Skip to main content
Log in

Clinical Pharmacokinetics of the Inhalational Anaesthetics

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

At present, the most widely used inhalational anaesthetics are the halogenated, inflammable vapours halothane, enflurane, isoflurane and the gas nitrous oxide. The anaesthetic effect of these agents is related to their tension or partial pressure in the brain, represented at equilibrium by the alveolar concentration. The minimum alveolar concentration for a specific agent is remarkably constant between individuals. The uptake and distribution of inhalational anaesthetics depends on inhaled concentration, pulmonary ventilation, solubility in blood, cardiac output and tissue uptake. Inhalational anaesthetics are mainly eliminated by pulmonary exhalation, but significant amounts of halothane are removed by hepatic metabolism. Inhalational agents currently in use have acceptable pharmacokinetic characteristics, and clinical acceptance depends on their potential for adverse effects.

Induction of anaesthesia with halothane is rapid and relatively pleasant and it is the agent of choice for paediatric anaesthesia. Between 20 and 50% is metabolised, and the parent drug is a potent inhibitor of drug metabolism. Post-operatively enzyme induction may follow. The major disadvantages of halothane are myocardial depression, propensity to evoke cardiac arrhythmias and the rare but serious halothane hepatitis.

Induction and recovery from enflurane anaesthesia is rapid. Metabolism accounts for 5 to 9% of the elimination. The metabolic product inorganic fluoride may in rare cases cause renal toxicity. Enflurane is a weak inhibitor of drug metabolism at anaesthetic concentrations. Enflurane depresses circulation more than halothane by reducing both myocardial contractility and systemic vascular resistance, but cardiac rhythm is stable. Enflurane anaesthesia may, unlike the other agents, induce epileptic activity. Enflurane is widely used as replacement for halothane in adults.

Despite its low blood-gas solubility, the airway irritability of isoflurane precludes a faster induction of anaesthesia than with halothane. Isoflurane is almost resistant to biodegradation. Myocardial contractility is maintained during isoflurane anaesthesia and cardiac rhythm is stable except for the occurrence of tachycardia in some patients. Isoflurane is the inhalational agent of choice for neurosurgical operations.

Sevoflurane is an experimental ether vapour: induction and recovery is fast and pleasant. It is metabolised to the same extent as enflurane and subnephrotoxic concentrations of inorganic fluoride may result. Sevoflurane has fewer respiratory and cardiovascular depressant effects than halothane and may be a future alternative for paediatric anaesthesia.

Nitrous oxide is the only anaesthetic gas widely used today. A rapid induction and recovery follows from its low blood-gas solubility. No metabolism occurs and the cardiovascular effects are small compared with the volatile agents. Nitrous oxide reacts chemically with vitamin B12 and signs of megaloblastic bone marrow are present after 6 hours of anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RW, Cucchiara RF, Gronert GA, Messick JM, Michenfelder JD. Isoflurane and cerebrospinal fluid pressure in neurosurgical patients. Anesthesiology 54: 97–99, 1981

    PubMed  CAS  Google Scholar 

  • Adams RW, Gronert GA, Sundt Jr TM, Michenfelder JD. Halothane, hypocapnia, and cerebrospinal fluid pressure in neurosurgery. Anesthesiology 37: 510–517, 1972

    PubMed  CAS  Google Scholar 

  • Amess JAL, Burman JF, Rees GM, Nancekievill DG, Mollin DL. Megaloblastic haemopoiesis in patients receiving nitrous oxide. Lancet 2: 339–342, 1978

    PubMed  CAS  Google Scholar 

  • Atlee JL, Rusy BF. Atrioventricular conduction times and atrioventricular nodal conductivity during enflurane anesthesia in dogs. Anesthesiology 47: 498–503, 1977

    PubMed  CAS  Google Scholar 

  • Aune H, Bessesen A, Olsen H, Mørland J. Acute effects of halothane and enflurane on drug metabolism and protein synthesis in isolated rat hepatocytes. Acta Pharmacologica et Toxicologica 53: 363–368, 1983

    PubMed  CAS  Google Scholar 

  • Bahlman SH, Eger II EI, Halsey MJ, Stevens WC, Shakespeare TF, et al. The cardiovascular effects of halothane in man during spontaneous ventilation. Anesthesiology 36: 494–502, 1972

    PubMed  CAS  Google Scholar 

  • Bahlman SH, Eger II EI, Smith NT, Stevens WC, Shakespeare TF, et al. The cardiovascular effects of nitrous oxide-halothane anesthesia in man. Anesthesiology 35: 274–285, 1971

    PubMed  CAS  Google Scholar 

  • Bentley JB. Deuterated volatile anesthetics. In Brown (Ed.) New pharmacologic vistas in anesthesia, pp. 19–26, F.A. Davis Co, Philadelphia, 1983

    Google Scholar 

  • Bentley JB, Glass S, Gandolfi AJ. The influence of halothane on lidocaine pharmacokinetics in man. Anesthesiology 59: A246, 1983

    Google Scholar 

  • Bentley JB, Vaughan RW, Miller MS, Calkins JM, Gandolfi AJ. Serum inorganic fluoride levels in obese patients during and after enflurane anesthesia. Anesthesia and Analgesia 58: 409–412, 1979

    PubMed  CAS  Google Scholar 

  • Blitt CD, Gandolfi AJ, Soltis JJ, Brown Jr BR. Extrahepatic biotransformation of halothane and enflurane. Anesthesia and Analgesia 60: 129–132, 1981

    PubMed  CAS  Google Scholar 

  • Borel JD, Bentley JB, Nanad BS, Gillespie TJ. The influence of halothane on fentanyl pharmacokinetics. Anesthesiology 57: A239, 1982

    Google Scholar 

  • Borel JD, Bentley JB, Vaughan RW, Gandolfi AJ. Enflurane blood-gas solubility: influence of weight, hemoglobin, and hematocrit. Anesthesiology 55: A195, 1981

    Google Scholar 

  • Bourne JG. Uptake, elimination and potency of the inhalational anesthetics. Anaesthesia 19: 12–32, 1964

