Skip to main content
Log in

Clinical Pharmacokinetics of Enzyme Inhibitors in Antimicrobial Chemotherapy

  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The effectiveness of some antimicrobial agents can be enhanced by using them in combination; such combinations are termed synergistic. Where one compound potentiates the effect of a second drug they may be coformulated. Inhibition of the bacterial degradation of an active antimicrobial is the basis of clavulanate and sulbactam-potentiated penicillin combinations, and inhibition of degradative pathways in the host is the rationale behind imipenem/cilastatin therapy. Trimethoprim/sulphonamide combinations depend on the maintenance of an effective ratio for synergistic action. In order to achieve potentiation the coformulated drugs should have similar pharmacokinetics.

Trimethoprim was originally matched with sulphamethoxazole, since these two drugs have similar elimination half-lives, but the significantly poorer penetration of sulphonamides, their greater non-renal clearance, the emergence of resistance, and the adverse reactions attributable to them argue against the rationale that underlies their coformulation.

Time-dependent inhibition of bacterial β-lactamases by clavulanic acid and sulbactam has extended the use of penicillins which are highly susceptible to β-lactamase inactivation. The β-lactamase inhibitors must penetrate to the same extent as the penicillin used with them, and be present long enough to effect inhibition; thus, rapid penetration, similar or slower elimination and equivalent volume of distribution are necessary. These requirements are met for amoxycillin/clavulanic acid, ticarcillin/clavulanic acid and ampicillin/sulbactam combinations. Clavulanic acid is absorbed orally and is given with amoxycillin. However, since sulbactam is labile by this route, the combination of sulbactam with ampicillin to form the prodrug sultamicillin has been necessary to enable an oral form to be developed.

Imipenem is metabolised by renal brush-border dehydropeptidases, and may cause proximal tubular necrosis. Cilastatin was designed to inhibit this metabolism, which it effectively does, thereby both potentiating the effect of imipenem and avoiding toxicity.

Appropriate matching of the kinetics of coformulated drugs is intended to maximise potentiation and minimise the risk of emergent resistance. The kinetics of the above combinations are discussed in the light of these requirements and the effects of age and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarbakke J, Ophsaug O, Digranes A, Hoylandskjaer A, Fluge G, et al. Clinical effect and pharmacokinetics of trimethoprim-sulphadiazine in children with urinary tract infections. European Journal of Clinical Pharmacology 24: 267–271, 1983

    Article  PubMed  CAS  Google Scholar 

  • Adam D, de Visser I, Koeppe P. Pharmacokinetics of amoxicillin and clavulanic acid administered alone and in combination. Antimicrobial Agents and Chemotherapy 22: 353–357, 1982

    Article  PubMed  CAS  Google Scholar 

  • Adam D, Heilmann H-D, Weismeier K. Concentrations of ticarcillin and clavulanic acid in human bone after prophylactic administration of 5.2g of Timentin. Antimicrobial Agents and Chemotherapy 31: 935–939, 1987

    Article  PubMed  CAS  Google Scholar 

  • Anderson JD, Lacey RW, Lewis EL, Sellin MA. Failure to demonstrate an advantage in combining sulphamethoxazole with trimethoprim in an experimental model of urinary infection. Journal of Clinical Pathology 27: 619–622, 1974

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F, Elsborg L, Husted S, Thomsen I. Pharmacokinetics of sulfadiazine and trimethoprim in man. European Journal of Clinical Pharmacology 14: 57–67, 1978

    Article  PubMed  CAS  Google Scholar 

  • Annesley T, Wilkerson K, Matz K, Giacherio D. Simultaneous determination of penicillin and cephalosporin antibiotics in serum by gradient liquid chromatography. Clinical Chemistry 30: 908–910, 1984

    PubMed  CAS  Google Scholar 

  • Arnauld R, Soutoul JH, Gallier J, Borderon JC, Borderon E. Etude du passage de la trimetoprim dans le lait material. Ouest Medecin 25: 959–964, 1972

    Google Scholar 

  • Ascalone V. Determinazione gas-cromatografica specifica di trimethoprim, solfametossazolo e del suo metabolica N4 acetilato i liquidi biologici umani, a concentrazioni terapeutiche ed inferiori, utilizzando un nuovo detector per composti azotati. Bollettino Chimico Farmaceutico 117: 176–186, 1978

    PubMed  CAS  Google Scholar 

  • Ascalone V. Assay of trimethoprim, sulfadiazine and its N4 acetyl metabolite in biological fluids by normal phase high performance liquid chromatography. Journal of Chromatography 224: 59–66, 1981

    Article  PubMed  CAS  Google Scholar 

  • Bakken JS, Bruun JN, Gaustad P, Tasker TCG. Penetration of amoxicillin and potassium clavulanate into the cerebrospinal fluid of patients with inflamed meninges. Antimicrobial Agents and Chemotherapy 30: 481–484, 1986

    Article  PubMed  CAS  Google Scholar 

  • Ball AP, Geddes AM, Davey PG, Farrell ID, Brookes GR. Clavulanic acid and amoxycillin: a clinical, bacteriological and pharmacological study. Lancet 1: 620–623, 1980

    Article  PubMed  CAS  Google Scholar 

  • Beck H. Etude pharmacocinetique des constituants du bactrim chez les personnes agées indemnes ou attentes d’une insuffisance hepatique ou rénale. Revue de Medecine 23: 1437–1445, 1971

    Google Scholar 

  • Begue P, Quinion F, Lasfargnes G, Quinet B. Pharmacokinetics of injectable augmentin in children and neonates. Chemoterapia 4(Suppl. 2): 846–847, 1985

    Google Scholar 

  • Bennet S, Wise R, Weston D, Dent J. Pharmacokinetics and tissue penetration of ticarcillin combined with clavulanic acid. Antimicrobial Agents and Chemotherapy 23: 831–834, 1983

    Article  Google Scholar 

  • Benoni G, Cuzzolin L, Bertrand C, Puchetti V, Velo G. Imipenem kinetics in serum, lung tissue and pericardial fluid in patients undergoing thoracotomy. Journal of Antimicrobial Chemotherapy 20: 725–728, 1987

    Article  PubMed  CAS  Google Scholar 

  • Bergan T, Brodwall EK. Human pharmacokinetics of a sulfamethoxazole-trimethoprim combination. Acta Medica Scandinavica 192: 483–492, 1972

    Article  PubMed  CAS  Google Scholar 

  • Bergan T, Engeset A, Olszewski W. Pharmacokinetics of oral cotrimazine and the penetration of its components sulfadiazine and trimethoprim into peripheral human lymph. Chemotherapy 32: 209–221, 1986b

    Article  PubMed  CAS  Google Scholar 

  • Bergan T, Engeset A, Olszewski W, Sjovall J. Distribution to human peripheral lymph of amoxycillin and of ampicillin from the oral prodrug bacampicillin. Journal of Antimicrobial Chemotherapy 12: 497–502, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bergan T, Olszewski W, Engeset A. Penetration to human lymph of clavulanic acid and ticarcillin. Journal of Antimicrobial Chemotherapy 17: 97–103, 1986c

    Article  PubMed  CAS  Google Scholar 

  • Bergan T, Ortengren B, Westerlund D. Clinical pharmacokinetics of co-trimazine. Clinical Pharmacokinetics 11: 372–386, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Bernstein LS. Combination of trimethoprim with sulfonamides other than sulfamethoxazole. Reviews of Infectious Diseases 4: 411–418, 1982

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum J, Kahan FM, Kropp H, MacDonald JA. Carbapenems, a new class of antibiotics: discovery and development of imipenem/cilastatin. American Journal of Medicine 78(Suppl. 6a): 3–21, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bodey GP, Yeo E, Ho DH, Rolston K, LeBlanc B. Clinical pharmacology of timentin (ticarcillin and clavulanic acid). Clinical Pharmacology and Therapeutics 37: 134–139, 1985

    Google Scholar 

  • Boelaert J, Roos R, Murray AT, Tasker TCG, Daneels R, et al. Pharmacokinetics of ticarcillin and clavulanic acid in renal impairment. Chemoterapia 4(Suppl. 2): 173–175, 1985

    Google Scholar 

  • Bolton GC, Allen GD, Davies BE, Filer CW, Jeffery DJ. The disposition of clavulanic acid in man. Xenobiotica 16: 853–863, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bratton AC, Marshall EK. A new coupling component fo: sulfanilamide determination. Journal of Biological Chemistry 128: 537–550, 1939

    CAS  Google Scholar 

  • Braveny I. In vitro activity of imipenem: a review. European Journal of Clinical Microbiology 3(5): 456–462, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bravo IG, Bravo ME, Plate G, Merlez J, Arancibia A. The pharmacokinetics of co-trimoxazole sulphonamide in malnourished (marasmic) infants. Pediatric Pharmacology 4: 167–176, 1984

    PubMed  CAS  Google Scholar 

  • Breyer S, Graninger W, Hitzenberger G. Pharmacokinetic Vertnaglichkeit und therapeutische Wirkurg von Trimethoprim-sulfametrol-infusionen. Wiener Medizinische Wochenschrift 130: 448–450, 1980

    PubMed  CAS  Google Scholar 

  • Brogden RN, Carmine A, Heel RC, Morley PA, Speight TM, et al. Amoxycillin/clavulanic acid: a review of its antibacterial activity, pharmacokinetics and therapeutic use. Drugs 22: 337–362, 1981

