Skip to main content
Log in

Free Drug Concentration Monitoring in Clinical Practice

Rationale and Current Status

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Recent advances in techniques to determine free drug concentrations have lead to a substantial increase in the monitoring of this parameter in clinical practice. The majority of drug binding to macromolecules in serum can be accounted for by association with albumin and α1-acid glycoprotein. Albumin is the primary binding protein for acidic drugs, while binding to α1-acid glycoprotein is more commonly observed with basic lipophilic agents. Alterations in the concentrations of either of these macromolecules can result in significant changes in free fraction. Diseases such as cirrhosis, nephrotic syndrome and malnourishment can result in hypoalbuminaemia. Burn injury, cancer, chronic pain syndrome, myocardial infarction, inflammatory diseases and trauma are all associated with elevations in the concentration of α1-acid glycoprotein. Treatment with a number of drugs has also been shown to increase α1-acid glycoprotein serum concentrations.

A wide variety of biological fluids have been examined for their ability to provide an estimation of free drug concentration at receptor sites. The most useful fluid for estimating free drug concentrations appears to be plasma or serum, with subsequent treatment of the sample to separate free and bound drug by an appropriate technique. The two most widely used methods are equilibrium dialysis and ultrafiltration. Of these two, ultraflltration has the greatest utility clinically because it is rapid and relatively simple. The major difficulty associated with this method involves the binding of drug to the ultrafilters, but significant progress has been made in solving this problem.

Several authors have enat]dorsed the routine use of free drug concentration monitoring. Data examining the clinical usefulness of free drug concentration monitoring for phenytoin, carbamazepine, valproic acid, disopyramide and lignocaine (lidocaine) are reviewed. While available evidence suggests that free concentrations may correlate with clinical effects better than total drug concentrations, there are insufficient data to justify the recommendation of the routine use of free drug concentration monitoring for any of these agents at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson FP. Methadonc plasma protein binding: Alterations in cancer and displacement from α1-acid glycoprotein. Clinical Pharmacology and Therapeutics 32: 652–658, 1982

    Article  PubMed  CAS  Google Scholar 

  • Abramson FP, Jenkins J, Ostchega Y. Effects of cancer and its treatment on plasma concentration of alpha-1-acid glycoprotein and propranolol binding. Clinical Pharmacology and Therapeutics 32: 659–663, 1982

    Article  PubMed  CAS  Google Scholar 

  • Aitio M-L. Plasma concentrations and protein binding of disopyramide and mono-N-dealkyldisopyramide during chronic oral disopyramide therapy. British Journal of Clinical Pharmacology 11: 369–376, 1981

    Article  PubMed  CAS  Google Scholar 

  • Alderman EL, Kerber RE, Harrison DC. Evaluation of lidocaine resistance in man using intermittent large-dose infusion techniques. American Journal of Cardiology 34: 342–349, 1974

    Article  PubMed  CAS  Google Scholar 

  • Aldwin L, Kabakoff DS. Metabolite interference in homogenous enzyme immunoassay of phenytoin. Clinical Chemistry 27: 770–771, 1981

    PubMed  CAS  Google Scholar 

  • Albani F, Riva R, Procaccianti G, Baruzzi A, Perucca E. Free fraction of valproic acid: in vitro time-dependent increase and correlation with free fatty acid concentration in human plasma and serum. Epilepsia 24: 65–74, 1983

    Article  PubMed  CAS  Google Scholar 

  • Andreasen F. Protein binding of drugs in plasma from patients with acute renal failure. Acta Pharmacologica et Toxicologica 32: 417–429, 1973

    Article  PubMed  CAS  Google Scholar 

  • Aronsen KF, Ekelund G, Kindmark CO, Laurell CB. Sequential changes of plasma proteins after surgical trauma. Scandinavian Journal of Clinical and Laboratory Investigation 29 (Suppl. 124): 127–136, 1972

    Article  Google Scholar 

  • Bachmann K, Forney Jr RB, Voeller K. Monitoring phenytoin in salivary and plasma ultrafiltrates of pediatric patients. Therapeutic Drug Monitoring 5: 325–329, 1983

    Article  PubMed  CAS  Google Scholar 

  • Bachmann K, Valentovic M, Shapiro R. A possible role for cyanate in the albumin binding defect of uremia. Biochemical Pharmacology 29: 1598–1601, 1980

    Article  PubMed  CAS  Google Scholar 

  • Bai SA, Abramson FP. Interactions of phenobarbital with propranolol in the dog. I. Plasma protein binding. Journal of Pharmacology and Experimental Therapeutics 222: 589–594, 1982

    PubMed  CAS  Google Scholar 

  • Barchowsky A, Stargel WW, Shand DG, Routledge PA. Saliva concentrations of lidocaine and its metabolites in man. Therapeutic Drug Monitoring 4: 335–339, 1982

    Article  PubMed  CAS  Google Scholar 

  • Barré J, Chamouard JM, Houin G, Tillement JP. Equilibrium dialysis, ultrafiltration, and ultracentrifugation compared for determining the plasma-protein-binding characteristics of valproic acid. Clinical Chemistry 31: 60–64, 1985