    PubMed  CAS  Google Scholar 

  • Brodsky JB, Cohen EN. Adverse effects of nitrous oxide. Medical Toxicology 1: 362–374, 1986

    PubMed  CAS  Google Scholar 

  • Brody GL, Sweet RB. Halothane anesthesia as a possible cause of massive hepatic necrosis. Anesthesiology 24: 29–37, 1963

    PubMed  CAS  Google Scholar 

  • Bros F de. Drug interactions in the presence of volatile anesthestics. In Conseiller et al. (Eds) Volatile halogenated anaesthetics, pp. 229–241, Libraire Arnette, Paris, 1981

    Google Scholar 

  • Brown Jr BR. The diphasic action of halothane on the oxidative metabolism of drugs by the liver: an in vitro study in the rat. Anesthesiology 35: 241–246, 1971

    PubMed  CAS  Google Scholar 

  • Brown Jr BR. Effects of inhalation anesthetics on hepatic glucoronide conjugation: a study of the rat in vitro. Anesthesiology 37: 483–488, 1972

    PubMed  CAS  Google Scholar 

  • Brown Jr BR, Crout JR. A comparative study of the effects of five general anesthetics on myocardial contractility. I. Isometric conditions. Anesthesiology 34: 236–245, 1971

    PubMed  CAS  Google Scholar 

  • Brown Jr BR, Gandolfi AJ. Adverse effects of volatile anaesthetics. British Journal of Anaesthesia, in press, 1986

    Google Scholar 

  • Cahalan MK, Johnson BH, Eger II IE. Relationship of concentrations of halothane and enflurane to their metabolism and elimination in man. Anesthesiology 54: 3–8, 1981

    PubMed  CAS  Google Scholar 

  • Cahalan MK, Lurz FW, Beaupre PN, Schwartz LA, Eger II EL. Narcotics alter the heart rate and blood pressure response to inhalational anesthetics. Anesthesiology 59: A26, 1983

    Google Scholar 

  • Callis AH, Brooks SD, Waters SJ, Lucas DO, Gandolfi AJ, et al. Evidence for a role of the immune system in the pathogenesis of halothane hepatitis. In Roth & Miller (Eds) Molecular and cellular mechanisms of anesthetics, pp. 443–453, Plenum Publishing Co, 1986

    Google Scholar 

  • Calverley RK, Smith NT, Prys-Roberts C, Eger II EI, Jones CW. Cardiovascular effects of enflurane anesthesia during controlled ventilation in man. Anesthesia and Analgesia 57: 619–628, 1978

    PubMed  CAS  Google Scholar 

  • Cameron CB, Robinson S, Gregory GA. The minimum anesthetic concentration of isoflurane in children. Anesthesia and Analgesia 63: 418–420, 1984

    PubMed  CAS  Google Scholar 

  • Carlsson C, Entrei C. The effects of isoflurane, enflurane and halothane on regional cerebral blood flow (rCBF) in patients. Acta Anaesthesiologica Scandinavica 29 (Suppl. 80): 86, 1985

    Google Scholar 

  • Carpenter RL, Eger II EI, Johnson BH, Unadkat JD, Sheiner LB. The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 65: 201–205, 1986a

    PubMed  CAS  Google Scholar 

  • Carpenter RL, Eger II EI, Johnson BH, Unadkat JD, Sheiner LB. Pharmacokinetics of inhaled anesthetics in humans: measurements during and after the simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesthesia and Analgesia 65: 575–582, 1986b

    PubMed  CAS  Google Scholar 

  • Chase RE, Holaday DA, Fiserove-Bergerova V, Saidman LJ, Mack FE. The biotransformation of ethrane in man. Anesthesiology 35: 262–267, 1971

    PubMed  CAS  Google Scholar 

  • Chelly JE, Rogers K, Hysing ES, Taylor A, Hartley C, Merin RG. Cardiovascular effects of and interaction between calcium blocking drugs and anesthetics in chronically intstrumented dogs. 1. Verapamil and halothane. Anesthesiology 64: 560–567, 1986

    PubMed  CAS  Google Scholar 

  • Churchill-Davidson HC (Ed). Wylie and Churchill-Davidson’s: A practice of anaesthesia, 5th ed., pp. 167–238, Lloyd-Luke, London, 1984

    Google Scholar 

  • Clark DL, Hosick EC, Adam N, Castro AD, Rosner BS, Neigh JL. Neural effects of isoflurane (Forane) in man. Anesthesiology 39: 261–270, 1973

    PubMed  CAS  Google Scholar 

  • Clutton-Brock J. Two cases of poisoning by contamination of nitrous oxide with higher oxides of nitrogen during anaesthesia. British Journal of Anaesthesia 39: 388–392, 1967

    PubMed  CAS  Google Scholar 

  • Coburn CM, Eger II EI. The partial pressures of isoflurane or halothane does not affect their solubility in blood: inhaled anesthetics obey Henry’s law. Anesthesia and Analgesia 65: 672–674, 1986

    PubMed  CAS  Google Scholar 

  • Cohen EN, Brown BW, Wu ML, Whitcher CE, Brodsky JB, et al. Occupational disease in dentistry and chronic exposure to trace anesthetic gases. Journal of American Dental Association 101: 21–31, 1980

    CAS  Google Scholar 

  • Corbett TH. Cancer and congenital anomalies associated with anesthetics. Annals of the New York Academy of Sciences 271: 58–66, 1976

    PubMed  CAS  Google Scholar 

  • Cousins MJ, Greenstein LR, Hitt BA, Mazze RL. Metabolism and renal effects of enflurane in man. Anesthesiology 44: 44–53, 1976

    PubMed  CAS  Google Scholar 

  • Cousins MJ, Mazze RL Methoxyflurane nephrotoxicity: a study of dose response in man. Journal of the American Medical Association 225: 1611–1616, 1973

    PubMed  CAS  Google Scholar 

  • Cousins MJ, Mazze RI, Kosek JC, Hitt BA, Love FV. The etiology of methoxyflurane nephrotoxicity. Journal of Pharmacology and Experimental Therapeutics 190: 530–541, 1974