    Article  PubMed  CAS  Google Scholar 

  • Brogden RN, Carmine AA, Heel RC, Speight TM, Avery GS. Trimethoprim: a review of its antibacterial activity, pharmacokinetics and therapeutic use in urinary tract infections. Drugs 23: 405–430, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brogden RN, Heel RC, Speight TM, Avery GS. Ticarcillin: a review of its pharmacological properties and therapeutic efficacy. Drugs 20: 325–352, 1980

    Article  PubMed  CAS  Google Scholar 

  • Brown RM, Wise R, Andrews JM, Hancox J. Comparative pharmacokinetics and tissue penetration of sulbactam and ampicillin after concurrent intravenous administration. Antimicrobial Agents and Chemotherapy 21: 565–567, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brumfitt W, Hamilton-Miller JMT. Co-trimoxazole or trimethoprim alone? a viewpoint on their relative place in therapy. Drugs 24: 453–458, 1982a

    Article  PubMed  CAS  Google Scholar 

  • Brumfitt W, Hamilton-Miller JMT. Use of trimethoprim alone or in combination with drugs other than sulfonamides. Reviews of Infectious Diseases 4: 402–410, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Brumfitt W, Hamilton-Miller JMT, Kosmidis J. Trimethoprim-sulfamethoxazole: the present position. Journal of Infectious Diseases 128(Suppl.): S778–S791, 1973

    Article  CAS  Google Scholar 

  • Brumfitt W, Hamilton-Miller JMT, Ludlam H, Danjamovic V, Gargan R. Comparative trial of trimethoprim and co-trimoxazole in recurrent urinary infections. Infection 10: 280–284, 1982

    Article  PubMed  CAS  Google Scholar 

  • Buchanan N. Sulphamethoxazole, hypoalbuminaemia, crystalluria and renal failure. British Medical Journal 2: 172, 1978

    Article  PubMed  CAS  Google Scholar 

  • Bury RW, Mashford ML. Analysis of trimethoprim and sulphamethoxazole in human plasma by high pressure liquid chromatography. Journal of Chromatography 163: 114–117, 1979

    Article  PubMed  CAS  Google Scholar 

  • Bushby SRM, Hitchings GH. Trimethoprim, a sulphonamide potentiator. British Journal of Pharmacology 33: 72–90, 1968

    CAS  Google Scholar 

  • Caine VA, Foulds G, Hardsfield HH. Therapeutic trial and pharmacokinetics of sulbactam for uncomplicated gonorrhoea in men. Antimicrobial Agents and Chemotherapy 26: 683–685, 1984

    Article  PubMed  CAS  Google Scholar 

  • Calandra GB, Brown KR, Grad CL, Wang C, Aziz MA. Review of adverse experiences and tolerability in the first 251 patients treated with imipenem/cilastatin. American Journal of Medicine 78(Suppl. 6a): 73–78, 1978

    Google Scholar 

  • Calandra GB, Hesney M, Grad C. A randomised study of the comparative efficiency, safety and tolerance of imipenem/cilastatin and moxalactam. European Journal of Clinical Microbiology 3(5): 478–487, 1984

    Article  PubMed  CAS  Google Scholar 

  • Carlqvist J, Westerlund D. Determination of amoxicillin in body fluids by reversed-phase liquid chromatography coupled with a post-column derivatization procedure. Journal of Chromatography 164: 373–381, 1979

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri AK, Dandy F, Azmi AH, Wood N, Stewart JSS. Amoxycillin and clavulanic acid levels in skin, fat, muscle and gastrointestinal tract tissues after intravenous infusion of Augmentin 2.2g. Chemoterapia 4(Suppl. 2): 182–184, 1985

    Google Scholar 

  • Clarke AM, Zemcov SJV. Clavulanic acid in combination with ticarcillin: an in vitro comparison with other beta-lactams. Journal of Antimicrobial Chemotherapy 13: 121–128, 1984

    Article  PubMed  CAS  Google Scholar 

  • Cobs RF, Kearns GL, Brown AL, Trang JM, Kioza RB. Renal clearance of imipenem in children. European Journal of Clinical Microbiology 3(5): 471–474, 1984

    Article  Google Scholar 

  • Cole M. Beta lactams as beta lactamase inhibitors. Philosophical Transactions of the Royal Society of London: B289: 207–223, 1980

    Article  Google Scholar 

  • Cole M, Kenig MD, Hewitt VA. Metabolism of penicillins to penicillinoic acids and 6-aminopenicillanoic acid in man and its significance in assessing penicillin absorption. Antimicrobial Agents and Chemotherapy 3: 463–468, 1973

    Article  PubMed  CAS  Google Scholar 

  • Croydon EAP, Hermoso C, Fuell D. An evaluation of the efficacy of Augmentin Intravenous in Europe. Chemoterapia 4(Suppl. 2): 168–170, 1985

    Google Scholar 

  • Dalet F, Amada E, Cabrera E, Donate T, Subiron J, et al. Pharmacokinetics of the association of ticarcillin with clavulanic acid in renal insufficiency and during hemodialysis. Chemoterapia 4(Suppl. 2): 186–188, 1985

    Google Scholar 

  • Dalet F, Cabrera E, Donate T, Del Rio G. Pharmacokinetics of the association of amoxycillin and clavulanic acid in renal insufficiency and during haemodialysis. In Croyde & Michel (Eds) Augmentin clavulanate-potentiated amoxycillin, pp. 109–120, Excerpta Medica, Amsterdam, 1983

    Google Scholar 

  • Dalet F, Cabrera E, Donate T, Del Rio G. Inhibidores de betalactamasas. II. Farmacocinetica de la asociacion amoxicilina and acido clavulanico en la insuficiencia renal y durante la hemodialisis. Revista Clínica Española 172: 159–163, 1984

    PubMed  CAS  Google Scholar 

  • Davidson DF. A simple chemical method for the assay of amoxycillin in serum and urine. Clinica Chimica Acta 69: 67–71, 1976

    Article  CAS  Google Scholar 

  • Davies BE, Coates PE, Clarke JGN, Thaulley AR, Sutton JA. Bioavailability and pharmacokinetics of clavulanic acid in healthy subjects. International Journal of Clinical Pharmacology, Therapy and Toxicology 23: 70–73, 1985

    CAS  Google Scholar 

  • Davies BE, Humphrey MJ, Langley PF, Lees L, Legg B, et al. Pharmacokinetics of ticarcillin in man. European Journal of Clinical Pharmacology 23: 167–172, 1982

    Article  PubMed  CAS  Google Scholar 

  • Davies BI, Maesen FPV, van Noord JA. Clinical, bacteriological and pharmacokinetic results from an open trial of sultamicillin in patients with acute exacerbations of chronic bronchitis. Journal of Antimicrobial Chemotherapy 13: 161–170, 1984

    Article  PubMed  CAS  Google Scholar 

  • de Groot R, Smith AL. Antibiotic pharmacokinetics in cystic fibrosis: differences and clinical significances. Clinical Pharmacokinetics 13: 228–253, 1987

    Article  PubMed  Google Scholar 

  • Demetriades JL, Souder PR, Entwistle LA, Vincek WC, Musson DG, et al. High-performance liquid chromatographic determination of cilastatin in biological fluids. Journal of Chromatography 382: 225–231, 1986

    Article  PubMed  CAS  Google Scholar 

  • Dorflinger T, Madsen PO. Antibiotic prophylaxis in transurethral surgery: a comparison of sulbactam-penicillin and cefoxitin. Infection 13: 66–69, 1985

    Article  PubMed  CAS  Google Scholar 

  • Drusano GL, Standiford HC. Pharmacokinetic profile of imipenem/cilastatin in volunteers. American Journal of Medicine 79(Suppl. 6A): 47–53, 1985

    Article  Google Scholar 

  • Drusano GL, Standiford HC, Bustamante C, Forrest A, Rivera G, et al. Multiple dose pharmacokinetics of imipenem-cilastatin. Antimicrobial Agents and Chemotherapy 26(5): 715–721, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Drusano GL, Standiford HC, Bustamant C, Forrest A, Rivera G, et al. The plasma pharmacokinetics of high dose (lg) imipenem coadministered with cilastatin in 6 normal volunteers. European Journal of Clinical Microbiology 3(5): 468–470, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Dubois M, Coibion M, Deco J, Delapierre D, Lambotte R, et al. The transplacental transfer of sulbactam sodium when coadministered with ampicillin to healthy pregnant women in labor. In Spitzy & Karrer (Eds) Proceedings of the 13th Congress of Chemotherapy, vol. 1, p.23. Springer Verlag, Vienna, 1983

    Google Scholar 

  • Dudley MN. Imipenem-cilastatin: the promise of single-agent antimicrobial therapy fulfilled? Clinical Pharmacology 5: 760–761, 1986

    CAS  Google Scholar 

  • Eatman FB, Maggio AC, Pocelinko R, Boxenbaum HG, Geitner KA, et al. Blood and salivary concentrations of sulfamethoxazole and trimethoprim in man. Journal of Pharmacokinetics and Biopharmaceutics 5: 615–624, 1977

    PubMed  CAS  Google Scholar 

  • Engelhard D, Shalit I, Stutman HR, Greenwood R, Griffis J, et al. Single dose pharmacokinetics of imipenem/cilastatin in paediatric patients. Paediatric Pharmacology 5: 273–276, 1986