    PubMed  Google Scholar 

  • Barré J, Houin G, Rosenbaum J, Zini R, Dhumeaux D, et al. Decreased α1-acid glycoprotein in liver cirrhosis: consequences for drug protein binding. British Journal of Clinical Pharmacology 18: 652–653, 1984

    Article  PubMed  Google Scholar 

  • Battino D, Bossi L, Croci D, Franceschetti S, Gomeni C, et al. Carbamazepine plasma levels in children and adults: influence of age, dose, and associated therapy. Therapeutic Drug Monitoring 2: 315–322, 1980

    PubMed  CAS  Google Scholar 

  • Bauer LA, Brown T, Gibaldi M, Hudson L, Nelson S, et al. Influence of long term infusions on lidocaine kinetics. Clinical Pharmacology and Therapeutics 31: 433–437, 1982

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Tinguely D, Schopf J. Increase of α1-acid glycoprotein after treatment with amitriptyline. British Journal of Clinical Pharmacology 14: 102–103, 1982

    Article  PubMed  CAS  Google Scholar 

  • Belpaire FM, Bogaert MG, Rosseneu M. Binding of β-adrenoceptor blocking drugs to human serum albumin, to α1-acid glycoprotein and to human serum. European Journal of Clinical Pharmacology 22: 253–256, 1982

    Article  PubMed  CAS  Google Scholar 

  • Benedek IH, Blouin RA, McNamara PJ. Serum protein binding and the role of increased α1-acid glycoprotein in moderately obese male subjects. British Journal of Clinical Pharmacology 18: 941–946, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bcnedek IH, Fiske WD, Griffen WO, Bell RM, Blouin RA et al. Scrum α1-acid glycoprotein and the binding of drugs in obesity. British Journal of Clinical Pharmacology 16: 751–754, 1983

    Article  Google Scholar 

  • Bcrtilsson L. Clinical pharmacokinetics of carbamazepine. Clinical Pharmacokinetics 3: 128–143, 1978

    Article  Google Scholar 

  • Booker HE, Darcey B. Serum concentrations of free diphenylhydantoin and their relationship to clinical intoxication. Epilepsia 14: 177–184, 1973

    Article  PubMed  CAS  Google Scholar 

  • Boston Collaborative Drug Surveillance Program. Diphenylhydantoin side effects and serum albumin levels. Clinical Pharmacology and Therapeutics 14: 529–532, 1973

    Google Scholar 

  • Bowdle TA, Neal GD, Levy RH, Heimbach DM. Phenytoin pharmacokinetics in burned rats and plasma protein binding of phenytoin in burned patients. Journal of Pharmacology and Experimental Therapeutics 213: 97–99, 1980

    PubMed  CAS  Google Scholar 

  • Bowers WF, Fulton S, Thompson J. Ultrafiltration vs equilibrium dialysis for determination of free fraction. Clinical Pharmacokinetics 9 (Suppl. 1): 49–60, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bredesen JE, Kierulf P. Relationship between α1-acid glycoprotein and plasma binding of disopyramide and mono-N-dealkyldisopyramide. British Journal of Clinical Pharmacology 18: 779–784, 1984

    Article  PubMed  CAS  Google Scholar 

  • Bredesen JE, Pike E, Lunde PKM. Plasma binding of disopyramide and mono-N-dealkyldisopyramide. British Journal of Clinical Pharmacology 14: 673–676, 1982

    Article  PubMed  CAS  Google Scholar 

  • Brørs O, Jacobsen S. pH lability in serum during equilibrium dialysis. British Journal of Clinical Pharmacology 20: 85–88, 1985

    Article  PubMed  Google Scholar 

  • Bruni J, Wang LH, Marbury TC, Lee CS, Wilder BJ. Protein binding of valproic acid in uremic patients. Neurology 30: 557–559, 1980

    Article  PubMed  CAS  Google Scholar 

  • Bryson SM, Whiting B, Lawrence JR. Disopyramide serum and pharmacologic effect kinetics applied to the assessment of bioavailability. British Journal of Clinical Pharmacology 6: 409–419, 1978

    Article  PubMed  CAS  Google Scholar 

  • Buckman K, Clairborne K, deGuzman M, Walberg CB, Haywood LJ. Lidocaine efficacy and toxicity assessed by a new rapid method. Clin. Pharmacol. Therap. 28: 177–181, 1980

    Article  CAS  Google Scholar 

  • Bush MT, Alvin JD. Characterization of drug-protein interactions by classic methods. Annals of the New York Academy of Sciences 226: 36–43, 1973

    Article  PubMed  CAS  Google Scholar 

  • Calvo R, Carlos R, Erill S. Effects of carbamylation of plasma proteins and competitive displacers on drug binding in uremia. Pharmacology 24: 248–252, 1982

    Article  PubMed  CAS  Google Scholar 

  • Chadwick DW. Concentration-effect relationships of valproic acid. Clinical Pharmacokinetics 10: 155–163, 1985

    Article  PubMed  CAS  Google Scholar 

  • Chapman A, Keane PE, Meldrum BS, Simiand J, Vernieres JC. Mechanism of anticonvulsant action of valproate. Progress of Neurobiology 19: 315–359, 1982

    Article  CAS  Google Scholar 

  • Chiang W-T, von Bahr C, Calissendorff B, Dahlqvist R, Emilsson H, et al. Kinetics and dynamics of disopyramide and its dealkylated metabolite in healthy subjects. Clinical Pharmacology and Therapeutics 38: 37–44, 1985