    PubMed  CAS  Google Scholar 

  • Cowles AL, Borgstedt HH, Gillies AJ. Uptake and distribution of inhalation anesthetic agents in clinical practice. Anesthesia and Analgesia 47: 404–414, 1968

    PubMed  CAS  Google Scholar 

  • Cromwell TH, Eger II EI, Stevens WC, Dolan WM. Forane uptake and blood solubility in man. Anesthesiology 35: 401–408, 1971

    PubMed  CAS  Google Scholar 

  • Cullen BF, Margolis AJ, Eger II EI. The effects of anesthesia and pulmonary ventilation on blood loss during elective therapeutic abortion. Anesthesiology 32: 108–113, 1970

    PubMed  CAS  Google Scholar 

  • Cullen BF, Miller MG. Drug interactions and anesthesia: a review. Anesthesia and Analgesia 58: 413–423, 1979

    PubMed  CAS  Google Scholar 

  • Dale O. The interaction of enflurane, halothane and the halothane metabolite trifluoroacetic acid with the binding of acidic drugs to human serum albumin: an in vitro study. Biochemical Pharmacology 35: 557–561, 1986

    PubMed  CAS  Google Scholar 

  • Dale O, Gandolfi AJ, Brendel K. Liver slices: in vitro pharmacokinetic drug interaction studies. Pharmacologist 28: 205, 1986

    Google Scholar 

  • Dale O, Jenssen U. Interaction of isoflurane with the binding of drugs to proteins in serum and liver cell cytosol: an in vitro study. British Journal of Anaesthesia 58: 1022–1026, 1986

    PubMed  CAS  Google Scholar 

  • Dale O, Nielsen K, Westgaard G, Nilsen OG. Drug metabolizing enzymes in the rat after inhalation of halothane and enflurane: different pattern of response in liver, kidney and lung and possible implications for toxicity. British Journal of Anaesthesia 55: 1217–1224, 1983

    PubMed  CAS  Google Scholar 

  • Dale O, Nilsen OG. Displacement of some basic drugs from human serum proteins by enflurane, halothane and their major metabolites: an in vitro study. British Journal of Anaesthesia 56: 535–542, 1984

    PubMed  CAS  Google Scholar 

  • Dale O, Nilsen OG. Binding and distribution of restrictively and non-restrictively eliminated drugs to serum and liver cell cytosol: effects of volatile anaesthetics. British Journal of Anaesthesia 58: 55–62, 1986

    PubMed  CAS  Google Scholar 

  • Davis PJ, Cook DR. Clinical pharmacokinetics of the newer intravenous anaesthetic agents. Clinical Pharmacokinetics 11: 18–35, 1986

    PubMed  CAS  Google Scholar 

  • Dolan WM, Eger II EI, Margolis AJ. Forane increases bleeding in therapeutic suction abortion. Anesthesiology 36: 96–97, 1972

    PubMed  CAS  Google Scholar 

  • Drummond JC, Todd MM, Shapiro HM. CO2 responsiveness of the cerebral circulation during isoflurane anesthesia and N2O sedation in cats. Anesthesiology 57: A333, 1982

    Google Scholar 

  • Drummond JC, Todd MM, Shapiro HM. Cerebral blood flow autoregulation in the cat during anesthesia with halothane and isoflurane. Anesthesiology 59: A305, 1983a

    Google Scholar 

  • Drummond JC, Todd MM, Toutant SM, Shapiro HM. Brain surface protrusion during enflurane, halothane, and isoflurane anesthesia in cats. Anesthesiology 59: 288–293, 1983b

    PubMed  CAS  Google Scholar 

  • Duke PC, Fownes D, Wade JG. Halothane depresses baroreflex control of heart rate in man. Anesthesiology 46: 184–187, 1977

    PubMed  CAS  Google Scholar 

  • Duke PC, Hill K, Trosky S. The effect of isoflurane and isoflurane with nitrous oxide anesthesia on baroreceptor reflex control of heart rate in man. Anesthesiology 57: A41, 1982

    Google Scholar 

  • Duvaldestin P, Mauge F, Desmonts J-M. Enflurane anesthesia and antipyrine metabolism. Clinical Pharmacology and Therapeutics 29: 61–64, 1981c

    PubMed  CAS  Google Scholar 

  • Duvaldestin P, Mazze RI, Nivoche Y, Desmonts J-M. Enzyme induction following surgery with halothane and neurolept anesthesia. Anesthesia and Analgesia 60: 319–323, 1981a

    PubMed  CAS  Google Scholar 

  • Duvaldestin P, Mazze RI, Nivoche Y, Desmonts JM. Occupational exposure to halothane results in enzyme induction in anesthetists. Anesthesiology, 54: 57–60, 1981b

    PubMed  CAS  Google Scholar 

  • Eger II EI. Anesthetic uptake and action, pp. 77–192 Williams & Wilkins, Baltimore, 1974

    Google Scholar 

  • Eger II EI. The pharmacology of isoflurane. British Journal of Anaesthesia 56: 71S–99S, 1984

    PubMed  CAS  Google Scholar 

  • Eger II EI. Uptake and distribution of inhaled anesthetics. In Miller (Ed.) Anesthesia, 2nd ed, pp. 625–647, Churchill Livingstone, Edinburgh, 1986

    Google Scholar 

  • Eger II EI, Saidman LJ. Hazards of nitrous oxide anesthesia in bowel obstruction and pneumothorax. Anesthesiology 26: 61–66, 1965

    PubMed  Google Scholar 

  • Eger II EI, Schmuckler EA, Ferrel LD, Goldsmith CH, Johnson BH. Is enflurane hepatotoxic? Anesthesia and Analgesia 65: 21–30, 1986

    PubMed  Google Scholar 

  • Eger II EI, Severinghaus JW. Effect of uneven pulmonary distribution of blood and gas on induction with inhalation anesthetics. Anesthesiology 25: 620–626, 1964

    PubMed  Google Scholar 

  • Eger II EI, Smith NT, Stoelting RK, Cullen DJ, Kadis LB, et al. Cardiovascular effects of halothane in man. Anesthesiology 32: 396–409, 1970