    CAS  Google Scholar 

  • Etzel M, Wesenberg W. Klinische prufung der antibakteriellen Kombination sulfamoxol/trimethoprim (CN 3123) 6. Mitei lung: Ergebnisse zur vertroglichkeit von CN3123. Arzneimittel-Forschung 26: 678–683, 1976

    PubMed  CAS  Google Scholar 

  • Feldman S, Bartlett AV, Jaffe N, Pickering LK. Clinical and pharmacokinetic evaluation of ticarcillin disodium plus clavulanate potassium in adolescent patients with malignancies. American Journal of Medicine 79(Suppl. 5B): 177–183, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ferslew KE, Daigneault EA, Aken EM, Roseman JM. Pharmacokinetics and urinary excretion of clavulanic acid after oral administration of amoxicillin and potassium clavulanate. Journal of Clinical Pharmacology 24: 452–456, 1984

    PubMed  CAS  Google Scholar 

  • Fisher J, Charnds RL, Knowles JR. Kinetic studies on the inactivation of Escherichia coli RTEM beta lactamase by clavulanic acid. Biochemistry 17: 2180–2184, 1978

    Article  PubMed  CAS  Google Scholar 

  • Forgue ST, Pittman KA, Babbhaiya RH. HPLC analysis of a novel carbapenem antibiotic in human plasma and urine. Journal of Chromatography (Biomedical Applications) 414: 343–353, 1987

    Article  CAS  Google Scholar 

  • Foulds G. Pharmacokinetics of sulbactam/ampicillin in humans: a review. Review of Infectious Diseases 8(Suppl. 5): S503–S511, 1986

    Article  CAS  Google Scholar 

  • Foulds G, Barth WE, Bianchine JR, English AR, Girard D, et al. Pharmacokinetics of CP-45,899 and pro-drug Cp-47,904 in animals and humans. In Nelson & Grassi (Eds) Current chemotherapy and infectious disease, p. 353, American Society for Microbiology, Washington, 1980

    Google Scholar 

  • Foulds G, Knirsch AK, Stankewich JP, Weidler DJ. The parenteral kinetics of ampicillin/sulbactam in man. Clinical Pharmacology Research 5: 79–86, 1985a

    PubMed  CAS  Google Scholar 

  • Foulds G, Miller RD, Knirsch K, Thrupp LD. Sulbactam kinetics and excretion into breast-milk in post-partum women. Clinical Pharmacology and Therapeutics 38: 692–696, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Foulds G, Stankewich JP, Marshall DC, O’Brien MM, Hayes SL, et al. Pharmacokinetics of sulbactam in humans. Antimicrobial Agents and Chemotherapy 23: 692–699, 1983

    Article  PubMed  CAS  Google Scholar 

  • Foulstone M, Reading C. Assay of amoxicillin and clavulanic acid, the components of Augmentin, in biological fluids with high performance liquid chromatography. Antimicrobial Agents and Chemotherapy 22: 753–762, 1982

    Article  PubMed  CAS  Google Scholar 

  • Freij BJ, Kusmiesz H, Shelton S, Nelson JD. Imipenem and cilastatin in acute osteomyelitis and suppurative arthritis. American Journal of Diseases in Childhood 141: 334–342, 1987

    Google Scholar 

  • Freij BJ, McCracken GH, Olsen KD, Threkeld N. Pharmacokinetics of imipenem-cilastatin in neonates. Antimicrobial Agents and Chemotherapy 27(4): 431–435, 1985

    Article  PubMed  CAS  Google Scholar 

  • Fries N, Keuth U, Braun JS. Untersuchungen zur liquorgangigkeit von trimethoprim im Kindesalter. Fortschrift Medizinische 93: 1178–1183, 1975

    CAS  Google Scholar 

  • Fuchs PC, Barry AL, Thornsberry C, Jones RN. In vitro activity of ticarcillin plus clavulanic acid against 632 clinical isolates. Antimicrobial Agents and Chemotherapy 25: 392–394, 1984

    Article  PubMed  CAS  Google Scholar 

  • Fujii R (for Pediatric Study Group for Imipenem/Cilastatin Sodium). Pharmacokinetic and clinical studies with imipenem/cilastatin sodium in the pediatric field. Japanese Journal of Antibiotics 39: 1912–1937, 1986

    PubMed  CAS  Google Scholar 

  • Fujita K, Kakehashi H, Murono K-I, Sakata H, Ohm H, et al. Clinical and pharmacokinetic evaluation of imipenem/cilastatin sodium in children. Japanese Journal of Antibiotics 39: 1681–1692, 1986

    PubMed  CAS  Google Scholar 

  • Gautam SR, Chungi VS, Bourne DWA, Munson JW. HPLC assay for trimethoprim in plasma and urine. Analytical Letters B11: 967–973, 1978

    Article  CAS  Google Scholar 

  • Gibson TP, Demetriades JL, Bland JA. Imipenem/cilastatin: pharmacokinetic profile in renal insufficiency. American Journal of Medicine 78(Suppl. 6a): 54–61, 1985

    Article  PubMed  CAS  Google Scholar 

  • Gladtke E. Some pharmacokinetic observations on the combination of trimethoprim and sulphonamides. In Knothe H. (Ed.) Current concepts in antibacterial chemotherapy: sulfamoxole/trimethoprim (co-trifamole), pp. 103–108, Royal Society of Medicine, London, 1980

    Google Scholar 

  • Glasson P, Favre H. Treatment of peritonitis in continuous ambulatory, peritoneal dialysis patients with co-trimoxazole. Nephron 36: 65–67, 1984

    Article  PubMed  CAS  Google Scholar 

  • Gleckman RA, Bergman M. Newer antibiotics, their place in geriatric care. Geriatrics 42(2): 61–70, 1987

    PubMed  CAS  Google Scholar 

  • Gochin R, Kanfer I, Haigh JM. Simultaneous determination of trimethoprim sulphamethoxazole and N4-acetylsulphamethoxazole in serum and urine by high performance liquid chromatography. Journal of Chromatography 223: 139–145, 1981

    Article  PubMed  CAS  Google Scholar 

  • Gooch III WM. Pharmacokinetic characteristics of ticarcillin/clavulanic acid in the elderly. In New approaches to antimicrobial therapy: proceedings of a symposium sponsored by Alton Ochsner Medical Foundation, pp. 48–50, Tucson, 1987

    Google Scholar 

  • Gravallese DA, Musson DG, Paulinkowis LT, Bayne WF. Determination of imipenem (N-formimidoyl thienamycin) in human plasma and urine by HPLC methodology: comparison with microbiological methodology and stability. Journal of Chromatography 310: 71–75, 1984

    Article  PubMed  CAS  Google Scholar 

  • Greewood D. An overview of the response of bacteria to beta lactam antibiotics. Review of Infectious Diseases (Suppl. 5): S487–S495, 1986

    Article  Google Scholar 

  • Grimer RJ, Karpinski MRK, Andrews JM, Wise R. Penetration of amoxycillin and clavulanic acid into bone. Chemotherapy 32: 185–191, 1986

    Article  PubMed  CAS  Google Scholar 

  • Grose WE, Bodey GP, Loo TL. Clinical pharmacology of intravenously administered trimethoprim-sulfamethoxazole. Antimicrobial Agents and Chemotherapy 15: 447–451, 1979

    Article  PubMed  CAS  Google Scholar 

  • Gruber WC, Rench MA, Gardia-Prats JA, Edwards MS, Baker CJ. Single-dose pharmacokinetics of imipenem-cilastatin in neonates. Antimicrobial Agents and Chemotherapy 27(4): 511–514, 1985

    Article  PubMed  CAS  Google Scholar 

  • Gunther K, Traeger A, Stein G. Pharmakokinetik der Sulfonamid-Trimethoprim-kombinationen Berlocombin und Sulprim bei potientein mit verschiedenen graden eiver nieren-funktionsein-schrankung. Pharmazie 39: 250–253, 1984

    PubMed  CAS  Google Scholar 

  • Gupta VD, Stewart KR. Quantitation of carbenicillin disodium, cefazolin sodium, cephalothin sodium, nafcillin sodium and ticarcillin disodium by high pressure liquid chromatography. Journal of Pharmaceutical Sciences 69: 1264–1267, 1980

    Article  PubMed  CAS  Google Scholar 

  • Gutman LT. The use of trimethoprim-sulfamethoxazole in children: a review of adverse reactions and indications. Pediatric Infectious Disease 3: 349–357, 1984

    Article  PubMed  CAS  Google Scholar 

  • Gyllenhaal O, Ehrsson H. Determination of sulphonamides by electron-capture gas chromatography: preparation and properties of perfluoracyl and pentaflurobenzyl derivatives. Journal of Chromatography 107: 327–333, 1975

    Article  PubMed  CAS  Google Scholar 

  • Haginaka J, Nakagawa T, Nishino Y, Uno T. High performance liquid chromatographic determination of clavulanic acid in urine. Journal of Antibiotics 34: 1189–1194, 1981

    Article  PubMed  CAS  Google Scholar 

  • Haginaka J, Wakai J, Yasuda H, Uno T. High performance liquid chromatographic assay of sulbactam using pre-column reaction with 1,2,4-triazole. Journal of Chromatography 341: 115–122, 1985

    Article  PubMed  CAS  Google Scholar 

  • Haginaka J, Yasuda H, Uno T, Nakagawa T. Alkaline degradation of clavulanic acid and high performance liquid chromatographic determination of post-column alkaline degradation. Chemical and Pharmaceutical Bulletin 31: 4436–4447, 1983