    Article  PubMed  CAS  Google Scholar 

  • Chignell CF. Application of physiochemical and analytical techniques to the study of drug interactions with biological systems. Chemical Rubber Corporation Critical Reviews in Toxicology 1: 413–465, 1972

    Google Scholar 

  • Contin M, Riva R, Albani F, Perucca E, Baruzzi A. Determination of total and free plasma carbamazepine concentrations by enzyme multiplied immunoassay: interference with the 10, 11-epoxide metabolite. Therapeutic Drug Monitoring 7: 46–50, 1985

    Article  PubMed  CAS  Google Scholar 

  • Cotham RH, Shand D. Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clinical Pharmacology and Therapeutics 18: 535–538, 1975

    PubMed  CAS  Google Scholar 

  • Cunningham JL, Shen DD, Shudo I, Azarnoff DL. The effect of urine pH and plasma protein binding on the renal clearance of disopyramide. Clinical Pharmacokinetics 2: 373–383, 1977

    Article  PubMed  CAS  Google Scholar 

  • Cunningham JL, Shen DD, Shudo I, Azarnoff DL. The effect of nonlinear disposition kinetics on the systemic availability of disopyramide. British Journal of Clinical Pharmacology 5: 343–346, 1978

    Article  CAS  Google Scholar 

  • Danhof M, Breimer DD. Therapeutic drug monitoring in saliva. Clinical Pharmacokinetics 3: 39–57, 1978

    Article  PubMed  CAS  Google Scholar 

  • David BM, Ilett KF, Whiteford EG, Stenhouse NS. Prolonged variability in plasma protein binding of disopyramide after acute myocardial infarction. British Journal of Clinical Pharmacology 15: 435–441, 1983a

    Article  PubMed  CAS  Google Scholar 

  • David BM, Tjokrosetio R, Ilett KF. Plasma protein binding of disopyramide by equilibrium dialysis and ultrafiltration. Therapeutic Drug Monitoring 5: 81–86, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Davis D, Grossman SH, Kitchell BB, Shand DG, Routledge PA. The effects of age and smoking on the plasma protein binding of lignocaine and diazepam. British Journal of Clinical Pharmacology 19: 261–265, 1985a

    Article  PubMed  CAS  Google Scholar 

  • David RF, DeBoer LWV, Yasuda T, Rude RE, Ribeiro LGT, et al. Regional myocardial lidocaine concentration determines the antidysrhythmic effect in dogs after coronary artery occlusion. Anesthesiology 62: 155–160, 1985b

    Article  Google Scholar 

  • Deglin SM, Deglin JM, Wurtzbacher T, Litton M, Rolfe C, et al. Rapid serum lidocaine determination in the coronary care unit. Journal of the American Medical Association 244: 571–573, 1980

    Article  PubMed  CAS  Google Scholar 

  • Denson DD, Coyle DE, Thompson GA, Santos D, Turner PA, et al. Bupivacaine protein binding in the term parturient: effects of lactic acidosis. Clinical Pharmacology and Therapeutics 35: 702–709, 1984

    Article  PubMed  CAS  Google Scholar 

  • Dickinson RG, Hooper WD, King AR, Eadie MJ. Fallacious results from measuring salivary carbamazepine concentrations. Therapeutic Drug Monitoring 6: 35–41, 1984

    Article  Google Scholar 

  • Drayer DE, Lorenzo B, Reidenberg MM. Liquid chromatography and fluorescence spectroscopy compared with a homogenous enzyme immunoassay technique for determining quinidine in serum. Clinical Chemistry 27: 308–310, 1981

    PubMed  CAS  Google Scholar 

  • Drayer DE, Lorenzo B, Werns SW, Reidenberg MM. Plasma levels, protein binding, and elimination data of lidocaine and active metabolites in cardiac patients. Clinical Pharmacology and Therapeutics 34: 14–22, 1983

    Article  PubMed  CAS  Google Scholar 

  • Drayer DE, Lowenthal DT, Restivo KM, Schwartz A, Cook CE, et al. Steady-state serum levels of quinidine and active metabolites in cardiac patients with varying degrees of renal function. Clinical Pharmacology and Therapeutics 24: 31–39, 1978

    PubMed  CAS  Google Scholar 

  • Eadie MJ. Anticonvulsant drugs: an update. Drugs 27: 328–363, 1984

    Article  PubMed  CAS  Google Scholar 

  • Edwards DJ, Axelson JE, Slaughter RL, Elvin AT, Lalka D. Factors affecting quinidine protein binding in humans. Journal of Pharmaceutical Sciences 73: 1264–1267, 1984

    Article  PubMed  CAS  Google Scholar 

  • Edwards DJ, Lalka D, Cerra F, Slaughter RL. Alpha-1-acid glycoprotein concentration and protein binding in trauma. Clinical Pharmacology and Therapeutics 31: 62–67, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ehrnebo M, Odar-Cederlöf I. Binding of amobarbital, pentobarbital and diphenylhydantoin to blood cells and plasma proteins in healthy volunteers and uraemic patients. European Journal of Clinical Pharmacology 8: 445–453, 1975

