 37: 462–463, 1969

    Google Scholar 

  • Glazko AJ, Dill WA, Baukema J, Thompson PE. Metabolic disposition of repository sulfone drugs. International Journal of Leprosy 36: 511–512, 1968a

    Google Scholar 

  • Glazko AJ, Dill WA, Montalbo RG, Holmes EL. A new analytical procedure for dapsone. Application to blood level and urinary excretion studies in normal men. American Journal of Tropical Medicine and Hygiene 17: 465–473, 1968b

    PubMed  CAS  Google Scholar 

  • Goodwin CS, Sparell G. Inhibition of dapsone excretion by probenecid. Lancet 2: 884–885, 1969

    Article  PubMed  CAS  Google Scholar 

  • Government of India. Report of the Working Group on the Eradication of Leprosy. Ministry of Health and Family Welfare, New Delhi, 1982

    Google Scholar 

  • Grabosz JAJ, Wheate HW. Effect of clofazimine on the urinary excretion of DDS. International Journal of Leprosy 43: 61–62, 1975

    CAS  Google Scholar 

  • Halmekoski J, Matilla MJ, Mustakallio KK. Metabolism and haemolytic effect of dapsone and its metabolites in man. Medical Biology 56: 216–221, 1978

    PubMed  CAS  Google Scholar 

  • Hocking DR. Neonatal haemolytic disease due to dapsone. Medical Journal of Australia 1: 1130–1131, 1968

    PubMed  CAS  Google Scholar 

  • Holmes IB. Minimum inhibitory and bactericidal dosages of rifampicin against Mycobacterium leprae in the mouse foot pad: relationships to serum concentrations. International Journal of Leprosy 42: 289–296, 1974

    CAS  Google Scholar 

  • Holmes IB, Hilson GRF. The effect of rifampicin and dapsone on experimental Mycobacterium leprae infections: minimum inhibitory concentrations and bactericidal action. Journal of Medical Microbiology 5: 251–261, 1972

    Article  PubMed  CAS  Google Scholar 

  • Immanuel C, Jayasankar K, Narayana ASL, Sarma GR. Self induction of rifampicin metabolism in man. Indian Journal of Medical Research 82: 381–387, 1985

    PubMed  CAS  Google Scholar 

  • Jagannathan R, Mahadevan PR. Minimum inhibitory concentration of drugs against Mycobacterium leprae as determined by an in vitro assay. Journal of Biosciences 10: 137–144, 1986

    Article  CAS  Google Scholar 

  • Jenner PJ, Ellard GA. High performance liquid Chromatographic determination of ethionamide and prothionamide in body fluids. Journal of Chromatography 225: 245–251, 1981

    Article  PubMed  CAS  Google Scholar 

  • Jenner PJ, Ellard GA, Gruer PJK, Aber VR. A comparison of the blood levels and urinary excretion of ethionamide and prothionamide in man. Journal of Antimicrobial Chemotherapy 13: 267–277, 1984

    Article  PubMed  CAS  Google Scholar 

  • Jenner PJ, Smith SE. Plasma levels of ethionamide and prothionamide in a volunteer following intravenous and oral dosages. Leprosy Review 58: 31–37, 1987

    PubMed  CAS  Google Scholar 

  • Ji B. Drug resistance in leprosy — a review. Leprosy Review 56: 265–278, 1985

    PubMed  CAS  Google Scholar 

  • Ji B, Chen J, Wang C, Xia G. Hepatotoxicity of combined therapy with rifampicin and daily prothionamide for leprosy. Leprosy Review 55: 283–289, 1984

    PubMed  CAS  Google Scholar 

  • Jones CR, Ovenell SM. Determination of plasma concentrations of dapsone, monoacetyl dapsone and pyrimethamine in human subjects dosed with maloprim. Journal of Chromatography 163: 179–185, 1979

    Article  PubMed  CAS  Google Scholar 

  • Jopling WH. Handbook of leprosy, 2nd ed., William Heinemann Medical Books, London, 1978

    Google Scholar 

  • Jopling WH. Side effects of anti-leprosy drugs in common use. Leprosy Review 54: 261–270, 1983

    PubMed  CAS  Google Scholar 

  • Karim AKMB, Elfellah MS, Evans DAP. Human acetylator polymorphism: estimate of allele frequency in Libya and details of global distribution. Journal of Medical Genetics 18: 325–330, 1981