    Article  CAS  Google Scholar 

  • Haginaka J, Yasuda H, Uno T, Nakagawa T. High performance liquid chromatographic assay of clavulanate in human plasma and urine by fluorimetric detection. Journal of Chromatography 377: 269–277, 1986

    Article  PubMed  CAS  Google Scholar 

  • Halstenson CE, Blevins RB, Salem NG, Matzke R. Trimethoprim-sulfamethoxazole pharmacokinetics during continuous ambulatory peritoneal dialysis. Clinical Nephrology 22: 239–243, 1984

    PubMed  CAS  Google Scholar 

  • Haruta T, Okura K-E, Kuroki S, Yamamoto H, Yamaoka K, et al. Fundamental and clinical evaluation of imipenem/cilastatin in the field of pediatrics. Japanese Journal of Antibiotics 39: 1879–1888, 1986

    PubMed  CAS  Google Scholar 

  • Harzer K. Nachweis von sulfamethoxazole und N4-acetylsulfa methoxazole in biologischen flussigkeiten durch hochdruck-flussigkeitschchrhase. Journal of Chromatography 155: 399–406, 1978

    Article  PubMed  CAS  Google Scholar 

  • Herxheimer A. Long-term co-trimoxazole and folate depletion. Journal of Antimicrobial Chemotherapy 1: 346, 1975

    Article  PubMed  CAS  Google Scholar 

  • Hirosawa H, Hoshina H, Morikawa Y, Ichihashi H. Clinical evaluation of imipenem/cilastatin. Japanese Journal of Antibiotics 39: 1733–1744, 1986

    PubMed  CAS  Google Scholar 

  • Hitzenberger G, Korn A. Pharmacokinetics of co-trifamole in patients with disorders of kidney function. In Knothe H (Ed.) Current concepts in antibacterial chemotherapy: sulfamoxole trimethoprim (cotrifamole), pp. 95–101, Royal Society of Medicine, London, 1980

    Google Scholar 

  • Hoffken G, Tetzel H, Koeppe P, Lode H. Pharmacokinetic and serum bactericidal activity of ticarcillin and clavulanic acid. Journal of Antimicrobial Chemotherapy 16: 763–771, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter A, Frisen A, Bishop-Freudling GB, Vergin H. Co-trimoxazol-Konzentration im prostateseknet von potienten mit subakuter und chronischer prostatitis. Fortschritte der Medizin 102: 244–246, 1984

    PubMed  CAS  Google Scholar 

  • Horber FF, Frey FJ, Descoeudres C, Murray AT, Reubi F. Differential effect of impaired renal function on the kinetics of clavulanic acid and amoxicillin. Antimicrobial Agents and Chemotherapy 29: 614–619, 1986

    Article  PubMed  CAS  Google Scholar 

  • Horobin JC, William S, Price JD. The use of Timentin in the treatment of serious infections. Chemoterapia 4(Suppl. 2): 175–178, 1985

    Google Scholar 

  • Houang ET, Colley N, Chapman M. Penetration of sulbactam-ampicillin and clavulanic acid-amoxicillin into the pelvic peritoneum. Antimicrobial Agents and Chemotherapy 28: 165–166, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hughes DTD, Bye A, Hodder P. Levels of trimethoprim and sulphamethoxazole in blood and sputum in relation to treatment of chest infections. In Hejzlar et al. (Eds) Advances in antimicrobial and antineoplastic chemotherapy, pp. 1105–1106, Urban and Schwarzenberg, Berlin, 1972

    Google Scholar 

  • Huovinen P, Montyjarvi R, Toivenen P. Trimethoprim resistance in hospitals. British Medical Journal 284: 782–784, 1982

    Article  PubMed  CAS  Google Scholar 

  • Iwai N, Miyazu M, Shibata M, Nakamura H, Katayama M, et al. Studies on imipenem/cilastatin in the field of pediatrics. Japanese Journal of Antibiotics 39: 1847–1865, 1986

    PubMed  CAS  Google Scholar 

  • Jackson D, Cockburn A, Cooper DL, Langley PF, Tasker TCS, et al. Clinical pharmacology and safety evaluation of Timentin. American Journal of Medicine 79(Suppl. 5B): 44–55, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Cooper DL, Hardy TC, Langley PF, Staniforth DH, et al. Pharmacokinetic toxicological and metabolic studies with augmentin. In Rolinson & Watson (Eds) Proceedings of the first symposium on augmentin: clavulanate potentiated amoxycillin, Jul 3-4, 1980, pp. 87–111, Excerpta Medica, Amsterdam, 1980

    Google Scholar 

  • Jackson D, Filer CW, Cooper DL, Langley PF. Augmentin: absorption, excretion and pharmacokinetic studies in man. Postgraduate Medicine (Augmentin Suppl.): 51–70, 1984

    Google Scholar 

  • Jacobs RF, Trang JM, Kearns GL, Warren RH, Brown AL, et al. Ticarcillin/clavulanic acid pharmacokinetics in children and young adults with cystic fibrosis. Journal of Pediatrics 106: 1001–1007, 1985

    Article  PubMed  CAS  Google Scholar 

  • Janknegt R, Koks CHW. Pharmacokinetic aspects during continuous ambulatory peritoneal dialysis: a literature review. Pharmaceutisch Weekblad (Scientific Edition) 6: 229–236, 1984

    Article  CAS  Google Scholar 

  • Jonkman JHG, Schoenmaker R, Hempenius J. Determination of amoxycillin in plasma by ion-pair column extraction and reversed- phase ion pair high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 3: 359–365, 1985

    Article  PubMed  CAS  Google Scholar 

  • Jungbluth GL, Cooper DL, Doyle GD, Chudzik M, Jusko WJ. Pharmacokinetics of ticarcillin and clavulanic acid (Timentin) in relation to renal function. Antimicrobial Agents and Chemotherapy 30: 896–900, 1986

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ. Fluorimetric analysis of ampicillin in biological fluids. Journal of Pharmaceutical Sciences 60: 728–732, 1971

    Article  PubMed  CAS  Google Scholar 

  • Kager L, Lileqvist L, Malmborg AS, Nord C-E, Pieper R. Effects of ampicillin plus sulbactam on bowel flora in patients undergoing colorectal surgery. Antimicrobial Agents and Chemotherapy 22: 208–212, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kaplan SA, Weinfeld RE, Abruzzo CW, McFaden K, Jack ML, et al. Pharmacokinetic profile of trimethoprim-sulphamethoxazole in man. Journal of Infectious Diseases 128(Suppl.): S547–S555, 1973

    Article  CAS  Google Scholar 

  • Kasanen A, Anttila M, Elfving R, Kahela P, Saarimaa H, et al. Trimethoprim: pharamacology, antimicrobial activity and clinical use in urinary tract infections. Annals of Clinical Research 10(Suppl. 22): 1–39, 1978

    PubMed  Google Scholar 

  • Kasanen A, Sundquist H, Elo J, Anttila M, Kangas L. Secondary prevention of urinary tract infections: the role of trimethoprim alone. Annals of Clinical Research 15(Suppl. 36): 5–36, 1983

    Google Scholar 

  • Koeppe P, Hoffler D, Hulla FW. Pharmacokinetic studies on clavulanic potentiated ticarcillin in normal subjects and patients with renal insufficiency. Arzneimittel-Forschung 37: 203–208, 1987

    PubMed  CAS  Google Scholar 

  • Korn A, Hitzenberger H, Jaschek J, Pichler H. Pharmacokinetics of the combination of trimethoprim and sulphamethoxazole. In Hejzlar et al. (Eds) Advances in antimicrobial and antineoplastic chemotherapy: progress in research and clinical application, proceedings of the 7th International Congress of Chemotheapy, Prague 1971, pp. 21-24, Urban and Schwarzenburg, Berlin, 1972

    Google Scholar 

  • Kosmidis J, Stathakis C, Boletis J, Daikos GK. In vitro pharmacokinetic and therapeutic studies with ticarclav, a combination of ticarcillin and clavulanate. Chemoterapia 4(Suppl. 2): 204–206, 1985

    Google Scholar 

  • Kropp H, Sundelof JJ, Hajdu R, Kahan FM. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase: dehydropeptidase-1. Antimicrobial Agents and Chemotherapy 22: 62–70, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kuhne J, Kohlmann FW, Seydel JK, Wempe E. Pharmakokinetik der Kombination Sulfamoxol/Trimethoprim (CN 3123) bei Tier und Mensch. Arzneimittel-Forschung 26: 651–657, 1976

    PubMed  CAS  Google Scholar 

  • Kwan RH, MacLeod SM, Spino M, Teare FW. High pressure liquid chromatographic assays for ticarcillin in serum and urine. Journal of Pharmaceutical Sciences 71: 1118–1121, 1982

    Article  PubMed  CAS  Google Scholar 

  • Labia R, Morand A, Lelievre V, Mattioni D, Kazmierczak A. Sulbactam: factors involved in its synergy with ampicillin. Reviews of Infectious Diseases 8(Suppl. 5): S496–S502, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lacey RW. Do sulphonamide-trimethoprim combinations select less resistance to trimethoprim than the use of trimethoprim alone? Journal of Medical Microbiology 15: 403–427, 1982

    Article  PubMed  CAS  Google Scholar 

  • Land G, Dean K, Bye A. The gas-liquid chromatographic analysis of trimethoprim in plasma and urine. Journal of Chromatography 146: 143–147, 1978