    PubMed  Google Scholar 

  • Eger II EI, White AE, Brown CL, Biava CG, Corbett TH, et al. A test of the carcinogenicity of enflurane, isoflurane, halothane, methoxyflurane, and nitrous oxide in mice. Anesthesia and Analgesia 57: 678–694, 1978

    PubMed  CAS  Google Scholar 

  • Eisele JH, Reitan JA, Massumi RA, Zelis RF, Miller RR. Myocardial performance and N2O analgesia in coronary-artery disease. Anesthesiology 44: 16–20, 1976

    PubMed  CAS  Google Scholar 

  • Eisele JH, Smith NT. Cardiovascular effects of 40% nitrous oxide in man. Anesthesia and Analgesia 51: 956–963, 1972

    PubMed  CAS  Google Scholar 

  • Epstein RM, Deutsch S, Cooperman LH, Clement AJ, Price HL. Splanchnic circulation during halothane anesthesia and hypercapnia in normal man. Anesthesiology 27: 654–661, 1966

    PubMed  CAS  Google Scholar 

  • Fassoulaki A, Eger II EI. Starvation increases the solubility of volatile anaesthetics in rat liver. British Journal of Anaesthesia 58: 327–329, 1986

    PubMed  CAS  Google Scholar 

  • Fee JPH, Black GW, Dundee JW, McIlroy PDA, Johnston HML, et al. A prospective study of liver enzyme and other changes following repeat administration of halothane and enflurane. British Journal of Anaesthesia 51: 1133–1141, 1979

    PubMed  CAS  Google Scholar 

  • Filner BE, Karliner JS. Alterations of normal left ventricular performance by general anesthesia. Anesthesiology 45: 610–621, 1976

    PubMed  CAS  Google Scholar 

  • Fink BR. Diffusion anoxia. Anesthesiology 16: 511–519, 1955

    PubMed  CAS  Google Scholar 

  • Fiserova-Bergerova V. Inhibitory effect of isoflurane upon oxidative metabolism of halothane. Anesthesia and Analgesia 63: 399–404, 1984

    PubMed  CAS  Google Scholar 

  • Fish KJ, Rice SA. Halothane inhibits metabolism of enflurane in Fisher 344 rats. Anesthesiology 59: 417–420, 1983

    PubMed  CAS  Google Scholar 

  • Fisher DM, Robinson S, Brett CM, Perin G, Gregory GA. Comparison of enflurane, halothane, and isoflurane for diagnostic and therapeutic procedures in children with malignancies. Anesthesiology 63: 647–650, 1985

    PubMed  CAS  Google Scholar 

  • Frost EAM. Inhalation anaesthetic agents in neurosurgery. British Journal of Anaesthesia 56: 47S–56S, 1984

    PubMed  Google Scholar 

  • Fukui Y, Smith NT. Interactions among ventilation, the circulation, and the uptake and distribution of halothane — use of a hybrid computer multiple model: I. The basic model. Anesthesiology 54: 107–118, 1981a

    PubMed  CAS  Google Scholar 

  • Fukui Y, Smith NT. Interactions among ventilation, the circulation, and the uptake and distribution of halothane — use of a hybrid computer multiple model: II. Spontaneous vs. controlled ventilation, and the effects of CO2. Anesthesiology 54: 119–124, 1981b

    PubMed  CAS  Google Scholar 

  • Gelman SI. Disturbances in hepatic blood flow during surgery and anesthesia. Archives of Surgery 111: 881–883, 1976

    PubMed  CAS  Google Scholar 

  • Gelman S, Fowler KC, Smith LR. Regional blood flow during isoflurane and halothane anesthesia. Anesthesia and Analgesia 63: 557–565, 1984

    PubMed  CAS  Google Scholar 

  • Gold MI, Schwam SJ, Goldberg M. Chronic obstructive pulmonary disease and respiratory complications. Anesthesia and Analgesia 62: 975–981, 1983

    PubMed  CAS  Google Scholar 

  • Goldstein A, Aronow L, Kaiman SM. Principles of drug action: the basis of pharmacology, 2nd ed. pp. 339–355, John Wiley et Sons, New York, 1974

    Google Scholar 

  • Halsey MJ. Investigations on isoflurane, sevoflurane and other experimental anaesthetics. British Journal of Anaesthesia 53: 43S–47S, 1981

    PubMed  Google Scholar 

  • Halsey MJ. A reassessment of the molecular structure-functional relationships of the inhaled general anaesthetics. British Journal of Anaesthesia 56: 9S–25S, 1984

    PubMed  CAS  Google Scholar 

  • Halsey MJ, Sawyer DC, Eger II EI, Bahlmann SH, Impelman DMK. Hepatic metabolism of halothane, metoxyflurane, cyclopropane, ethrane and forane in miniature swine. Anesthesiology 35: 43–47, 1971

    PubMed  CAS  Google Scholar 

  • Hantier CB, Clifford BD, Kroll DA, Knight PR. Verapamil does have prolonged interactions with halothane. Anesthesiology 57: A2, 1982

    Google Scholar 

  • Hirshman CA, Edelstein G, Peetz S, Wayne R, Downes H. Mechanism of action of inhalational anesthesia on airways. Anesthesiology 56: 107–111, 1982

    PubMed  CAS  Google Scholar 

  • Hirshman CA, McCullough RE, Cohen PJ, Weil JV. Depression of hypoxic ventilatory response by halothane, enflurane and isoflurane in dogs. British Journal of Anaesthesia 49: 957–963, 1977

    PubMed  CAS  Google Scholar 

  • Hitt BA, Mazze RI, Beppu WJ, Stevens WC, Eger II EI. Enflurane metabolism in rats and man. Journal of Pharmacology and Experimental Therapeutics 203: 193–202, 1977

    PubMed  CAS  Google Scholar 

  • Holaday DA, Fiserova-Bergerova V, Latto IP, Zumbiel MA. Resistance of isoflurane to biotransformation in man. Anesthesiology 43: 325–332, 1975

    PubMed  CAS  Google Scholar 

  • Holaday DA. Sevoflurane: an experimental anesthetic. In Brown (Ed.) New pharmacologic vistas in anesthesia, pp. 45–60, F.A. Davis Co, Philadelphia, 1983

