Skip to main content
Log in

The Clinical Relevance of Protein Binding and Tissue Concentrations in Antimicrobial Therapy

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The relevance of protein binding, molecular size and lipophilicity to tissue penetration of antimicrobials is discussed, and the clinical relevance of tissue penetration of these agents is assessed.

In order to assess the relevance of any factor on the clinical outcome of a group of infections it is necessary to obtain some form of dose response; i.e. the dose has to be (intentionally or otherwise) titrated down until negative responses are seen. Information on clinical failures tends not to be reported, hence useful data are difficult to obtain.

The relevance of protein binding to the microbiological activity of a drug is important and the use of some highly bound agents in readily assessable diseases is illustrated with a few examples: the poor efficacy of fusidic acid in gonorrhoea, when high failure rates are found with doses of 2g; ceftriaxone in gonorrhoea, at doses (25mg) with which one would expect cures, is associated with significant failures; the failure of cefoperazone in serious illness can be related to the degree of protein binding.

The degree of tissue penetration (protein binding apart) is related to clinical efficacy in urinary tract infections (where ample evidence is available), chest infections (where the data are somewhat fewer but probably convincing) and meningitis where experimental data are firm but clinical information less readily available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barza M, Brusch J, Bergeran MG, Weinstein L. Penetration of antibiotics into fibrin focci in vivo. Journal of Infectious Diseases 129: 73–78, 1974

    Article  PubMed  CAS  Google Scholar 

  • Barza M, Cuchural G. General principles of antibiotic tissue penetration. Journal of Antimicrobial Chemotherapy 15 (Suppl. A): 59–75, 1985

    PubMed  CAS  Google Scholar 

  • Barza M, Weinstein L. Pharmacokinetics of the penicillins in man. Clinical Pharmacokinetics 1: 297–308, 1976

    Article  PubMed  CAS  Google Scholar 

  • Bergan T, Engeset A, Olszewski W, Solberg R. Pharmacokinetics of bacampicillin and bacmecillinam in plasma and peripheral lymph. Lymphology 12: 85–94, 1979

    PubMed  CAS  Google Scholar 

  • Bolivar R, Fainstein V, Elting L, Bodey GP. Cefoperazone for the treatment of infections in patients with cancer. Reviews of Infectious Diseases 5 (Suppl.): S181–S187, 1983

    Article  PubMed  Google Scholar 

  • Chisholm GD, Waterworth PM, Calnan JS, Garrod LP. Concentrations of antibacterial agents in interstitial tissue fluid. British Medical Journal 1: 569–573, 1973

    Article  PubMed  CAS  Google Scholar 

  • Craig WA, Suh B. Theory and practical impact of binding of antimicrobials to serum proteins and tissue. Scandinavian Journal of Infectious Diseases 14 (Suppl.): 92–99, 1978

    PubMed  CAS  Google Scholar 

  • Craig WA, Welling PG. Protein binding of antimicrobials: clinical pharmacokinetics and therapeutic implications. Clinical Pharmacokinetics 2: 252–268, 1971

    Article  Google Scholar 

  • Davis SD. Activity of gentamicin, tobramycin, polymixin B and colistimethate in mouse protection tents with Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 8: 50–53, 1975

    Article  PubMed  CAS  Google Scholar 

  • Davis BD, Wood WB. Studies on antibacterial action of sulphonamide drugs. Proceedings of the Society of Experimental Biology and Medicine 51: 283–285, 1942

    CAS  Google Scholar 

  • Decazes JM, Ernst JD, Sande MA. Correlation of in vitro timekill curves and kinetics of bacterial killing in CSF during ceftriaxone therapy of experimental E. coli meningitis. Antimicrobial Agents and Chemotherapy 24: 463–467, 1983

    Article  PubMed  CAS  Google Scholar 

  • Fisher LS, Chow AW, Yoshikaea TJ, Gaze LB. Cephalothin and cephaloridine therapy for bacterial meningitis. Annals of Internal Medicine 82: 689–693, 1975