    Article  PubMed  CAS  Google Scholar 

  • Langlois Y, Gagnon MA, Tetreault L. A bioavailability study on three oral preparations of the combination trimethoprim-sulfamethoxazole. Journal of Clinical Pharmacology: 196–200, 1972

    Google Scholar 

  • Lawson DH, Jick H. Adverse reactions to co-trimoxazole in hospitalised medical patients. American Journal of Medical Sciences 275: 53–57, 1978

    Article  CAS  Google Scholar 

  • Lees L, Milson JA, Knirsch AK, Greenhalgh K. Sulbactam plus ampicillin: interim review of efficacy and safety for therapeutic and prophylactic use. Review of Infectious Diseases 8(Suppl. 5): S644–S650, 1986

    Article  Google Scholar 

  • Leigh DA, Freeth M, Bradnock K, Marriner JM, Nisbet D. Augmentin (amoxycillin and clavulanic acid) therapy in complicated urinary tract infections due to beta-lactamase producing bacteria. In Robinson & Watson (Eds) Augmentin: clavulanate-potentiated amoxycillin, pp. 145-153, Excerpta Medica, Oxford, 1980

    Google Scholar 

  • Leone N, Barzaghi N, Morteleone M, Perucca E, Cerutti R, et al. Pharmacokinetics of co-trimazine after single and multiple doses. Arzneimittel-Forschung 37: 70–79, 1987

    PubMed  CAS  Google Scholar 

  • Levitz RE, Quintiliani R. Trimethoprim-sulfamethoxazole for bacterial meningitis. Annals of Internal Medicine 100: 881–890, 1984

    PubMed  CAS  Google Scholar 

  • Liedtke R, Haase W. Steady-state pharmacokinetics of sulfamethoxazole and trimethoprim in man after rectal application. Arzneimittel-Forschung 29: 345–349, 1979

    PubMed  CAS  Google Scholar 

  • Lin C-C, Lim J, Radwanski E, Kim H-K, et al. Pharmacokinetics and metabolism of an intravenously administered Penem (Sch 34343) in humans. Antimicrobial Agents and Chemotherapy 31(1): 84–84, 1987

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg B, Nilsson-Ehle I. Pharmacokinetics of antibiotics in the elderly. Review of Infectious Diseases 9(2): 250–264, 1987

    Article  CAS  Google Scholar 

  • Lockley MR, Wise R. Pharmacology of imipenem. Journal of Antimicrobial Chemotherapy 16: 531–534, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lunde PKM, Frislid K, Hausteen V. Disease and acetylator polymorphism. Clinical Pharmacokinetics 2: 182–197, 1977

    Article  PubMed  CAS  Google Scholar 

  • Maesen FPV, Davies BI, Baur C. Amoxycillin/clavulanate in acute purulent exacerbations of chronic bronchitis. Journal of Antimicrobial Chemotherapy 19: 373–383, 1987

    Article  PubMed  CAS  Google Scholar 

  • Mannisto PT, Mantyla R, Mattila J, Nykanen S, Lamminsivu U. Comparison of pharmacokinetics of sulphadiazine and sulphamethoxazole after intravenous infusion. Journal of Antimicrobial Chemotherapy 9: 461–470, 1982

    Article  PubMed  CAS  Google Scholar 

  • Martea M, Hekster YA, Vree TB, Voets AJ, Berden JHM. Pharmacokinetics of cefradine, sulfamethoxazole and trimethoprim and their metabolites in a patient with peritonitis undergoing continuous ambulatory peritoneal dialysis. Pharmaceutisch Weekblad (Scientific Edition) 9: 110–116, 1987

    Article  CAS  Google Scholar 

  • Mattila J, Mannisto PT, Luodeslampi M. Penetration of trimethoprim and sulfadiazine into sinus secretion in acute maxillary sinusitis. Chemotherapy 29: 174–177, 1983

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh SJ, Piatt DJ, Watson ID, Guthrie AJ, Stewart MJ. Liquid chromatographic assay for trimethoprim in sputum and saliva. Journal of Antimicrobial Chemotherapy 11: 195–196, 1983

    Article  PubMed  CAS  Google Scholar 

  • Meguro H, Arimasu O, Kobayashi M, Shiraishi H, Fujii R, et al. Clinical evaluation of imipenem/cilastatin sodium in children. Japanese Journal of Antibiotics 39: 1715–1732, 1986

    PubMed  CAS  Google Scholar 

  • Miller JM, Baker N, Thornsberry C. Inhibition of beta-lactamase in Neisseria gonorrhoea by sodium clavulanate. Antimicrobial Agents and Chemotherapy 14: 794–796, 1978

    Article  PubMed  CAS  Google Scholar 

  • Minamitani M, Hachimori K, Kaneda K. Clinical study on imipenem/cilastatin in the field of pediatrics. Japanese Journal of Antibiotics 39: 1817–1827, 1986

    PubMed  CAS  Google Scholar 

  • Miyazaki K, Iseki K, Ishizawa T, Arita T, Sakai S, et al. Effect of clavulanic acid on inactivated amoxicillin excretion in urinary tract infection. Clinical Pharmacology and Therapeutics 37: 508–511, 1985

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki K, Ohtani K, Sunada K, Arita T. Determination of ampicillin, amoxicillin, cephalexin and cephradine in plasma by high-performance liquid chromatography using fluorimetric detection. Journal of Chromatography 276: 478–482, 1983

    Article  PubMed  CAS  Google Scholar 

  • Morgan DJ, Raymond K. Evaluation of slow infusions of cotrimoxazole by siung predictive pharmacokinetics. Antimicrobial Agents and Chemotherapy 16: 132–137, 1980

    Article  Google Scholar 

  • Morris DL, Ubhi CS, Robertson CS, Brammer KW. Biliary pharmacokinetics of sulbactam plus ampicillin in humans. Reviews of Infectious Diseases 8(Suppl. 5): S589–S592, 1986

    Article  PubMed  Google Scholar 

  • Motohiro T, Koga T, Shimada Y, Tomita S, Fujimoto T, et al. Pharmacokinetic and clinical studies of imipenem/cilastatin sodium in the pediatric field. Japanese Journal of Antibiotics 39: 1889–1911, 1986

    PubMed  CAS  Google Scholar 

  • Munch R, Luthy R, Blaser J, Siegenthaler W. Clavulanic acid: human pharmacokinetics and penetration into cerebrospinal fluid. In Nelson & Grassi (Ezds) Proceedings of the 11th International Congress of Chemotherapy and the 19th Interscience Conference on Antimicrobial Agents and Chemotherapy on Current Chemotherapy and Infectious Disease, October 1979, pp. 345-347, American Society for Microbiology, Washington, 1980

    Google Scholar 

  • Munch R, Luthy R, Blaser J, Siegenthaler W. Human pharmacokinetics and CSF penetration of clavulanic acid. Journal of Antimicrobial Chemotherapy 8: 29–37, 1981

    Article  PubMed  CAS  Google Scholar 

  • Mushinsky RF, Reynolds ML, Nicholson CA, Crider LL, Forcier GA. Stability of sulbactam/ampicillin in diluents for parenteral administration. Reviews of Infectious Diseases 8(Suppl. 5): S523–S527, 1986

    Article  PubMed  CAS  Google Scholar 

  • Naber K, Vergin H, Weigand W. Pharmacokinetics of co-trimoxazole and co-tetroxazine in geriatric patients. Infection 9: 239–243, 1981

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu I, Tateno Y, Wagamatsuma Y, Takase A, Horiguchi S, et al. Clinical evaluation of imipenem/cilastatin sodium in children. Japanese Journal of Antibiotics 39: 1693–1700, 1986

    PubMed  CAS  Google Scholar 

  • Nagata K, Yokoyama M, Ohnishi A, Izumi Y. Clinical studies on imipenem/cilastatin sodium in the pediatric field. Japanese Journal of Antibiotics 39: 1708–1714, 1986

    PubMed  CAS  Google Scholar 

  • Nakashima T, Nakashima S, Hoyakawa F, Miyachi S, Hakamada S, et al. Fundamental and clinical studies on imipenem/cilastatin sodium in the field of pediatrics. Japanese Journal 39: 1828–1846, 1986

    CAS  Google Scholar 

  • Nakazawa S, Sato H, Narita A, Matsumoto K, Suzuki H, et al. Fundamental and clinical studies with imipenem/cilastatin sodium, a new carbapenem antibiotic, in the field of pediatrics. Japanese Journal of Antibiotics 39: 1745–1764, 1986

    PubMed  CAS  Google Scholar 

  • Nelson JD, Kusmiesz H, Shelton S. Pharmacokinetics of potassium clavulanate in combination with amoxicillin in pediatric patients. Antimicrobial Agents and Chemotherapy 21: 681–682, 1982

    Article  PubMed  CAS  Google Scholar 

  • Neu HC. Contribution of beta-lactamases to bacterial resistance and mechanisms to inhibit beta-lactamases. American Journal of Medicine 79(Suppl. 5B): 2–12, 1985a

    Google Scholar 

  • Neu HC. Summary of imipenem/cilastatin symposium. American Journal of Medicine 78(Suppl. 6a): 165–167, 1985b

    Article  Google Scholar 

  • Nielsen ML, Hansen I. Trimethoprim in human prostatic tissue and prostatic fluid. Scandinavian Journal of Urology and Nephrology 6: 244–248, 1972