    Google Scholar 

  • Holaday DA, Smith FR. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 54: 100–106, 1981

    PubMed  CAS  Google Scholar 

  • Horan BF, Prys-Roberts C, Hamilton WK, Roberts JG. Haemodynamic responses to enflurane anaesthesia and hypovolaemia in the dog, and their modification by propranolol. British Journal of Anaesthesia 49: 1189–1197, 1977

    PubMed  CAS  Google Scholar 

  • Hughes RL, Campbell D, Fitch W. Effects of enflurane and halothane on liver blood flow and oxygen consumption in the greyhound. British Journal of Anaesthesia 52: 1079–1086, 1980

    PubMed  CAS  Google Scholar 

  • Irestedt L, Andreen M. Effects of enflurane on haemodynamics and oxygen consumption in the dog with special reference to the liver and preportal tissues. Acta Anaesthesiologica Scandinavica 23: 13–26, 1979

    PubMed  CAS  Google Scholar 

  • Jee RC, Sipes G, Gandolfi AJ, Brown Jr BR. Factors influencing halothane hepatotoxicity in the rat hypoxic model. Toxicology and Applied Pharmacology 52: 267–277, 1980

    PubMed  CAS  Google Scholar 

  • Johnston RR, Eger II EI, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesthesia and Analgesia 55: 709–712, 1976

    PubMed  CAS  Google Scholar 

  • Jones RM. Clinical comparison of inhalation anaesthetic agents. British Journal of Anaesthesia 56: 57S–69S, 1984

    PubMed  Google Scholar 

  • Kanto J, Pihlajamaki K. Interactions of diazepam and halothane in rats. Annales Chirurgiae et Gynaecologiae Fenniae 62: 247–250, 1973

    PubMed  CAS  Google Scholar 

  • Karlin JM, Kutt H. Acute diphenylhydantoin intoxication following halothane anesthesia. Journal of Pediatrics 76: 941–944, 1970

    PubMed  CAS  Google Scholar 

  • Katz RL, Katz GJ. Surgical infiltration of pressor drugs and their interaction with volatile anaesthetics. British Journal of Anaesthesia 38: 712–718, 1966

    PubMed  CAS  Google Scholar 

  • Kingston HGG. Halothane and isoflurane anesthesia in pediatric outpatients. Anesthesia and Analgesia 65: 181–184, 1986

    PubMed  CAS  Google Scholar 

  • Knill RL, Gelb AW. Ventilatory responses to hypoxia and hypercapnia during halothane sedation and anesthesia in man. Anesthesiology 49: 244–251, 1978

    PubMed  CAS  Google Scholar 

  • Kruczek M, Albin MS, Wolf S, Bertoni JM. Postoperative seizure activity following enflurane anesthesia. Anesthesiology 53: 175–176, 1980

    PubMed  CAS  Google Scholar 

  • Laasberg LH, Hedley-Whyte J. Halothane solubility in blood and solutions of plasma proteins: effects of temperature, protein composition and hemoglobin concentration. Anesthesiology 32: 351–356, 1970

    PubMed  CAS  Google Scholar 

  • Larson Jr CP, Eger II EI, Severinghaus JW. The solubility of halothane in blood and tissue homogenates. Anesthesiology 23: 349–355, 1962a

    PubMed  CAS  Google Scholar 

  • Larson Jr CP, Eger II EI, Severinghaus JW. Ostwald solubility coefficients for anesthetic gases in various fluids and tissues. Anesthesiology 23: 686–689, 1962b

    PubMed  Google Scholar 

  • Lassen HCA, Henriksen E, Neukirch F, Kristensen HS. Treatment of tetanus: severe bone-marrow depression after prolonged nitrous-oxide anaesthesia. Lancet April 28: 527–530, 1956

    Google Scholar 

  • Layzer RB. Myeloneuropathy after prolonged exposure to nitrous oxide. Lancet December 9: 1227–1230, 1978

    Google Scholar 

  • Leighton K, Bruce C. Distribution of kidney blood flow: a comparison of methoxyflurane and halothane effects as measured by heated thermocouple. Canadian Anaesthetists’ Society Journal 22: 125–137, 1975

    PubMed  CAS  Google Scholar 

  • Lerman J, Gregory GA, Willis MM, Eger II EI. Age and solubility of volatile anesthetics in blood. Anesthesiology 61: 139–143, 1984

    PubMed  CAS  Google Scholar 

  • Lerman J, Willis MM, Gregory GA, Eger II EI. The effect of anesthesia and surgery on the solubility of anesthetics in blood. Anesthesiology 59: A298, 1983

    Google Scholar 

  • Levy WJ. Clinical anaesthesia with isoflurane: a review of the multicentre study. British Journal of Anaesthesia 56: 101S–113S, 1984

    PubMed  Google Scholar 

  • Lewis RB, Blair M. Halothane hepatitis in a young child. British Journal of Anaesthesia 54: 349–354, 1982

    PubMed  CAS  Google Scholar 

  • Linde HW, Berman ML. Nonspecific stimulation of drug-metabolizing enzymes by inhalation anesthetic agents. Anesthesia and Analgesia 50: 656–665, 1971

    PubMed  CAS  Google Scholar 

  • Lowe HJ, Ernst EA. The quantitative practice of anesthesia, p.39 Williams & Wilkins, Baltimore, 1981

    Google Scholar 

  • Madsen JB, Cold GE, Eriksen HO, Eskesen V. CBF and CRMO2 during craniotomy for supratentorial tumours in enflurane and nitrous oxide anaesthesia. Acta Anaesthesiologica Scandinavica 29 (Suppl. 80): 86, 1985

    Google Scholar 

  • Maiorino RM, Gandolfi AJ, Sipes IG. Gas-chromatographic method for the halothane metabolites, trifluoracetic acid and bromide, in biological fluids. Journal of Analytical Toxicology 4: 250–254, 1980

    PubMed  CAS  Google Scholar 

  • Marshall BE, Wollman H. General anesthetics. In Goodman Gilman et al. (Eds) Goodman and Gilman’s: The pharmacological basis of therapeutics. 7th ed., pp. 276–301, Macmillan Publishing Co, New York, 1985