    PubMed  CAS  Google Scholar 

  • Garrod LP, Lambert HP, O’Grady F, et al. In Antibiotics and chemotherapy, 1st ed., p. 427, Churchill Livingstone, London, 1981

    Google Scholar 

  • Gerding DN, Hall WH. The penetration of antibiotics into peritoneal fluid. Bulletin of the New York Academy of Medicine 51: 1016–1019, 1975

    PubMed  CAS  Google Scholar 

  • Gerding DN, Kromhout JP, Sullivan JJ, Hall WH. Antibiotic tissue penetration of ascitic fluid in dogs. Antimicrobial Agents and Chemotherapy 10: 850–855, 1976

    Article  PubMed  CAS  Google Scholar 

  • Gerding DN, Peterson LR, Hughes CE, Bamberger DM. Extravascular antimicrobial distribution in man. In Lorian (Ed.) Antibiotics in Laboratory Medicine, 2nd ed., Williams and Wilkins, Baltimore, 1986

    Google Scholar 

  • Gold R, Jin E, Levison H, Isles A, Fleming PC. Ceftazidime alone and in combination in patients with cystic fibrosis. Journal of Antimicrobial Chemotherapy 12 (Suppl. A): S331–336, 1983

    Google Scholar 

  • Guttler F, Tybring L. Interaction of albumin and fusidic acid. British Journal of Pharmacology 43: 151–160, 1971

    Article  PubMed  CAS  Google Scholar 

  • Howell A, Sutherland R, Rolinson GN. Effect of protein binding on levels of ampicillin and cloxacillin in synovial fluid. Clinical Pharmacology and Therapeutics 13: 72–74, 1972

    Google Scholar 

  • Jackson GG. Methods for the clinical evaluation of antibiotics in urinary tract infections. Scandinavian Journal of Infectious Diseases 14 (Suppl.): 289–294, 1978

    PubMed  Google Scholar 

  • Kaiser AB, McGee ZA. Aminoglycoside therapy of Gram-negative bacillary meningitis. New England Journal of Medicine 293: 1215–1220, 1975

    Article  PubMed  CAS  Google Scholar 

  • Klempner MS, Styrt B. Clindamycin uptake by human neutrophils. Journal of Infectious Diseases 144: 472–479, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kucers A, Bennett N. (Eds). Use of antibiotics, 3rd ed., pp. 462–469, Heinemann, London, 1979

    Google Scholar 

  • Kunin CM. Clinical significance of protein binding of the penicillins. New York Academy of Science 145: 282–290, 1967

    Article  CAS  Google Scholar 

  • Kunin CM, Craig WA, Kornguth M, Monson R. Influence of protein binding on the pharmacologic activity of antibiotics. New York Academy of Science 296: 214–234, 1973

    Article  Google Scholar 

  • Lorian V. In Rook & Sande (Eds) Effect of antibiotics on bacterial structure in new dimensions in antimicrobial chemotherapy, pp. 37–81, Churchill Livingstone, New York, 1984

  • Maesen FPV, Beewkes H, Davies BI, Buytendijk HJ, Brombacher PJ, et al. Bacampicillin in acute exacerbations of chronic bronchitis, a dose range study. Journal of Antimicrobial Chemotherapy 2: 279–285, 1976

    Article  PubMed  CAS  Google Scholar 

  • Maesen FPV, Davies BI, Brouwers J, Salemans T, Wamper MN, et al. Latamoxef (moxalactam) in acute exacerbations of chronic bronchitis. Journal of Antimicrobial Chemotherapy 11: 113–123, 1983

    Article  Google Scholar 

  • Mandell GL. Interaction of intraleukocytic bacteria and antibiotics. Journal of Clinical Investigation 52: 1673–1679, 1973