    Article  PubMed  CAS  Google Scholar 

  • El-Gamel S, Wollert U, Muller WE. Optical studies on the specific interaction of dipyridamole with α1-acid glycoprotein (orosomucoid). Journal of Pharmacy and Pharmacology 34: 152–157, 1982

    Article  PubMed  CAS  Google Scholar 

  • Erill S, Calvo R, Carlos R. Plasma protein carbamylation and decreased acidic drug protein binding in uremia. Clinical Pharmacology and Therapeutics 27: 612–618, 1980

    Article  PubMed  CAS  Google Scholar 

  • Feely J, Clee M, Pereira L, Guy E. Enzyme induction with rifampicin: lipoproteins and drug binding to α1-acid glycoprotein. British Journal of Clinical Pharmacology 16: 195–197, 1983

    Article  PubMed  CAS  Google Scholar 

  • Fremstad D, Bergerud K. Plasma protein binding of drugs as influenced by blood collection methods. Acta Pharmacologica et Toxicologica 39: 570–572, 1976

    Article  PubMed  CAS  Google Scholar 

  • Fremstad D, Bergerud K, Haffner JFW, Lunde PKM. Increased plasma binding of quinidine after surgery: a preliminary report. European Journal of Clinical Pharmacology 10: 441–444, 1976

    Article  PubMed  CAS  Google Scholar 

  • Fröscher W, Burr W, Penin H, Vohl J, Bulau P, et al. Free level monitoring of carbamazepine and valproic acid: clinical significance. Clinical Neuropharmacology 8: 362–371, 1985

    Article  PubMed  Google Scholar 

  • Fukui T, Hameroff ST, Gandolfi AJ. Alpha-1-acid glycoprotein and beta-endorphin alterations in chronic pain patients. Anesthesiology 60: 494–496, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ghoneim MM, Pandya H. Plasma protein binding of thiopental in patients with impaired renal or hepatic function. Anesthesiology 42: 545–549, 1975

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Blaschke TF. Effect of concentration-dependent binding to plasma proteins on the pharmacokinetics and pharmacodynamics of disopyramide. Clinical Pharmacokinetics 9 (Suppl. 1): 42–48, 1984

    Article  PubMed  Google Scholar 

  • Giacomini KM, Giacomini JC, Blaschke TF. Absence of effect of heparin on the binding of prazosin and phenytoin to plasma proteins. Biochemical Pharmacology 29: 3337–3340, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Giacomini JC, Swezey SE, Harrison DC, Nelson WL, et al. The stereoselective disposition of disopyramide in the dog. Journal of Cardiovascular Pharmacology 2: 825–832, 1980b

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Swezey SE, Giacomini JC, Blaschke TF. Administration of heparin causes in vitro release of non-esterified fatty acids in human plasma. Life Sciences 27: 771–780, 1980c

    Article  PubMed  CAS  Google Scholar 

  • Giacomini KM, Swezey SE, Turner-Tamiyasu K, Blaschke TF. The effect of saturable binding to plasma proteins on the pharmacokinetic properties of disopyramide. Journal of Pharmacokinetics and Biopharmaceutics 10: 1–14, 1982

    PubMed  CAS  Google Scholar 

  • Gianelly R, Von der Groeben JO, Spivack AP, Harrison DC. Effect of lidocaine on ventricular arrhythmias in patients with coronary heart disease. New England Journal of Medicine 277: 1215–1219, 1967

    Article  PubMed  CAS  Google Scholar 

  • Giles HG, Corrigal WA, Khouer V, Sellers EM. Plasma protein binding of phencylidine. Clinical Pharmacology and Therapeutics 31: 77–82, 1982

    Article  PubMed  CAS  Google Scholar 

  • Godolphin W, Trepanier J. Gas chromatography versus immunoassay (EMIT) for analysis of free phenytoin in serum ultrafiltrate. Therapeutic Drug Monitoring 6: 374–375, 1984

    Article  PubMed  CAS  Google Scholar 

  • Goolkasian DL, Slaughter RL, Edwards DJ, Lalka D. Displacement of lidocaine from serum α1-acid glycoprotein binding sites by basic drugs. European Journal of Clinical Pharmacology 25: 413–417, 1983

    Article  PubMed  CAS  Google Scholar 

  • Grafnetterova J, Vodrazka Z, Jandova D, Schuck O, Tomasek R, et al. The binding of chloramphenicol to serum proteins in patients with chronic renal insufficiency. Clinical Nephrology 6: 448–450, 1976

    PubMed  CAS  Google Scholar 

  • Grossman SH, Davis D, Kitchell BB, Shand DG, Routledge PA. Diazepam and lidocaine protein binding in renal disease. Clinical Pharmacology and Therapeutics 31: 350–357, 1982

    Article  PubMed  CAS  Google Scholar 

  • Guentert TW, Oie S. Factors influencing the apparent protein binding of quinidine. Journal of Pharmaceutical Sciences 71: 325–328, 1982

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Azarnoff DL, Shoeman DW. Diphenylhydantoin: correlation between protein binding and albumin concentration. Klinische Wochenschrift 53: 445–446, 1975

    Article  PubMed  CAS  Google Scholar 

  • Gugler R, Von Unruh GE. Clinical pharmacokinetics of valproic acid. Clinical Pharmacokinetics 5: 67–83, 1980