    Article  PubMed  CAS  Google Scholar 

  • Katoch K, Ramu G. Ramanathan U, Sreevatsa. Pyrazinamide as a part of combination therapy for BL-LL patients — a preliminary report. International Journal of Leprosy 56: 1–9, 1988

    CAS  Google Scholar 

  • Kenny MT, Strates B. Metabolism and pharmacokinetics of the antibiotic rifampicin. Drug Metabolism Reviews 12: 159–218, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kenwright S, Levi AJ. Impairment of hepatic uptake of rifamycin antibiotics by probenecid and its therapeutic implication. Lancet 2: 1401–1405, 1973

    Article  PubMed  CAS  Google Scholar 

  • Konno K, Feldmann FM, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. American Review of Respiratory Diseases 95: 461–463, 1967

    CAS  Google Scholar 

  • Kubo E, Fukunishi Y, Matsumoto T. Plasma levels of DDS in leprosy patients admitted in the National Sanatorium Oshima Seisho-en. Japanese Journal of Leprosy 52: 29–34, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lang PG. Sulfones and sulfonamides in dermatology today. Journal of the American Academy of Dermatology 1: 479–492, 1979

    Article  PubMed  Google Scholar 

  • Lammintausta K, Kangas L, Lammintausta R. The pharmacokinetics of dapsone and acetylated dapsone in serum and saliva. International Journal of Clinical Pharmacology and Bio-pharmacy 17: 159–163, 1979

    CAS  Google Scholar 

  • Lanyi Z, Dieterie W, Dubois JP, Theobald W, Vischer W. Pharmacokinetics of clofazimine in healthy volunteers. International Journal of Leprosy 55: 9–15, 1987

    Google Scholar 

  • Lanyi Z, Dubois JP. Determination of clofazimine in human plasma by thin layer chromatography. Journal of Chromatography 232: 219–223, 1982

    Article  PubMed  CAS  Google Scholar 

  • Lecaillon JB, Febvre N, Metayer JP, Souppart C. Quantitative assay of rifampicin and three of its metabolites in human plasma, urine and saliva by high performance liquid chromatography. Journal of Chromatography 145: 319–324, 1978

    Article  PubMed  CAS  Google Scholar 

  • Lecaillon JB, Schoeller JP, Humbert G, Febvre N, Juge F. Pharmacokinetics of rifampicin and three of its metabolites after single oral doses. In Aiache & Hirtz (Eds) Proceedings of the 1st European Congress on Biopharmaceutics and Pharmacokinetics, Vol. 2, pp. 258, Clermont-Ferrand, Paris, 1981

    Google Scholar 

  • Leggat PO. Ethionamide neuropathy. Tubercle 43: 95–96, 1962

    Article  PubMed  CAS  Google Scholar 

  • Levy L. Pharmacologic studies of clofazimine. American Journal of Tropical Medicine and Hygiene 23: 1097–1109, 1974

    PubMed  CAS  Google Scholar 

  • Levy L. Activity of four clofazimine analogues against Mycobacterium leprae. Leprosy Review 52: 23–26, 1981

    PubMed  CAS  Google Scholar 

  • Levy L, Peters JH. Susceptibility of Mycobacterium leprae to dapsone as a determinant of patient response to acedapsone. Antimicrobial Agents and Chemotherapy 9: 102–107, 1976

    Article  PubMed  CAS  Google Scholar 

  • Levy L, Shepard CC, Fasal P. Clofazimine therapy of lepromatous leprosy caused by dapsone-resistant Mycobacterium leprae. American Journal of Tropical Medicine and Hygiene 21: 315–321, 1972

    PubMed  CAS  Google Scholar 

  • Levy L, Shepard CC, Fasal P. The bactericidal effect of rifampicin on M. leprae in man: (a) single doses of 600, 900 and 1200mg; and (b) daily doses of 300mg. International Journal of Leprosy 44: 183–187, 1976

    CAS  Google Scholar 

  • Libermann D, Rist N, Grumbach F. Le S-oxyde de l’α-ethylthionamide isonicotinique. Comptes Rendus Hebdamadaires des Séances de l’Académie des Sciences 257: 307–308, 1963

    CAS  Google Scholar 

  • Lowe J. The treatment of leprosy with TBI/698. A report based on 38 months’ experience. Leprosy Review 25: 186–199, 1954

    PubMed  CAS  Google Scholar 

  • Maggi N, Furesz S, Pallanza R, Pelizza G. Rifampicin desacetylation in the human organism. Arzneimittel-Forschung 19: 651–654, 1969