    Article  PubMed  CAS  Google Scholar 

  • May JR, Delves DM. Treatment of chronic bronchitis with ampicillin. Lancet 1: 929–931, 1965

    PubMed  CAS  Google Scholar 

  • McCabe WR, Jackson GG. Treatment of pyelonephritis: successes and failures related to bacteria, drug and host factors. New England Journal of Medicine 272: 1037–1044, 1965

    Article  Google Scholar 

  • McCabe WR, Jackson GG, Greble HG. Treatment of chronic pyelonephritis. Archives of Internal Medicine 104: 710–719, 1959

    Article  Google Scholar 

  • McCrae WM, Raeburn JA, Hanson EJ. Tobramycin therapy of infections due to Pseudomonas aeruginosa in patients with cystic fibrosis. Journal of Infectious Diseases 134 (Suppl.): S191–S193, 1976

    Article  PubMed  Google Scholar 

  • McCracken GH. The rate of bacteriologic response to antimicrobial therapy in neonatal meningitis. American Journal of Diseases of Childhood 123: 547–533, 1972

    Google Scholar 

  • McCracken GH. Pharmacokinetics and bacteriological correlations between antimicrobial therapy of experimental meningitis in rabbits and meningitis in humans: a review. Journal of Antimicrobial Chemotherapy 12 (Suppl. D): 97–108, 1983

    PubMed  CAS  Google Scholar 

  • McCracken GH, Mize SG, Threlkeld N. Intraventricular gentamicin therapy in Gram-negative bacillary meningitis of infancy. Lancet 1: 787–791, 1980

    PubMed  Google Scholar 

  • McCracken GH, Nelson JD, Grim L. Pharmacokinetics and bacteriological efficacy of cefoperazone, cefuroxime, ceftriaxone and moxalactam in experimental Streptococcus pneumoniae and Haemophilus influenzae meningitis. Antimicrobial Agents and Chemotherapy 21: 262–267, 1982

    Article  PubMed  CAS  Google Scholar 

  • Merrikin DJ, Briant J, Rolinson DN. Effect of protein binding on antibiotic activity in vivo. Journal of Antimicrobial Chemotherapy 11: 233–238, 1983

    Article  PubMed  CAS  Google Scholar 

  • O’Dell GB. The dissociation of bilirubin from albumin and its clinical implications. Journal of Pediatrics 55: 268–279, 1959

    Article  Google Scholar 

  • Peterson LR, Gerding DN. Influence of protein binding of antibiotics on serum pharmacokinetics and extravascular penetration: clinically useful concepts. Reviews of Infectious Diseases 2: 340–348, 1980

    Article  PubMed  CAS  Google Scholar 

  • Peterson LR, Gerding DN, Moody JA, Fasching CE. Comparison of azlocillin, ceftizoxime, cefoxitin and amikacin alone and in combination against Pseudomonas aeruginosa in a neutropenic-site rabbit model. Antimicrobial Agents and Chemotherapy 25: 545–552, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Peterson LR, Van Etta LL, Fasching GE, Gerding DN. Effect of protein binding on simulated intravascular and extravascular kinetics of cefotaxime in an in vitro model. Antimicrobial Agents and Chemotherapy 25: 58–61, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Rauws AG, VanKlingeren B. Estimation of antibiotic levels in interstitial fluid from whole tissue levels. Scandinavian Journal of Infectious Diseases 14 (Suppl.): S186–S188, 1978

    Google Scholar 

  • Reeves DS, Rowe RCG, Snell ME, Thomas ABW. Further studies on the secretion of antibiotics in the prostatic fluid of the dog. In Brumfitt & Asscher (Eds) Urinary tract infection, pp. 197–215, Oxford University Press, London, 1973

    Google Scholar 

  • Rolinson GN, Sutherland R. The binding of antibiotics to serum protein. British Journal of Pharmacology 25: 638–650, 1965