    Article  PubMed  CAS  Google Scholar 

  • Halkin H, Meffin P, Melmon KL, Rowland M. Influence of congestive heart failure on blood levels of lidocaine and its monodethylated metabolite. Clinical Pharmacology and Therapeutics 17: 669–676, 1975

    PubMed  CAS  Google Scholar 

  • Held H, Enderle C. Elimination and serum protein binding of phenylbutazone in patients with renal insufficiency. Clinical Nephrology 6: 388–393, 1976

    PubMed  CAS  Google Scholar 

  • Hinderling PH, Garrett ER. Pharmacokinetics of the antiarrhythmic disopyramide in healthy humans. Journal of Pharmacokinetics and Biopharmaceutics 4: 199–230, 1976

    PubMed  CAS  Google Scholar 

  • Holmberg L, Odar-Cederlöf I, Nilsson JLG, Ehrnebo M, Boreus LO. Pethidine binding to blood cells and plasma proteins in old and young subjects. European Journal of Clinical Pharmacology 23: 457–461, 1982

    Article  PubMed  CAS  Google Scholar 

  • Holt DW, Hayler AM, Healey GF. Effect of age and plasma concentrations of albumin and α1-acid glycoprotein on protein binding of disopyramide. British Journal of Clinical Pharmacology 16: 344–345, 1983a

    Article  PubMed  CAS  Google Scholar 

  • Holt GW, Norris RLG, Ravenscroft PG, Bett JHN, Dryburgh LG, et al. Effect of disopyramide on left ventricular performance. The relationship of free and total concentrations of drug and of its mono-N-dealkylated metabolite to noninvasive indices of function. Journal of Cardiovascular Pharmacology 5: 51–54, 1983b

    Article  PubMed  CAS  Google Scholar 

  • Hooper WD, Bochner F, Eadier MJ, Tyrer JH. Plasma protein binding of diphenylhydantoin. Effects of sex hormones, renal and hepatic disease. Clinical Pharmacology and Therapeutics 15: 276–282, 1974

    PubMed  CAS  Google Scholar 

  • Hooper WD, Dubetz DK, Bochner F, Colter LM, Smith GA, et al. Plasma protein binding of carbamazepine. Clinical Pharmacology and Therapeutics 17: 433–440, 1975

    PubMed  CAS  Google Scholar 

  • Huang J-D, Øie S. Effect of altered disopyramide binding on its pharmacolog—response in rabbits. Journal of Pharmacology and Experimental Therapeutics 223: 469–471, 1982

    PubMed  CAS  Google Scholar 

  • Huang J-D, Øie S. Effect of intra-individual change in serum protein binding on the pharmacologic response of R- and S-disopyramide in the rabbit. Research Communications in Chemical Pathology and Pharmacology 41: 243–253, 1983

    PubMed  CAS  Google Scholar 

  • Hulting J, Jansson B. Antiarrhythmic and electrocardiographic effects of single oral doses of disopyramide. European Journal of Clinical Pharmacology 11: 91–99, 1977

    Article  PubMed  CAS  Google Scholar 

  • Hulting J, Rosenhamer G. Kinetics of hemodynamic and electrocardiographic changes following intravenous disopyramide. Acta Medica Scandinavica 205: 417–423, 1979

    Article  PubMed  CAS  Google Scholar 

  • Jackson PR, Tucker GT, Woods HF. Altered plasma binding in cancer: role of α1-acid glycoprotein and albumin. Clinical Pharmacology and Therapeutics 32: 295–302, 1982

    Article  PubMed  CAS  Google Scholar 

  • Jaffe JM, Strum JD, Martineau PC, Collaizzi JL. Relationship between quinidine plasma and saliva levels in humans. Journal of Pharmaceutical Sciences 64: 2028–2029, 1975

    Article  PubMed  CAS  Google Scholar 

  • Jagadeesan V, Krishnaswamy K. Drug binding in the undernourished: a study of the binding of propranolol to α1-acid glycoprotein. European Journal of Clinical Pharmacology 27: 657–659, 1985

    Article  PubMed  CAS  Google Scholar 

  • Joern WA. Gas-chromatographic assay of free phenytoin in ultrafiltrates of plasma: test of a new filtration apparatus and specimen stability. Clinical Chemistry 27: 417–421, 1981

    PubMed  CAS  Google Scholar 

  • Jung D, Mayersohn M, Perrier D. The ‘ultrafree’ ultrafiltration technique compared with equilibrium dialysis for determination of unbound thiopental concentrations in serum. Clinical Chemistry 27: 166–168, 1981

    PubMed  CAS  Google Scholar 

  • Karim A, Nissen C, Azarnoff DL. Clinical pharmacokinetics of disopyramide. Journal of Pharmacokinetics and Biopharmaceutics 10: 465–493, 1982

    PubMed  CAS  Google Scholar 

  • Kapil RP, Axelson JE, Mansfield I, McErlane B, Edwards D, et al. Effect of phenobarbital and smoking on the pharmacokinetics and protein binding of disopyramide. Clinical and Investigative Medicine 8: A63, 1985

    Google Scholar 

  • Kessler KM, Leech RC, Spann JF. Blood collection techniques, heparin and quinidine protein binding. Clinical Pharmacology and Therapeutics 25: 204–210, 1979