    Google Scholar 

  • Marshall C, Lindgren L, Marshall BE. Effects of halothane, enflurane, and isoflurane on hypoxic pulmonary vasoconstriction in rat lungs in vitro. Anesthesiology 60: 304–308, 1984

    PubMed  CAS  Google Scholar 

  • Mazze RI. Metabolism of the inhaled anaesthetics: implications of enzyme induction. British Journal of Anaesthesia 56: 27S–41S, 1984

    PubMed  CAS  Google Scholar 

  • Mazze RI, Cousins MJ, Barr GA. Renal effects and metabolism of isoflurane in man. Anesthesiology 40: 536–542, 1974

    PubMed  CAS  Google Scholar 

  • Mazze RI, Fujinaga M, Rice SA, Harris SB, Baden JM. Reproductive and teratogenic effects of nitrous oxide, halothane, isoflurane, and enflurane in Sprague-Dawley rats. Anesthesiology 64: 339–344, 1986

    PubMed  CAS  Google Scholar 

  • Mazze RI, Hitt BA, Cousins MJ. Effect of enzyme induction with phenobarbital on the in vivo and in vitro defluorination of isoflurane and methoxyflurane. Journal of Pharmacology and Experimental Therapeutics 190: 523–529, 1974

    PubMed  CAS  Google Scholar 

  • Mazze RI, Lecky JH. The health of operating room personnel. Anesthesiology 62: 226–228, 1985

    PubMed  CAS  Google Scholar 

  • Mazze RI, Schwartz FD, Slocum HC, Barry KG. Renal function during anesthesia and surgery. Anesthesiology 24: 279–284, 1963

    Google Scholar 

  • McAteer PM, Carter JA, Cooper GM, Prys-Roberts C. Comparison of isoflurane and halothane in outpatient paediatric dental anaesthesia. British Journal of Anaesthesia 58: 390–393, 1986

    PubMed  CAS  Google Scholar 

  • Merin RG, Lowenstein E, Gelman S. Editorial views: Is anesthesia beneficial for the ischemic heart? III. Anesthesiology 64: 137–140, 1986

    PubMed  CAS  Google Scholar 

  • Miletich DJ, Ivankovich AD, Albrecht RF, Reimann CR, Rosenberg R, et al. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesthesia and Analgesia 55: 100–109, 1976

    PubMed  CAS  Google Scholar 

  • Miller MS, Gandolfi AJ. A rapid, sensitive method for quantifying enflurane in whole blood. Anesthesiology 51: 542–544, 1979

    PubMed  CAS  Google Scholar 

  • Miller RD, Eger II EI, Way WL, Stevens WC, Dolan WM. Comparative neuromuscular effects of forane and halothane alone and in combinations with d-tubocurarine in man. Anesthesiology 35: 38–42, 1971a

    PubMed  CAS  Google Scholar 

  • Miller RD, Way WL, Dolan WM, Stevens WC, Eger II EI. Comparative neuromuscular effects of pancuronium, gallamine, and succinylcholine during forane and halothane anesthesia in man. Anesthesiology 35: 509–514, 1971b

    PubMed  CAS  Google Scholar 

  • Munson ES, Eger II EI, Tham MK, Embro WJ. Increase in anesthetic uptake, excretion and blood solubility in man after eating. Anesthesia and Analgesia 57: 224–231, 1978

    PubMed  CAS  Google Scholar 

  • Munson ES, Embro WJ. Enflurane, isoflurane, and halothane and isolated human uterine muscle. Anesthesiology 46: 11–14, 1977

    PubMed  CAS  Google Scholar 

  • Neigh JL, Garman JK, Harp JR. The electroencephalographic pattern during anesthesia with ethrane. Anesthesiology 35: 482–487, 1971

    PubMed  CAS  Google Scholar 

  • Newberg LA, Michenfelder JD. Cerebral protection by isoflurane during hypoxemia or ischemia. Anesthesiology 59: 29–35, 1983

    PubMed  CAS  Google Scholar 

  • Newberg LA, Milde JH, Michenfelder JD. The cerebral metabolic effects of isoflurane at and above concentrations that suppress cortical electrical activity. Anesthesiology 59: 23–28, 1983

    PubMed  CAS  Google Scholar 

  • Nunn JF. Applied respiratory physiology, 2nd ed, p. 3, Butter-worths, London, 1977

    Google Scholar 

  • Nunn JF. Part I — Chairman’s introduction. British Journal of Anaesthesia 56: 1S–2S, 1984

    Google Scholar 

  • Nunn JF, Chanarin I. Editorial. Nitrous oxide and vitamine B12. British Journal of Anaesthesia 50: 1089–1090, 1978

    PubMed  CAS  Google Scholar 

  • Ohm WW, Cullen BF, Amory DW, Kennedy RD. Delayed seizure activity following enflurane anesthesia. Anesthesiology 42: 367–368, 1975

    PubMed  CAS  Google Scholar 

  • Palahniuk R, Shnider SM, Eger II EI. Pregnancy decreases the requirement for inhaled anesthetic agents. Anesthesiology 41: 82–83, 1974

    PubMed  CAS  Google Scholar 

  • Plummer JL, Hall P de la M, Jenner MA, Ilsley AH, Cousins MJ. Effects of chronic inhalation of halothane, enflurane or isoflurane in rats. British Journal of Anaesthesia 58: 517–523, 1986

    PubMed  CAS  Google Scholar 

  • Pohl LR, Gilette JR. Editorial. A perspective on halothane-induced hepatotoxicity. Anesthesia and Analgesia 61: 809–811, 1982

    PubMed  CAS  Google Scholar 

  • Price HL. General anesthesia and circulatory homeostasis. Physiological Reviews 40: 187–218, 1960

    PubMed  CAS  Google Scholar 

  • Price HL. Myocardial depression by nitrous oxide and its reversal by Ca++. Anesthesiology 44: 211–215, 1976

    PubMed  CAS  Google Scholar 

  • Quasha AL, Eger II EI, Tinker JH. Determinations and applications of MAC. Anesthesiology 53: 315–334, 1980