    CAS  Google Scholar 

  • Ryan DM, Mason U, Harding SM. The penetration of ceftazidime into extravascular fluid. Journal of Antimicrobial Chemotherapy 8 (Suppl. B): 283–288, 1981

    PubMed  CAS  Google Scholar 

  • Sakata Y, McCracken GH, Thomas ML, Olsen KD. Pharmacokinetics and therapeutic efficacy of imipenem, ceftazidime and ceftriaxone in experimental meningitis due to an ampicillin and chloramphenicol resistant strain of H. influenzae type b. Antimicrobial Agents and Chemotherapy 25: 29–32, 1984

    Article  PubMed  CAS  Google Scholar 

  • Schreiner A, Helium KB, Digranes A, Bergman I. Transfer of penicillin G and ampicillin into human skin blisters induced by suction. Scandinavian Journal of Infectious Diseases 14 (Suppl.): S233–S237, 1978

    Google Scholar 

  • Stamey TA, Fair WR, Timothy MM, Millar MA, Mihwa G, et al. Serum versus urinary antimicrobial concentrations in cure of urinary tract infections. New England Journal of Medicine 291: 1159–1163, 1974

    Article  PubMed  CAS  Google Scholar 

  • Stewart SM, Andersen IME, Jones GR, Calder MA. Amoxycillin levels in sputum, serum and saliva. Thorax 29: 110–114, 1974

    Article  PubMed  CAS  Google Scholar 

  • Stockel K. Pharmacokinetics of rocephin, a highly active new cephalosporin with an exceptionally long biological half-life. Chemotherapy 1 (Suppl.): S42–S46, 1981

    Article  Google Scholar 

  • Thomsett R, Schultz S, McDermott W. The relationship of protein binding to the pharmacology and antibacterial activity of penicillins X, G, Dihydro F and K. Journal of Bacteriology 53: 581–595, 1947

    Google Scholar 

  • Van Etta LL, Kravitz GR, Russ TE, Fasching CE, Gerding DN, et al. Effect of method of administration on extravascular penetration of four antibiotics. Antimicrobial Agents and Chemotherapy 21: 873–880, 1982

    Article  PubMed  Google Scholar 

  • Verwey WF, Williams HR. Binding of various penicillins by plasma and peripheral lymph obtained from dogs. Antimicrobial Agents and Chemotherapy 484–491, 1963

    Google Scholar 

  • Waterman NG, Raff MJ, Scharfenberger L, Barnwell PA. Protein binding and concentrations of cephaloridine and cefazolin in serum and interstitial fluid of dogs. Journal of Infectious Diseases 133: 642–647, 1976

    Article  PubMed  CAS  Google Scholar 

  • Weinstein L, Diakos GK, Perrin TS. Studies on the relationship of tissue fluid and blood levels of penicillin. Journal of Laboratory and Clinical Medicine 38: 712–719, 1951

    PubMed  CAS  Google Scholar 

  • Wilkins TD, West SEH. Therapy of anaerobic infections. Infection 11 (Suppl. 2): S105–S109, 1983

    Article  PubMed  Google Scholar 

  • Wise R. Protein binding of β-lactams: the effects on activity and pharmacology, particularly tissue penetration, I. Journal of Antimicrobial Chemotherapy 12: 1–18, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Wise R. Protein binding of β-lactams: the effects on activity and pharmacology, particularly tissue penetration. II. Journal of Antimicrobial Chemotherapy 12: 105–118, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Wise R, Gillett AP, Cadge B, Durham SR, Baker S. The influence of protein binding upon tissue fluid levels of six β-lactam compounds. Journal of Infectious Diseases 142: 77–82, 1980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wise, R. The Clinical Relevance of Protein Binding and Tissue Concentrations in Antimicrobial Therapy. Clin-Pharmacokinet 11, 470–482 (1986). https://doi.org/10.2165/00003088-198611060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198611060-00004

Keywords

Navigation