    Article  PubMed  CAS  Google Scholar 

  • Nilsson-Ehle I, Fellner H, Hedstrom S-A, Nilsson-Ehle P, Sjovall J. Pharmacokinetics of clavulanic acid, given in combination with amoxycillin in volunteers. Journal of Antimicrobial Chemotherapy 16: 491–498, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ninane G, Joly J, Kraytman M, Piot P. Bronchopulmonary infection due to beta-lactamase producing Branhamella catarrhalis treated with amoxycillin/clavulanic acid. Lancet 2: 257, 1978

    Article  PubMed  CAS  Google Scholar 

  • Nishimura T, Tabuki K, Takashima T, Takagi M. Laboratory and clinical studies of imipenem/cilastatin sodium in the pediatric field. Japanese Journal of Antibiotics 39: 1867–1878, 1986

    PubMed  CAS  Google Scholar 

  • Nolte H, Buttner H. Pharmacokinetics of trimethoprim and its combination with sulfamethoxazole in man after single and chronic oral administration. Chemotherapy 18: 274–278, 1973

    Article  PubMed  CAS  Google Scholar 

  • Nolte H, Buttner H. Investigations on plasma levels of sulfamethoxazole in man after single and chronic oral administration alone and in combination with trimethoprim. Chemotherapy 20: 321–330, 1974

    Article  PubMed  CAS  Google Scholar 

  • Nordholm L, Dalgaard L. Determination of trimethoprim metabolites including conjugates in urine using high performance liquid chromatography with combined ultraviolet and electrochemical detection. Journal of Chromatography 305: 391–399, 1984

    Article  PubMed  CAS  Google Scholar 

  • Norrby SR, Alestig K, Bjornegard B, et al. Urinary recovery of N-formimidoyl thienamycin dehydropeptidase inhibitors. Antimicrobial Agents and Chemotherapy 23: 300–307, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Norrby SR, Bjornegard B, Ferber F, Jones KH. Pharmacokinetics of imipenem in healthy volunteers. Journal of Antimicrobial Chemotherapy 12(Suppl. D): 109–124, 1983a

    PubMed  CAS  Google Scholar 

  • Norrby SR, Rogers JD, Ferber F, Jones KH, Zacchei AG, et al. Disposition of radiolabelled imipenem and cilastatin in normal human volunteers. Antimicrobial Agents and Chemotherapy 26: 707–714, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ojima T, Ohira N, et al. Concentration of imipenem/cilastatin sodium in bone marrow blood following intravenous drip infusion. Japanese Journal of Antibiotics 39(7): 1938–1946, 1986

    PubMed  CAS  Google Scholar 

  • Ortengren B, Fellner H, Bergan T. Development of sulphonamide-trimethoprim combinations for urinary tract infections. Part 2: Comparative pharmacokinetics of five sulphonamides. Infection 7(Suppl. 4): S367–S370, 1979b

    Article  PubMed  Google Scholar 

  • Ortengren B, Magni L, Bergan T. Development of sulfonamide-trimethoprim combinations for urinary tract infections. Part 3. Pharmacokinetic characterisation of sulphadiazine and sulphamethoxazole given with trimethoprim. Infection 7(Suppl. 4): S371–S381, 1979a

    Article  PubMed  Google Scholar 

  • Paisley JW, Washington II J A. Combined activity of clavulanic acid and ticarcillin against ticarcillin-resistant, Gram-negative bacilli. Antimicrobial Agents and Chemotherapy 14: 224–227, 1978

    Article  PubMed  CAS  Google Scholar 

  • Parry MF, Neu HC. Ticarcillin for treatment of serious infections with gram-negative bacteria. Journal of Infectious Diseases 134: 476–485, 1976

    Article  PubMed  CAS  Google Scholar 

  • Parsons RL, Paddock GM. Absorption of two antibacterial drugs, cephalexin and co-trimoxazole in malabsorption syndromes. Journal of Antimicrobial Chemotherapy 1(Suppl.): 59–67, 1975

    PubMed  CAS  Google Scholar 

  • Patel RB, Welling PG. Clinical pharmacokinetics of cotrimoxazole (trimethoprim-sulphamethoxazole). Clinical Pharmacokinetics 5: 405–423, 1980

    Article  PubMed  CAS  Google Scholar 

  • Petten GR, von Becking GC, Withey RJ, Lettau HF. Studies on the physiological availability and metabolism of sulfonamides. 1. Sulfadiazine. Journal of Clinical Pharmacology 11: 27–34, 1971

    Article  Google Scholar 

  • Poe M. Antibacterial synergism: a proposal for chemotherapeutic potentiation between trimethoprim and sulphamethoxazole. Science 194: 533–535, 1976

    Article  PubMed  CAS  Google Scholar 

  • Reading C, Cole M. Clavulanic acid: a beta-lactamase inhibiting beta-lactam from Streptomyces clavuligerus. Antimicrobial Agents and Chemotherapy 11: 852–857, 1977

    Article  PubMed  CAS  Google Scholar 

  • Reed D, Stern RC, Bertino JS, Myers CM, Yamashita TS, et al. Dosing implications of rapid elimination of trimethoprim-sulfamethoxazole in patients with cystic fibrosis. Journal of Pediatrics 104: 303–307, 1984

    Article  PubMed  CAS  Google Scholar 

  • Reed MD, Stern RC, O’Brien CA, Yamashita T, Myers CM, et al. Pharmacokinetics of imipenem and cilastatin in patients with cystic fibrosis. Antimicrobial Agents and Chemotherapy 27 (4): 583–588, 1985

    Article  Google Scholar 

  • Reeves DS, Broughall JM, Bywater MJ, Holt HA. Pharmacokinetics of the combination sulfamoxole/trimethoprim (co-trifamole). In Knothe H (Ed.) Current concepts in antibacterial chemotherapy: sulfamoxole/trimethoprim (co-trifamole), pp. 81-93, Royal Society of Medicine, London, 1980a

    Google Scholar 

  • Reeves DS, Bywater MJ, Bullock DW, Holt HA. Pharmacokinetic study of a sulfamethopyrazine/trimethoprim combination (Kelnfiprim) in human volunteers. Journal of Antimicrobial Chemotherapy 6: 647–656, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Reeves DS, Bywater MJ, Holt HA. Antibacterial synergism between beta-lactam antibiotics: results using clavulanic acid (BRL-14151) with amoxycillin, carbenicillin or cephaloridine. Infection 6(Suppl.): 9–16, 1978

    Article  CAS  Google Scholar 

  • Reeves DS, Wilkinson PJ. The pharmacokinetics of trimethoprim and trimethoprim/sulphonamide combinations, including penetration into body tissues. Infection 7(Suppl. 4): S330–S341, 1979

    Article  PubMed  CAS  Google Scholar 

  • Reid DWJ, Caille G, Kauffman NR. Maternal and transplacental kinetics of trimethoprim and sulfamethoxazole separately and in combination. Canadian Medical Association Journal 112(Suppl.): 67–72, 1975

    PubMed  CAS  Google Scholar 

  • Reilly JS, Kim HK, Rohn DD. Concentrations of sultamicillin in serum and middle-ear fluid of children with chronic otitis media with effusion. Annals of Otology, Rhinology, Laryngology 92(Suppl. 107): 44–45, 1983

    Google Scholar 

  • Remington JS. Update and advances in intravenous therapy with trimethoprim sulphamethoxazole: summary of symposium. Review of Infectious Diseases 9(Suppl. 2): S153–S159, 1987

    Article  Google Scholar 

  • Retsema JA, English AR, Girard A, Lynch JE, Anderson M, et al. Sulbactam/ampicillin: in vitro spectrum, potency and activity in models of acute infection. Reviews of Infectious Diseases 8(Suppl. 5): S528–S534, 1986

    Article  PubMed  CAS  Google Scholar 

  • Rieder J. Quantitative determination of the bacteriostatically active fraction of sulfonamides and the sum of their inactive metabolites in the body fluids. Chemotherapy 17: 1–21, 1972

    Article  PubMed  CAS  Google Scholar 

  • Rieder J. Excretion of sulfamethoxazole and trimethoprim into human bile. Journal of Infectious Diseases 128(Suppl.): S572, 1973a

    Google Scholar 

  • Rieder J. Metabolism and techniques for assay of trimethoprim and sulfamethoxazole. Journal of Infectious Diseases 128(Suppl.): S567–S573, 1973b

    Article  CAS  Google Scholar 

  • Rieder J, Schwartz DE, Fernex M, Bergan T, Brodwall EK, et al. Pharmacokinetics of the antibacterial combination sulfamethoxazole plus trimethoprim in patients with normal or impaired kidney function. Antibiotics and Chemotherapy 18: 148–198, 1974

    PubMed  CAS  Google Scholar 

  • Roder E, Stuthe W. Gas-chromatographische Bestimmung von sulfonamiden und ihren N4 acetyl-metaboliten ans Blut and Harn. Zeitung für Analytishe Chemie 271: 281–283, 1974

    Google Scholar 

  • Rogers HJ, Bradbrook ID, Morrison PJ, Spector RG, Cox DA, et al. Pharmacokinetics and bioavailability of sultamicillin estimated by high performance liquid chromatography. Journal of Antimicrobial Chemotherapy 11: 435–445, 1983