    PubMed  CAS  Google Scholar 

  • Mansfield RE. Tissue concentrations of clofazimine (B 663) in man. American Journal of Tropical Medicine and Hygiene 23: 1116–1119, 1974

    PubMed  CAS  Google Scholar 

  • Mathur A, Venkatesan K, Bharadwaj VP, Ramu G. Evaluation of effectiveness of clofazimine therapy I. Monitoring of absorption of clofazimine from gastrointestinal tract. Indian Journal of Leprosy 57: 146–148, 1985

    PubMed  CAS  Google Scholar 

  • Mathur A, Venkatesan K, Girdhar BK, Bharadwaj VP, Girdhar A, et al. A study of drug interactions in leprosy — 1. Effect of simultaneous administration of prothionamide on metabolic disposition of rifampicin and dapsone. Leprosy Review 57: 33–37, 1986

    PubMed  CAS  Google Scholar 

  • Matsuo Y, Tatsukawa H, Murray JF, Peters JH. Prothionamide and prothionamide S-oxide in experimental leprosy. International Journal of Leprosy 49: 302–306, 1981

    CAS  Google Scholar 

  • McDougall AC, Jones RL. Intra-neural ceroid-like pigment following treatment of lepromatous leprosy with clofazimine (B-663, Lamprene). Journal of Neurology, Neurosurgery and Psychiatry 44: 116–120, 1981

    Article  CAS  Google Scholar 

  • Mehta J, Gandhi IS, Sane SB, Wamburkar MN. Effect of clofazimine and dapsone on rifampicin (Lositril) pharmacokinetics in multibacillary and paucibacillary leprosy cases. Indian Journal of Leprosy 57: 297–310, 1985

    PubMed  CAS  Google Scholar 

  • Modderman ESM, Mericus FWHM, Zuidema J, Hilbers HW, Warndorff T. Dapsone levels after oral therapy and weekly oily injections in Ethiopian leprosy patients. International Journal of Leprosy 51: 191–196, 1983

    CAS  Google Scholar 

  • Molesworth DB. Discussion on combined therapy. Proceedings of the Second International Leprosy Colloquium held at Forschungs Institut, Borstel. Leprosy Review 46 (Suppl. 2): 239, 1975

    Google Scholar 

  • Morrison NE. Antimycobacterial activity of phenazine compounds. International Journal of Leprosy 40: 219–220, 1972

    Google Scholar 

  • Morrison NE, Morley GM. Clofazimine binding studies with deoxyribonucleic acid. International Journal of Leprosy 44: 475–481, 1976

    CAS  Google Scholar 

  • Morrison NE, Morley GM. Comparative DNA binding studies with clofazimine and B 1912. International Journal of Leprosy 45: 188–189, 1977

    CAS  Google Scholar 

  • Murray Jr JF, Gordon GR, Peters JH. A chromatographic-fluorometric procedure for the determination of nanogram quantities of antileprotic sulfones. Journal of Laboratory and Clinical Medicine 78: 464–471, 1971

    PubMed  CAS  Google Scholar 

  • O’Sullivan JF, Conalty ML, Morrison NE. Clofazimine analogues active against a clofazimine resistant organism. Journal of Medicinal Chemistry 31: 561–572, 1988

    Article  Google Scholar 

  • Pattyn SR, Colston MJ. Cross-resistance amongst thiambutosine, thiacetazone, ethionamide and prothionamide with Mycobacterium leprae. Leprosy Review 49: 324–326, 1978

    PubMed  CAS  Google Scholar 

  • Pattyn SR, Janssens L, Bourland J, Saylan T, Davies EM, et al. The Collaborative Study Group for the Treatment of Leprosy. Hepatotoxicity of the combination of rifampin-ethionamide in the treatment of multibacillary leprosy. International Journal of Leprosy 52: 1–6, 1984

    CAS  Google Scholar 

  • Pattyn SR, Portaels F, Van Loo G, Van den Breen L. Activity of the combination isoniazid, prothionamide and dapsone against Mycobacterium leprae and some other mycobacteria. Arzneimittel-Forschung 31: 2155–2157, 1981

    PubMed  CAS  Google Scholar 

  • Pawlowska I, Pniewski T. Studies on pharmacokinetics of rifampicin in the body of patients with pulmonary tuberculosis. Arzneimittel-Forschung 29: 1906–1909, 1979