    PubMed  CAS  Google Scholar 

  • Kilpatrick CJ, Wanwimolruk S, Wing LM. Plasma concentrations of unbound phenytoin in the management of epilepsy. British Journal of Clinical Pharmacology 17: 539–546, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kinniburgh DW, Boyd ND. Isolation of peptides from uremic plasma that inhibit phenytoin binding to normal plasma proteins. Clinical Pharmacology and Therapeutics 30: 276–280, 1981

    Article  PubMed  CAS  Google Scholar 

  • Koup JR, Jusko WJ, Goldfarb AL. pH-dependent secretion of procainamide into saliva. Journal of Pharmaceutical Sciences 64: 2008–2010, 1975

    Article  PubMed  CAS  Google Scholar 

  • Knott K, Hamshaw-Thomas A, Reynolds F. Phenytoin valproate interaction: importance of saliva monitoring in epilepsy. British Medical Journal 284: 13–16, 1982

    Article  PubMed  CAS  Google Scholar 

  • Knott C, Reynolds F. The place of saliva in antiepileptic drug monitoring. Therapeutic Drug Monitoring 6: 35–41, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kumps AH. Dose-dependency of the ratio between carbamazepine serum level and dosage in patients with epilepsy. Therapeutic Drug Monitoring 3: 271–284, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kurz H, Trunk H, Weitz B. Evaluation of methods to determine protein-binding of drugs. Arzneimittel-Forschung Drug Research 27: 1373–1380, 1977

    CAS  Google Scholar 

  • Lai AA, Fleck RJ, Patzke JV, Glueck BG, Shaskan EG, et al. Influence of blood sampling methods on dopamine-receptorblocking activities as determined by a radioreceptor assay. Therapeutic Drug Monitoring 4: 89–93, 1982

    Article  PubMed  CAS  Google Scholar 

  • Lawless LM, DeMonaco HJ, Muido LR. Protein binding of carbamazepine in epileptic patients. Neurology 32: 415–418, 1982

    Article  PubMed  CAS  Google Scholar 

  • LeLorier J, Grenon D, Latour Y, Caille G, Dumont G, et al. Pharmacokinetics of lidocaine after prolonged intravenous infusion in uncomplicated myocardial infarction. Annals of Internal Medicine 87: 700–702, 1977

    PubMed  CAS  Google Scholar 

  • Lesser RP, Pippenger CE, Luders H, Dinner DS. High-dose monotherapy in treatment of intractable seizures. Neurology 34: 707–711, 1984

    Article  PubMed  CAS  Google Scholar 

  • Levy RH. Monitoring of free valproic acid levels. Therapeutic Drug Monitoring 2: 199–201, 1980

    Article  PubMed  CAS  Google Scholar 

  • Levy RH, Koch KM. Drug interactions with valproic acid. Drugs 24: 543–556, 1982

    Article  PubMed  CAS  Google Scholar 

  • Levy RH, Moreland TA, Morselli PL, Guyot M, Brachet-Liermain A, et al. Carbamazepine/valproic acid interaction in man and rhesus monkey. Epilepsia 25: 338–345, 1984

    Article  PubMed  CAS  Google Scholar 

  • Levy RH, Schmidt D. Utility of free level monitoring of antiepileptic drugs. Epilepsia 26: 199–205, 1985

    Article  PubMed  CAS  Google Scholar 

  • Lichtenwalner DM, Suh B, Lichtenwalner MR. Isolation and chemical characterization of 2-hydroxybenzoylglycine as a drug binding inhibitor in uremia. Journal of Clinical Investigation 71: 1289–1296, 1983

    Article  PubMed  CAS  Google Scholar 

  • Lima JJ, Boudoulas H, Blanford M. Concentration-dependence of disopyramide binding to plasma protein and its influence on kinetics and dynamics. Journal of Pharmacology and Experimental Therapeutics 219: 741–747, 1981

    PubMed  CAS  Google Scholar 

  • Lima JJ, Boudoulas H, Shields BJ. Stereoselective pharmacokinetics of disopyramide enantiomers in man. Drug Metabolism and Disposition 13: 572–577, 1985

    PubMed  CAS  Google Scholar 

  • Lima JJ, Haughey DB, Leier CV. Disopyramide pharmacokinetics and bioavailability following the simultaneous administration of disopyramide and 14-C-disopyramide. Journal of Pharmacokinetics and Biopharmaceutics 12: 289–313, 1984

    PubMed  CAS  Google Scholar 

  • Lunde PKM, Rane A, Yaffe SJ, et al. Protein binding of diphenylhydantoin in man. Interactions with other drugs and effect of temperature and plasma dilution. Clinical Pharmacology and Therapeutics 11: 844–855, 1970

    Google Scholar 

  • MacKichen JJ, Duffner PK, Cohen ME. Salivary concentrations and plasma protein binding of carbamazepine and carbamazepine 10, 11-epoxide in epileptic patients. British Journal of Clinical Pharmacology 12: 31–37, 1981

    Article  Google Scholar 

  • MacKichen JJ, Zola EM. Determinants of carbamazepine and carbamazepine 10, 11-epoxide binding serum protein, albumin and α1-acid glycoprotein. British Journal of Clinical Pharmacology 18: 487–493, 1984