    PubMed  CAS  Google Scholar 

  • Rehder K, Forbes J, Alter H, Hessler O, Stier A. Halothane biotransformation in man: a quantitative study. Anesthesiology 28: 711–715, 1967

    PubMed  CAS  Google Scholar 

  • Reilly CS, Wood AJJ, Koshakji RP, Wood M. The effect of halothane on drug disposition: contribution of changes in intrinsic drug metabolizing capacity and hepatic blood flow. Anesthesiology 63: 70–76, 1985

    PubMed  CAS  Google Scholar 

  • Reiz S, Balfors E, Sørensen MB, Ariola Jr S, Friedman A, et al. Isoflurane — a powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology 59: 91–97, 1983

    PubMed  CAS  Google Scholar 

  • Rietbrock Von I. Tierexperimentelle Untersuchungen der Leberfunktion unter Ethrane und Halothan. In Lawin & Beer (Eds) Ethrane, pp. 42–50, Springer Verlag, Berlin, 1974

    Google Scholar 

  • Rice SA, Fish KJ. Anesthetic metabolism and renal function in obese and nonobese Fischer 344 rats following enflurane or isoflurane anesthesia. Anesthesiology 65: 28–34, 1986

    PubMed  CAS  Google Scholar 

  • Roberts JG, Foex P, Clarke TNS, Bennett MJ. Haemodynamic interactions of high-dose propranolol pretreatment and anaesthesia in the dog. I. Halothane dose-response studies. British Journal of Anaesthesia 48: 315–325, 1976a

    PubMed  CAS  Google Scholar 

  • Roberts JG, Foex P, Clarke TNS, Prys-Roberts C, Bennett MJ. Haemodynamic interactions of high-dose propranolol pretreatment and anaesthesia in the dog. II. The effects of acute arterial hypoxaemia at increasing depths of halothane anaesthesia. British Journal of Anaesthesia 48: 403–410, 1976b

    PubMed  CAS  Google Scholar 

  • Roberts JG, Foex P, Clarke TNS, Bennett MJ, Saner CA. Haemodynamic interactions of high-dose propranolol pretreatment and anaesthesia in the dog. III. The effects of haemorrhage during halothane and trichloroethylene anaesthesia. British Journal of Anaesthesia 48: 411–418, 1976c

    PubMed  CAS  Google Scholar 

  • Rocha-Reis MGF, Hipolito-Reis C. Effects of the inhalation of enflurane on hepatic microsomal enzymatic activities in the rat. British Journal of Anaesthesia 54: 97–101, 1982

    PubMed  Google Scholar 

  • Rogers K, Hysing ES, Merin RG, Taylor A, Hartley C, Chelly JE. Cardiovascular effects of and interaction between calcium blocking drugs and anesthetics in chronically instrumented dogs. II. Verapamil, enflurane, and isoflurane. Anesthesiology 64: 568–575, 1986

    PubMed  CAS  Google Scholar 

  • Roizen MF, Stevens WC. Multiform ventricular tachycardia due to the interaction of aminophylline and halothane. Anesthesia and Analgesia 57: 738–741, 1978

    PubMed  CAS  Google Scholar 

  • Rosén I, Söderberg M. Electroencephalographic activity in children under enflurane anaesthesia. Acta Anaesthesiologica Scandinavica 19: 361–369, 1975

    PubMed  Google Scholar 

  • Rudo FG, Krantz Jr JC. Anaesthetic molecules. British Journal of Anesthesia 46: 181–189, 1974

    CAS  Google Scholar 

  • Rupp SM, Miller RD, Gencarelli PJ. Vecuronium-induced neuromuscular blockade during enflurane, isoflurane, and halothane anesthesia in humans. Anesthesiology 60: 102–105, 1984

    PubMed  CAS  Google Scholar 

  • Saidman LJ, Eger II EI. Effect of nitrous oxide and of narcotic premedication on the alveolar concentration of halothane required for anesthesia. Anesthesiology 25: 302–306, 1964

    PubMed  CAS  Google Scholar 

  • Salanitre E, Rackow H. The pulmonary exchange of nitrous oxide and halothane in infants and children. Anesthesiology 30: 388–394, 1969

    PubMed  CAS  Google Scholar 

  • Satoh H, Fukuda Y, Anderson DK, Ferrans VJ, Gillette JR, et al. Immunological studies on the mechanism of halothane-induced hepatotoxicity: immunohistochemical evidence of trifluoroacetylated hepatocytes. Journal of Pharmacology and Experimental Therapeutics 233: 857–862, 1985

    PubMed  CAS  Google Scholar 

  • Sawyer DC, Eger II EI, Bahlman SH, Cullen BF, Impelman D. Concentration dependence of hepatic halothane metabolism. Anesthesiology 34: 230–235, 1971

    PubMed  CAS  Google Scholar 

  • Sipes IG, Gandolfi AJ, Pohl LR, Krishna G, Brown Jr BR. Comparison of the biotransformation and hepatotoxicity of halothane and deuterated halothane. Journal of Pharmacology and Experimental Therapeutics 214: 716–720, 1980

    PubMed  CAS  Google Scholar 

  • Smith G. Halothane in clinical practice. British Journal of Anaesthesia 53: 17S–25S, 1981

    PubMed  Google Scholar 

  • Smith G, Vance JP, Brown DM, McMillan JC. Changes in canine myocardial blood flow and oxygen consumption in response to halothane. British Journal of Anaesthesia 46: 821–826, 1974

    PubMed  CAS  Google Scholar 

  • Smith TC, Wollman H. History and principles of anesthesiology. In Goodman-Gilman et al. (Eds) Goodman and Gilman’s: The pharmacological basis of therapeutics, 7th ed., pp. 260–275, Macmillan Publishing Co, New York, 1985

    Google Scholar 

  • Spence AA. Part II — Chairman’s introduction. British Journal of Anaesthesia 56: 45S–46S, 1984

    Google Scholar 

  • Stevens WC, Cromwell TH, Halsey M, Eger II EI, Shakespeare TF, et al. The cardiovascular effects of a new inhalation anesthetic, forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 35: 8–16, 1971