    PubMed  CAS  Google Scholar 

  • Peters JH, Gordon GR, Ghoul DC, Tolentine JG, Walsh GP, et al. The disposition of anti-leprosy drug (dapsone) DDS in Philippine subjects. American Journal of Tropical Medicine and Hygiene 21: 450–457, 1972

    PubMed  CAS  Google Scholar 

  • Peters JH, Gordon GR, Karat ABA. Polymorphic acetylation of the antibacterials, sulfmethazine and dapsone, in South Indian subjects. American Journal of Tropical Medicine and Hygiene 24: 641–648, 1975

    PubMed  CAS  Google Scholar 

  • Peters JH, Gordon GR, Murray Jr JF. Disposition of prothionamide in rats and armadillos. International Journal of Leprosy 51: 54–63, 1983

    CAS  Google Scholar 

  • Peters JH, Gordon GR, Murray Jr JF, Meyers WH. Metabolic disposition of dapsone in African leprosy patients. Leprosy Review 50: 7–19, 1979

    Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Gelber RH. Dapsone in saliva and plasma of man. Pharmacology 22: 162–171, 1981

    Article  PubMed  CAS  Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Gelber RH, Laing ABG, et al. Effect of rifampicin on the disposition of dapsone in Malaysian leprosy patients. Federation Proceedings 36: 996, 1977

    Google Scholar 

  • Peters JH, Murray Jr JF, Gordon GR, Jacobson RR. Metabolic-bacteriologic relationship in the chemotherapy of lepromatous patients with dapsone or dapsone-rifampin. International Journal of Leprosy 46: 115–116, 1978

    Google Scholar 

  • Peters JH, Shepard CC, Gordon GR, Rojas AV, Elizondo DS. The incidence of dapsone resistance in lepromatous patients in Costa Rica: their metabolic disposition of DDS. International Journal of Leprosy 44: 143–151, 1976

    CAS  Google Scholar 

  • Pettit JHS, Rees RJW. Studies on sulfone resistance in leprosy: 2 treatment with riminophenazine derivative (B 663). International Journal of Leprosy 34: 391–397, 1966

    CAS  Google Scholar 

  • Pieters FAJM, Zuidema J. The absolute oral availability of dapsone in dogs and humans. International Journal of Clinical Pharmacology, Therapy and Toxicology 25: 396–400, 1987

    CAS  Google Scholar 

  • Pilheu JA, Sippel JE. Rifampin concentrations in cerebrospinal fluid of patients with tuberculous meningitis. American Review of Respiratory Diseases 111: 240–243, 1975

    CAS  Google Scholar 

  • Pines A. Thiacetazone toxicity in British patients. Tubercle 45: 188–191, 1964

    Article  PubMed  CAS  Google Scholar 

  • Ramu G, Iyer CGS. Side effects of clofazimine therapy. Leprosy in India 48 (Suppl. 3): 722–731, 1976

    PubMed  CAS  Google Scholar 

  • Riess W. The optimum dosage schedule for rimactane. In A symposium on rimactane, Basel, 1968, p. 36, Ciba, Basel, 1969

    Google Scholar 

  • Rocker I. Rifampicin in early pregnancy. Lancet 2: 48, 1977

    Article  PubMed  CAS  Google Scholar 

  • Rollier R, Rollier M. Traitement de la lèpre lépromateuse par l’éthionamide. Marocos Médicale 52: 148–166, 1972

    CAS  Google Scholar 

  • Sanders SW, Zone JJ, Foltz RL, Tolman KG, Rollins DE. Hemolytic anaemia induced by dapsone transmitted through breast milk. Annals of Internal Medicine 96: 465–466, 1982

    PubMed  CAS  Google Scholar 

  • Schulz EJ. Forty-four months’ experience in the treatment of leprosy with clofazimine [Lamprene (Geigy)]. Leprosy Review 42: 178–187, 1971

    PubMed  CAS  Google Scholar 

  • Seydel JK. Physico-chemical studies on rifampicin. Antibiotica et Chemotherapia (Basle) 16: 380–391, 1970

    CAS  Google Scholar 

  • Shepard CC. A kinetic method for the study of activity of drugs against M. leprae in mice. International Journal of Leprosy 35: 429–435, 1967

    Google Scholar 

  • Shepard CC, Chang YT. Activity of anti-tuberculosis drugs against Mycobacterium leprae. Studies with experimental infection of mouse foot pads. International Journal of Leprosy 32: 260–271, 1964