    Article  Google Scholar 

  • Martyn JAJ, Abernethy DR, Gireenblatt DJ. Plasma protein binding of drugs after severe burn injury. Clinical Pharmacology and Therapeutics 35: 535–539, 1984

    Article  PubMed  CAS  Google Scholar 

  • Mattson GF, Mattson RH, Cramer JA. Interaction between valproic acid and carbamazepine in an in vitro study of protein binding. Therapeutic Drug Monitoring 4: 181–184, 1982

    Article  PubMed  CAS  Google Scholar 

  • McNamara PJ, Lalka D, Gibaldi M. Endogenous accumulation products and serum protein binding in uremia. Journal of Laboratory and Clinical Medicine 98: 730–740, 1981a

    PubMed  CAS  Google Scholar 

  • McNamara PJ, Slaughter RL, Pieper JA, Wyman MG, Lalka D. Factors influencing serum protein binding of lidocaine in humans. Anesthesia and Analgesia 60: 395–400, 1981b

    Article  PubMed  CAS  Google Scholar 

  • McNamara PJ, Slaughter RL, Visco JP, Elwood CM, Siegel JH, et al. Effect of smoking on binding of lidocaine to human serum proteins. Journal of Pharmaceutical Sciences 69: 749–751, 1980

    Article  PubMed  CAS  Google Scholar 

  • Meffin PJ, Robert EW, Winkle RA, Harapat S, Peters FA, et al. Role of concentration-dependent plasma protein binding in disopyramide disposition. Journal of Pharmacokinetics and Biopharmaceutics 7: 29–46, 1979

    PubMed  CAS  Google Scholar 

  • Meijer JWA, Rambeck B, Riedmann M. Antiepileptic drug monitoring by Chromatographic methods and immunotechniques: comparison of analytical performance, practicability, and economy. Therapeutic Drug Monitoring 5: 39–53, 1983

    Article  PubMed  CAS  Google Scholar 

  • Meijer JWA, Binnie CD, Debets RMC, Van Paris JAP, DeBeer-Pawlikowsky NKB. Possible hazard of valproate-carbamazepine combination therapy in epilepsy. Lancet 1: 802, 1984

    Article  PubMed  CAS  Google Scholar 

  • Milsap RL, Jusko WJ. Binding of prednisolone to α1-AGP. Journal of Steroid Biochemistry 18: 191–194, 1983

    Article  PubMed  CAS  Google Scholar 

  • Moore DH, Kowlessar OD. Hepatic synthesis and degradation of plasma proteins. In Zakim and Boyer (Eds) Hepatology: a textbook of liver disease, W.B. Saunders, Philadelphia, 1982

    Google Scholar 

  • Morgan DJ, Koay BB, Pauli JD. Plasma protein binding of etidocaine during pregnancy and labor. European Journal of Clinical Pharmacology 22: 451–457, 1982

    Article  PubMed  CAS  Google Scholar 

  • Mucklow JC. Review: The use of saliva in therapeutic drug monitoring. Therapeutic Drug Monitoring 4: 229–247, 1982

    Article  CAS  Google Scholar 

  • Muller WE, Stillbauer AE. Characterization of a common binding site for basic drugs on human α1-acid glycoprotein (orosomucoid). Archives of Pharmacology 322: 170–173, 1983

    Article  PubMed  CAS  Google Scholar 

  • Nation RL. Meperidine binding in maternal and fetal plasma. Clinical Pharmacology and Therapeutics 29: 472–479, 1981

    Article  PubMed  CAS  Google Scholar 

  • Nelson WL, Sneed CK, Giacomini KM, Giacomini JC, Stauss J, et al. Synthesis and anticholinergic properties of the enantiomers of 4-(isopyropylamino)-2-(2-pyridyl)-2-phenylbutyramide, the mono-N-dealkylated metabolite of disopyramide. Journal of Medicinal Chemistry 24: 614–617, 1981

    Article  PubMed  CAS  Google Scholar 

  • Niarchos AP. Disopyramide: serum levels and arrhythmia conversion. American Heart Journal 92: 57–64, 1976

    Article  PubMed  CAS  Google Scholar 

  • Nilsen OG, Storstein L, Jacobsen S. Effect of heparin and fatty acids on the binding of quinidine and warfarin. Biochemical Pharmacology 26: 229–235, 1977

    Article  PubMed  CAS  Google Scholar 

  • Odar-Cederlöf I, Borgå O. Impaired plasma protein binding of phenytoin in uremia and displacement effect of salicylic acid. Clinical Pharmacology and Therapeutics 20: 36–47, 1976

    PubMed  Google Scholar 

  • Oellerich M. Influence of protein binding: commentary. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 187–219, Applied Therapeutic Inc., San Francisco, 1986

    Google Scholar 

  • Oellerich M, Müller-Vahl H. The EMIT Free level ultrafiltration technique compared with equilibrium dialysis and ultracentrifugation to determine protein binding of phenytoin. Clinical Pharmacokinetics 9 (Suppl. 1): 61–70, 1984

    Article  PubMed  CAS  Google Scholar 

  • O’Malley K, Velasco M, Pruitt A, McNay JL. Decreased plasma protein binding of diazoxide in uremia. Clinical Pharmacology and Therapeutics 18: 53–58, 1976