    Article  PubMed  CAS  Google Scholar 

  • Royce C, Karran S, Williams S. Pharmacokinetics of Timentin (clavulanate potentiated ticarcillin) in patients undergoing biliary surgery. Chemoterapia 4(Suppl. 2): 193–194, 1985

    Google Scholar 

  • Sakurai M. Effect of imipenem/cilastatin to thirty cases of bone and joint infection. Japanese Journal of Antibiotics 39(7): 1947, 1986

    PubMed  CAS  Google Scholar 

  • Salmon JD, Fowle ASE, Bye A. Concentrations of trimethoprim and sulfamethoxazole in aqueous humour and plasma from regimens of co-trimoxazole in man. Journal of Antimicrobial Chemotherapy 1: 205–211, 1975

    Article  PubMed  CAS  Google Scholar 

  • Salter AJ. Trimethoprim-sulfamethoxazole: an assessment of more than 12 years of use. Reviews of Infectious Diseases 4: 196–236, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sanders CV, Marier RL. Penetration of sulbactam into human cerebrospinal fluid. In Spitzy & Karner (Eds) Proceedings of the 13th International Congress of Chemotherapy, 1, pp. 23–31, Verlag H. Egermann, Vienna, 1983

    Google Scholar 

  • Sardi A, Vettaro MP, Alesina R, Grasso S, Meinardi G, et al. Serum and saliva levels of a trimethoprim-sulfamethopyrazine combination in man. European Journal of Clinical Pharmacology 20: 113–118, 1981

    Article  PubMed  CAS  Google Scholar 

  • Satoh K, Watanabe A. A clinical study on imipenem/cilastatin sodium in the field of pediatrics. Japanese Journal of Antibiotics 39: 1701–1707, 1986

    PubMed  CAS  Google Scholar 

  • Sattler FR, Remington JS. Another look at trimethoprim-sulfamethoxazole: its role in parenteral therapy. European Journal of Clinical Microbiology 3: 174–176, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sattler FR, Weitekamp MR, Ballard JO. Potential for bleeding with the new beta-lactam antibiotics. Annals of Internal Medicine 105: 924–931, 1986

    PubMed  CAS  Google Scholar 

  • Schaad UB, Casey PA, Cooper DL. Single-dose pharmacokinetics of intravenous clavulanic acid with amoxicillin in pediatric patients. Antimicrobial Agents and Chemotherapy 23: 252–255, 1983

    Article  PubMed  CAS  Google Scholar 

  • Schaad UB, Casey PA, Ravenscroft AT. Pharmacokinetics of a syrup formulation of amoxycillin-potassium clavulanate in children. Journal of Antimicrobial Chemotherapy 17: 341–345, 1986a

    Article  PubMed  CAS  Google Scholar 

  • Schaad UB, Guenin K, Straehl P. Single-dose pharmacokinetics of intravenous sulbactam in pediatric patients. Reviews of Infectious Diseases 8(Suppl. 5): S512–S517, 1986b

    Article  PubMed  Google Scholar 

  • Schlobe R, Thijssen HHW. Quantitative thin-layer chromatography of trimethoprim and tetroxoprim using fluorescence densitometry. Journal of Chromatography 230: 212–215, 1982

    Article  PubMed  CAS  Google Scholar 

  • Schwachman H, Kulczycki LL. Long-term study of 105 patients with cystic fibrosis: studies made over a 5 to 14 year period. American Journal of Diseases of Children 96: 6, 1958

    Google Scholar 

  • Schwartz DE, Koechlin BA, Weinfeld RE. Spectrofluorimetric method for the determination of trimethoprim in body fluids. Chemotherapy 14(Suppl.): 22–29, 1969

    Article  PubMed  CAS  Google Scholar 

  • Schwartz DE, Rieder J. Pharmacokinetics of sulfamethoxazole and trimethoprim in man and their distribution in the rat. Chemotherapy 15: 337–355, 1970

    Article  PubMed  CAS  Google Scholar 

  • Scully BE, Chin N-X, Neu HC. Pharmacology of ticarcillin combination with clavulanic acid in humans. American Journal of Medicine 79(Suppl. 5B): 39–43, 1985

    Article  PubMed  CAS  Google Scholar 

  • Seydel JK. Synergistic antibacterial activity in vitro of trimethoprim/sulphamide combinations and the importance of physicochemical properties for an optimum therapy. In Knothe H (Ed.) Current concepts in antibacterial chemotherapy: sulfamoxole/trimethoprim (co-trifamole), pp. 65-79, Royal Society of Medicine, London, 1980

    Google Scholar 

  • Shiro H, Kusumoto Y, Oikawa T, Osano M. Fundamental and clinical studies on imipenem/cilastatin sodium in pediatrics. Japanese Journal of Antibiotics 39: 1787–1803, 1986

    PubMed  CAS  Google Scholar 

  • Siber GR, Gorham CC, Ericson F, Smith AL. Pharmacokinetics of intravenous trimethoprim-sulfamethoxazole in children and adults with normal and impaired renal function. Reviews of Infectious Diseases 4: 566–578, 1982

    Article  PubMed  CAS  Google Scholar 

  • Siebert T, Kopp PE. Ticarcillin plus clavulanic acid versus moxalactam therapy of osteomyelitis, septic arthritis and skin and soft tissue infections. American Journal of Medicine 79(Suppl. 5B): 141–145, 1985

    Article  PubMed  CAS  Google Scholar 

  • Sigel CW, Grace ME, Nichol CA. Metabolism of trimethoprim in man and measurement of a new metabolite: a new fluorescence assay. Journal of Infectious Diseases 128(Suppl.): S580–S583, 1973

    Article  CAS  Google Scholar 

  • Sigel CW, Grace MF, Nichol CA, Hitchings GH. Specific TLC determination of trimethoprim and sulfamethoxazole in plasma. Journal of Pharmaceutical Sciences 63: 1202–1205, 1974

    Article  CAS  Google Scholar 

  • Singlas E, Colin JN, Rottembourg J, Meessen JP, de Martin A, et al. Pharmacokinetics of sulfamethoxazole-trimethoprim combination during chronic peritoneal dialysis: effect of peritonitis. European Journal of Clinical Pharmacology 21: 409–415, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sjovall J, Alvan G, Huitfeldt B. Intra- and inter-individual variation in pharmacokinetics of intravenously infused amoxycillin and ampicillin to elderly volunteers. British Journal of Clinical Pharmacology 21: 171–181, 1986

    Article  PubMed  CAS  Google Scholar 

  • Slaughter RC, Kohli R, Brass C. Effects of hemodialysis on the pharmacokinetics of amoxicillin/clavulanic acid combination. Therapeutic Drug Monitoring 6: 424–427, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sorgel F, Stephan V, Wiesemann HG, Gottschalk B, Stehr C, et al. High dose treatment with antibiotics in cystic fibrosis: a reappraisal with special reference to the pharmacokinetics of betalactams and new fluoroquinolones in adult CF-patients. Infection 15: 385–396, 1987

    Article  PubMed  CAS  Google Scholar 

  • Spicehandler J, Pollock AA, Simberkoff MS, Rahal Jr JJ. Intravenous pharmacokinetics and in vitro bactericidal activity of trimethoprim-sulfamethoxazole. Reviews of Infectious Diseases 4: 562–565, 1982

    Article  PubMed  CAS  Google Scholar 

  • Stahl JP, Bru J-P, Fredj G, Brammer KW, Mallanet M-R, et al. Penetration of sulbactam into the cerebrospinal fluid of patients with bacterial meningitis receiving ampicillin therapy. Reviews of Infectious Diseases 8(Suppl. 5): S612–S616, 1986

    Article  PubMed  Google Scholar 

  • Staniforth DH, Clarke HL, Horton R, Jackson D, Lau D. Augmentin bioavailability following cimetidine, aluminium hydroxide and milk. International Journal of Clinical Pharmacology, Therapy and Toxicology 23: 154–157, 1985

    CAS  Google Scholar 

  • Staniforth DH, Coates PE, Davies BE, Horton R. Pharmacokinetics of parenteral ticarcillin formulated with clavulanic acid: Timentin. International Journal of Clinical Pharmacology, Therapy and Toxicology 24: 123–129, 1986

    CAS  Google Scholar 

  • Staniforth DH, Jackson D, Clarke HL, Horton R. Amoxycillin/clavulanic acid: the effect of probenecid. Journal of Antimicrobial Chemotherapy 12: 273–275, 1983

    Article  PubMed  CAS  Google Scholar 

  • Staniforth DH, Jackson D, Horton R, Davies B. Parenteral augmentin: pharmacokinetics. International Journal of Clinical Pharmacology, Therapy and Toxicology 22: 430–434, 1984

    CAS  Google Scholar 

  • Sunakawa K, Ishikuza Y, Kawai N, Saito N. Basic and clinical studies on imipenem/cilastatin sodium in the pediatric field. Japanese Journal of Antibiotics 39: 1804–1816, 1986

    PubMed  CAS  Google Scholar 

  • Sutherland R, Wise PJ. Alpha-carboxy-3-thienylmethylpenicillin (BRL 2288), a new semisynthetic penicillin: absorption and excretion in man. Antimicrobial Agents and Chemotherapy 10: 402–406, 1970

    PubMed  CAS  Google Scholar 

  • Sutton AM, Turner TL, Cockburn F, McAllister TA. Pharmacokinetic study of sulbactam and ampicillin administered concomitantly by intra-arterial or intravenous infusion in the newborn. Reviews of Infectious Diseases 8(Suppl. 5): S518–S522, 1986