    PubMed  CAS  Google Scholar 

  • Shepard CC. Combinations involving dapsone, rifampicin, clofazimine and ethionamide in the treatment of M. leprae infections in mice. International Journal of Leprosy 44: 135–139, 1976

    CAS  Google Scholar 

  • Sielger DI, Bryant M, Burley DM, Citnen KM, Standen SM. Effect of meals on rifampicin absorption. Lancet 2: 197, 1974

    Google Scholar 

  • Stanley JNA, Pearson JMH, Ellard GA. Ethionamide, prothionamide and thiacetazone self administration — studies of patient compliance using isoniazid-marked formulations. Leprosy Review 57: 9–18, 1986

    PubMed  CAS  Google Scholar 

  • Swain AF, Ahmad RA, Rogers HJ, Leonard JN, Fry L. Pharmacokinetic observations on dapsone in dermatitis herpetiformis. British Journal of Dermatology 108: 91–98, 1983

    Article  PubMed  CAS  Google Scholar 

  • Venkatesan K, Bharadwaj VP, Ramu G, Desikan KV. A study on drug interactions in leprosy. Leprosy in India 52: 229–235, 1980

    PubMed  CAS  Google Scholar 

  • Venkatesan K, Mathur A, Bharadwaj VP, Ramu G. The effect of clofazimine treatment on dapsone metabolism in leprosy patients. International Conference on Clinical Pharmacology and Therapeutics, Bombay (India), November 20–22, 1987. Abstract No. FPS 7/8, 1987

  • Venkatesan K, Mathur A, Girdhar BK, Bharadwaj VP. The effect of clofazimine on the pharmacokinetics of rifampicin and dapsone. Journal of Antimicrobial Chemotherapy 18: 715–718, 1986

    Article  PubMed  CAS  Google Scholar 

  • Vischer WA. The experimental properties of G30 320 (B 663) — a new anti-leprotic agent. Leprosy Review 40: 107–110, 1969

    PubMed  CAS  Google Scholar 

  • Warndorff-van Diepen T. Clofazimine resistant leprosy — a case report. International Journal of Leprosy 50: 139–142, 1982

    CAS  Google Scholar 

  • Waters MFR. G30,320 or B 663, Lampren (Geigy): a working party held in London in September 1968. Leprosy Review 40: 21–47, 1969

    PubMed  CAS  Google Scholar 

  • Webb AH. A thiacetazone toxicity trial in Sarawak. New Zealand Medical Journal 78: 409–412, 1973

    Google Scholar 

  • Weber WW, Hein DW. Clinical pharmacokinetics of isoniazid. Clinical Pharmacokinetics 4: 401–422, 1979

    Article  PubMed  CAS  Google Scholar 

  • WHO. Expert Committee on Leprosy. Fifth report. Technical Report Series 607, 1977

    Google Scholar 

  • WHO. Chemotherapy for leprosy control programs. Report of a WHO study group. Technical Report Series 675, 1982

    Google Scholar 

  • Yu T, Berger L, Stone DJ, Wolf J, Gutman AB. Effect of pyrazinamide and pyrazinoic acid on urate clearance and other discrete renal functions. Proceedings of the Society for Experimental Biology and Medicine 96: 264–268, 1957

    PubMed  CAS  Google Scholar 

  • Zuidema J, Modderman ESM, Merkus FWHM. Clinical pharmacokinetics of dapsone. Clinical Pharmacokinetics 11: 299–315, 1986

    Article  PubMed  CAS  Google Scholar 

  • Zuidema J, Modderman ESM, Merkus FWHM, Hilbers HW. The intramuscular injection of monoacetyl dapsone. Proceedings of the Second International Congress on Biopharmaceuticals and Pharmacokinetics, pp. 240–249, 1984

    Google Scholar 

  • Zuidema J, Van Ginneken CAM. Clearance concept in salivary drug excretion. Part I. Theory. Pharmaceutica Acta Helvetiae 58: 88–93, 1983a

    PubMed  CAS  Google Scholar 

  • Zuidema J, Van Ginneken CAM. Clearance concept in salivary drug excretion. Part II. Experiments. Pharmaceutica Acta Helvetiae 58: 136–143, 1983b

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesan, K. Clinical Pharmacokinetic Considerations in the Treatment of Patients with Leprosy. Clin-Pharmacokinet 16, 365–386 (1989). https://doi.org/10.2165/00003088-198916060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198916060-00003

Keywords

Navigation