    PubMed  CAS  Google Scholar 

  • Stier A, Alter H, Hessler O, Rehder K. Urinary excretion of bromide in halothane anesthesia. Anesthesia and Analgesia 43: 723–728, 1964

    PubMed  CAS  Google Scholar 

  • Stirt JA, Berger JM, Sullivan SF. Lack of arrhythmogenicity of isoflurane following administration of aminophylline in dogs. Anesthesia and Analgesia 62: 568–571, 1983

    PubMed  CAS  Google Scholar 

  • Stoelting RK, Eger II EI. Percutaneous loss of nitrous oxide, cyclopropane, ether and halothane in man. Anesthesiology 30: 278–283, 1969

    PubMed  CAS  Google Scholar 

  • Suzukawa M, Michaels IAL, Rubarsky J, Kopriva CJ, Kitahata LM. Use of isoflurane during resection of pheochromocytoma. Anesthesia and Analgesia 62: 100–103, 1983

    PubMed  CAS  Google Scholar 

  • Sweeney B, Bingham RM, Amos RJ, Petty AC, Cole PV. Toxicity of bone marrow in dentists exposed to nitrous oxide. British Medical Journal 291: 567–569, 1985

    PubMed  CAS  Google Scholar 

  • Takahashi S, Shigematsu A, Furukawa T. Interaction of volatile anesthetics with rat hepatic microsomal cytochrome P-450. Anesthesiology 41: 375–379, 1974

    PubMed  CAS  Google Scholar 

  • Terrell RC. Physical and chemical properties of anaesthetic agents. British Journal of Anaesthesia 56: 3S–7S, 1984

    PubMed  CAS  Google Scholar 

  • Thornton JA, Fleming JS, Goldberg AD, Baird D. Cardiovascular effects of 50% nitrous oxide and 50% oxygen mixture. Anaesthesia 28: 484–489, 1973

    PubMed  CAS  Google Scholar 

  • Tinker JH, Gandolfi AJ, Van Dyke RA. Elevation of plasma bromide levels in patients following halothane anesthesia: time correlation with total halothane dosage. Anesthesiology 44: 194–197, 1976

    PubMed  CAS  Google Scholar 

  • Torri G, Damia G, Fabiani ML, Frova G. Uptake and elimination of enflurane in man. British Journal of Anaesthesia 44: 789–794, 1972

    PubMed  CAS  Google Scholar 

  • Uehlke H, Hellmer KH, Taberelli-Poplawski S. Metabolic activators of halothane and its covalent binding in liver endoplasmic proteins in vivo. Naunyn-Schmiedebergs Archives of Pharmacology 279: 39–52, 1973

    Google Scholar 

  • Vergani D, Mieli-Vergani G, Alberti A, Neuberger J, Eddlston ALWF, et al. Antibodies to the surface of halothane-altered rabbit hepatocytes in patients with severe halothane associated hepatitis. New England Journal of Medicine 303: 66–71, 1980

    PubMed  CAS  Google Scholar 

  • Vessey MP, Nunn JF. Occupational hazards of anaesthesia. British Medical Journal 281: 696–698, 1980

    PubMed  CAS  Google Scholar 

  • Vieira E. Effect of the chronic administration of nitrous oxide 0.5% to gravid rats. British Journal of Anaesthesia 51: 283–287, 1979

    PubMed  CAS  Google Scholar 

  • Walton B. Editorial. Halothane hepatitis in children. Anaesthesia 41: 575–578, 1986

    PubMed  CAS  Google Scholar 

  • Warren TM, Datta S, Ostheimer GW, Naulty JS, Weiss JB, et al. Comparison of the maternal and neonatal effects of halothane, enflurane, and isoflurane for cesarean delivery. Anesthesia and Analgesia 62: 516–520, 1983

    PubMed  CAS  Google Scholar 

  • Waud BE, Waud DR. Comparison of the effects of general anesthetics on the end-plate of skeletal muscle. Anesthesiology 43: 540–547, 1975

    PubMed  CAS  Google Scholar 

  • Waud BE, Waud DR. Effects of volatile anesthetics on directly and indirectly stimulated skeletal muscle. Anesthesiology 50: 103–110, 1979

    PubMed  CAS  Google Scholar 

  • Whitburn RH, Sumner E. Halothane hepatitis in an 11-month-old child. Anaesthesia 41: 611–613, 1986

    PubMed  CAS  Google Scholar 

  • White PF, Marietta MP, Pudwill CR, Way WL, Trevor AJ. Effects of halothane anesthesia on the biodisposition of ketamine in rats. Journal of Pharmacology and Experimental Therapeutics 196: 545–555, 1976

    PubMed  CAS  Google Scholar 

  • Wolfson B, Hetrick WD, Lake CL, Siker ES. Anesthetic indices — further data. Anesthesiology 48: 187–190, 1978

    PubMed  CAS  Google Scholar 

  • Wollman H, Alexander SC, Cohen PJ, Chase PE, Melman E, et al. Cerebral circulation of man during halothane anesthesia. Anesthesiology 25: 180–184, 1964

    PubMed  CAS  Google Scholar 

  • Wollman H, Alexander SC, Cohen PJ, Smith TC, Chase PE, et al. Cerebral circulation during general anesthesia and hyperventilation in man. Anesthesiology 26: 329–334, 1965

    PubMed  CAS  Google Scholar 

  • Wood M, Wood AJJ. Contrasting effects of halothane, isoflurane, and enflurane on in vivo drug metabolism in the rat. Anesthesia and Analgesia 63: 709–714, 1984

    PubMed  CAS  Google Scholar 

  • Wood M, Uetrecht J, Phythyon JM, Shay S, Sweetman BJ, et al. The effects of Cimetidine on anesthetic metabolism and toxicity. Anesthesia and Analgesia 65: 481–488, 1986

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, O., Brown, B.R. Clinical Pharmacokinetics of the Inhalational Anaesthetics. Clin-Pharmacokinet 12, 145–167 (1987). https://doi.org/10.2165/00003088-198712030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198712030-00001

Keywords

Navigation