    Article  PubMed  Google Scholar 

  • Svedhem A, Iwarson S. Cerebrospinal fluid concentrations of trimethoprim during oral and parenteral treatment. Journal of Antimicrobial Chemotherapy 5: 717–720, 1979

    Article  PubMed  CAS  Google Scholar 

  • Svirbely JE, Pesce AJ. A high-performance liquid chromatography method for trimethoprim utilizing solid-phase column extraction. Therapeutic Drug Monitoring 9: 216–220, 1987

    Article  PubMed  CAS  Google Scholar 

  • Tasker TCG, Cockburn A, Jackson D, Mellows G, White D. Safety of ticarcillin/potassium clavulanate. Journal of Antimicrobial Chemotherapy 17(Suppl. C): 225–232, 1986

    PubMed  Google Scholar 

  • Toyonaga Y, Kurosu Y, Sugita M, Nakamura H, Takahashi T, et al. Fundamental and clinical studies on BRL 25000 (clavulanic acid-amoxicillin) granules in the pediatric field. Japanese Journal of Antibiotics 38: 373–413, 1985

    PubMed  CAS  Google Scholar 

  • Toyonaga Y, Sugita M, Tsuda T, Takahashi T, Hori M. Fundamental and clinical studies on imipenem/cilastatin sodium in the pediatric field. Japanese Journal of Antibiotics 39: 1765–1786, 1986

    Article  PubMed  CAS  Google Scholar 

  • Trimethoprim Study Group. Comparison of trimethoprim at three dosage levels with co-trimoxazole in the treatment of acute symptomatic urinary tract infection in general practice. Journal of Antimicrobial Chemotherapy 7: 179–183, 1981

    Google Scholar 

  • Tse CST, Hernandez Vera F, Desai DV. Seizure-like activity associated with imipenem/cilastatin. Drug Intelligence and Clinical Pharmacy 21: 659–660, 1987

    PubMed  CAS  Google Scholar 

  • Tsuji A, Tamai I, Hirooka H, Terasaki T. Beta-lactam antibiotics and transport via the dipeptide carrier system across the intestinal brush border. Biochemical Pharmacology 36(4): 565–567, 1987

    Article  PubMed  CAS  Google Scholar 

  • Varoquaux O, Lajoie D, Gobert C, Cordonnier P, Ducreuzet C, et al. Pharmacokinetics of the trimethoprim-sulfamethoxazole combination in the elderly. British Journal of Clinical Pharmacology 20: 575–581, 1985

    Article  PubMed  CAS  Google Scholar 

  • Vergin H, Ferber H, Zimmerman I, Neurath GB. Single and multiple dose kinetics of co-tetroxazine and co-trimoxazole in patients. International Journal of Clinical Pharmacology, Therapy and Toxicology 19: 350–357, 1981

    CAS  Google Scholar 

  • Verpooten GA, Verbist L, Bientinx AP, Entwhistle A, Jones KH, et al. The pharmacokinetics of imipenem (Thienamycin-formadimidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. British Journal of Clinical Pharmacology 18: 183–193, 1984

    Article  PubMed  CAS  Google Scholar 

  • Vree TB, Heckster YA, Baars AM, Damsina JG, van der Kleijn E. Determination of trimethoprim and sulfamethoxazole (cotrimoxazole) in body fluids of man by means of high perform ance liquid chromatography. Journal of Chromatography 146: 103–112, 1978a

    Article  PubMed  CAS  Google Scholar 

  • Vree TB, Heckster YA, Baars AM, Damsma JE, van der Kleijn E. Pharmacokinetics of sulfamethoxazole in man: effects of urinary pH and urine flow on metabolism and renal excretion of sulfamethoxazole and its metabolite N4-acetylsulphamethoxazole. Clinical Pharmacokinetics 3: 319–329, 1978b

    Article  PubMed  CAS  Google Scholar 

  • Vree TB, Heckster YA, Baars AM, van der Kleijn E. Rapid determination of amoxycillin and ampicillin in body fluids by means of high performance liquid chromatography. Journal of Chromatography 145: 496–501, 1978c

    Article  PubMed  CAS  Google Scholar 

  • Walstad RA, Helium KB, Thurmann-Nielsen E, Dale G. Pharmacokinetics and tissue penetration of Timentin: a simultaneous study of serum, urine, lymph, suction blister and subcutaneous thread fluid. Journal of Antimicrobial Chemotherapy 17(Suppl. C): 71–80, 1986

    PubMed  CAS  Google Scholar 

  • Watson ID. The assay and pharmacokinetics of some chemotherapeutic agents. PhD thesis. University of Glasgow, Glasgow, 1985a

    Google Scholar 

  • Watson ID. Clavulanate-poteniated ticarcillin: high performance liquid chromatographic assays for clavulanic acid and ticarcillin isomers in serum and urine. Journal of Chromatography 337: 301–309, 1985b

    Article  PubMed  CAS  Google Scholar 

  • Watson ID, Boulton-Jones M. Pharmacokinetics of clavulanate potentiated ticarcillin (timentin) in renal failure. Chemoterapia 4(Suppl. 2): 189–191, 1985

    Google Scholar 

  • Watson ID, Boulton-Jones M, Stewart MJ, Henderson I, Payton CD. Pharmacokinetics of clavulanic acid-potentiated ticarcillin in renal failure. Therapeutic Drug Monitoring 9: 139–147, 1987

    Article  PubMed  CAS  Google Scholar 

  • Watson ID, Cohen HN, Mcintosh SJ, Thomson JA, Shenkin A. Synergism between trimethoprim and sulfonamide in urine: does it exist? Clinical Therapeutics 4: 103–108, 1981

    PubMed  CAS  Google Scholar 

  • Watson ID, Cohen HN, Stewart MJ, Mcintosh SJ, Shenkin A, et al. Comparative pharmacokinetics of co-trifamole and co-trimoxazole to ‘steady-state’ in normal subjects. British Journal of Clinical Pharmacology 14: 437–443, 1982

    Article  PubMed  CAS  Google Scholar 

  • Watson ID, Shenkin A, Mcintosh SJ, Cohen HN. Assay for trimethoprim in serum and urine by means of ion-pair chromatography. Clinical Chemistry 26: 1791–1795, 1980

    PubMed  CAS  Google Scholar 

  • Watson ID, Stewart MJ. Trimethoprim: prediction of serum concentrations from saliva measurements. European Journal of Clinical Pharmacology 30: 457–461, 1986

    Article  PubMed  CAS  Google Scholar 

  • Weber A, Opheim KE, Siber GR, Ericsson JF, Smith AL. High performance liquid chromatographic quantitation of trimethoprim, sulfamethoxazole and N4 acetylsulfamethoxazole in body fluids. Journal of Chromatography 278: 337–345, 1983

    Article  PubMed  CAS  Google Scholar 

  • Weinfeld RE, Macasieb TC. Determination of trimethoprim in biological fluids by high performance liquid chromatography. Journal of Chromatography 164: 73–84, 1979

    Article  PubMed  CAS  Google Scholar 

  • Welling PC. Interactions affecting drug absorption. Clinical Pharmacokinetics 9: 404–434, 1984

    Article  PubMed  CAS  Google Scholar 

  • Welling PG, Craig WA, Amidon GL, Kunin CM. Pharmacokinetics of trimethoprim and sulfamethoxazole in normal subjects and in patients with renal failure. Journal of Infectious Diseases 128(Suppl.): S556–S566, 1973

    Article  CAS  Google Scholar 

  • Wieser O, Haiderer O, Takacs F. Blutspiegel und spiegel ins lungengewebe von sulfametrol-trimethoprim wahrend der Behandlung bronchopulmonaler erkrankungen. Wiener Medizinische Wochenschrift 131: 363–366, 1981

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Bedford KA. Clavulanic acid and CP-45, 899: a comparison of their in vitro activity in combination with penicillins. Journal of Antimicrobial Chemotherapy 6: 197–206, 1978

    Article  Google Scholar 

  • Wise R, Donovan IA, Andrews JM, Drumm J, Bennett S. Penetration of sulbactam and ampicillin into peritoneal fluid. Antimicrobial Agents and Chemotherapy 24: 290–292, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Wise R, Donovan IA, Drumm J, Andrews JM, Stephenson P. The penetration of amoxycillin/clavulanic acid into peritoneal fluid. Journal of Antimicrobial Chemotherapy 11: 57–60, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Witkowski G, Lode H, Hofflcen G, Koeppe P. Pharmacokinetic studies of amoxicillin, potassium clavulanate and their combination. European Journal of Clinical Microbiology 1: 233–237, 1982

    Article  PubMed  CAS  Google Scholar 

  • Wittman DH, Kiupers TH, Fock R, Holl M, Bauernflind A. Bone concentration of imipenem following imipenem-cilastatin infusion. Infection 14(Suppl. 2): S130–S137, 1986

    Article  Google Scholar 

  • Wright N, Wise R. The elimination of sulbactam alone and combined with ampicillin in patients with renal dysfunction. Journal of Antimicrobial Chemotherapy 11: 583–587, 1983

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, I.D., Stewart, M.J. & Platt, D.J. Clinical Pharmacokinetics of Enzyme Inhibitors in Antimicrobial Chemotherapy. Clin-Pharmacokinet 15, 133–164 (1988). https://doi.org/10.2165/00003088-198815030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198815030-00001

Keywords

Navigation