    Google Scholar 

  • Owens SM, Mayersohn M, Woodworth JR. Phencyclidine blood protein binding: influence of protein, pH and species. J. Pharmacol. Exp. Therap. 226: 656–660, 1983

    CAS  Google Scholar 

  • Patwardhan RV, Desmond PV, Johnson RF, Dunn GD, Robertson DH, et al. Effects of caffeine in plasma free fatty acids, urinary catecholamines and drug binding. Clinical Pharmacology and Therapeutics 28: 398–403, 1980

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW. Measurement of drugs in saliva: a review. Methods and Findings in Experimental and Clinical Pharmacology 1: 11–21, 1979

    PubMed  CAS  Google Scholar 

  • Paxton JW. Effects of aspirin on salivary and serum phenytoin kinetics in healthy subjects. Clinical Pharmacology and Therapeutics 27: 170–178, 1980

    Article  PubMed  CAS  Google Scholar 

  • Paxton JW, Foote S. Aberrantly high phenytoin concentrations in saliva. Precautions in monitoring phenytoin concentrations in whole saliva. British Journal of Clinical Pharmacology 8: 508–509, 1979

    Article  PubMed  CAS  Google Scholar 

  • Perucca E. Free level monitoring of antiepileptic drugs: clinical usefulness and case studies. Clinical Pharmacokinetics 9 (Suppl. 1): 71–78, 1984

    Article  PubMed  Google Scholar 

  • Perucca E, Bittencourt P, Richens A. Effect of dose increments on serum carbamazepine concentrations in epileptic patients. Clinical Pharmacokinetics 5: 576–582, 1980

    Article  PubMed  CAS  Google Scholar 

  • Peterson GM, McLean S. Monitoring free plasma concentrations of phenytoin. British Journal of Clinical Pharmacology 18: 971–972, 1984

    Article  PubMed  CAS  Google Scholar 

  • Peterson GM, McLean S, Aldous S, Von Witt RJ, Millengen KS. Plasma protein binding of phenytoin in 100 epileptic patients. British Journal of Clinical Pharmacology 14: 298–300, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer HJ, Greenblatt DJ, Koch-Weser J. Clinical use and toxicity of intravenous lidocaine. American Heart Journal 92: 168–173, 1976

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borgå O. Inhibitor of drug-protein binding in vacutainers. Lancet 2: 963–964, 1976

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Borgå O. Plasma protein binding of basic drugs. II. Importance of α1-acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–549, 1977

    PubMed  CAS  Google Scholar 

  • Piafsky KM, Borgå O, Odar-Cederlöf I, Johansson C, Sjöqvist F. Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of α1-acid glycoprotein. New England Journal of Medicine 299: 1435–1439, 1978

    Article  PubMed  CAS  Google Scholar 

  • Piafsky KM, Knoppert D. Binding of local anesthetics to α1-acid glycoprotein. Clinical Research 26: 836A, 1978

    Google Scholar 

  • Piafsky KM, Sitar DS, Rango RE, Ogilvie RI. Theophylline disposition in patients with hepatic cirrhosis. New England Journal of Medicine 296: 1495–1497, 1977

    Article  PubMed  CAS  Google Scholar 

  • Pieper JA, Wyman MG, Goldreycr BN, Cannom DS, Slaughter RL, et al. Lidocaine toxicity: effects of total versus free lidocaine concentrations. Circulation 62 (Suppl. 3): III–181, 1980

    Google Scholar 

  • Pike E, Skuterud B. Plasma binding variations of amitriptyline and nortriptyline. Clinical Pharmacology and Therapeutics 32: 228–234, 1982

    Article  PubMed  CAS  Google Scholar 

  • Pike E, Skuterud B, Kierulf P, Fremstad D, Ab-del Sayed SM, et al. Binding and displacement of basic, acidic and neutral drugs in normal and orosomucoid-deficient plasma. Clinical Pharmacokinetics 6: 367–375, 1981

    Article  PubMed  CAS  Google Scholar 

  • Pollick C, Giacomini KM, Blaschke TF, Nelson WL, Turner-Tamiyasu K, et al. The cardiac effects of d- and 1-disopyramide in normal subjects: a noninvasive study. Circulation 66: 447–453, 1982

    Article  PubMed  CAS  Google Scholar 

  • Ponganis KV, Stanski DR. Factors affecting the measurement of lidocaine protein binding by equilibrium dialysis in human serum. Journal of Pharmaceutical Sciences 74: 57–60, 1985

    Article  PubMed  CAS  Google Scholar 

  • Porter RJ, Layzer RB. Plasma albumin concentration and diphenylhydantoin binding in man. Archives of Neurology 32: 298–303, 1975

    Article  PubMed  CAS  Google Scholar 

  • Prescott LF, Adjepon-Yamoah KK, Talbot RG. Impaired lignocaine metabolism in patients with myocardial infarction and cardiac failure. British Medical Journal 1: 939–941, 1976

    Article  PubMed  CAS  Google Scholar 

  • Quattrocchi F, Karnes HT, Robinson JD, Hendeles L. Effect of serum separator blood collection tubes on drug concentration. Therapeutic Drug Monitoring 5: 109–112, 1983

    Article  Google Scholar 

  • Rane A, Villeneuve JP, Stone WJ, Nies AS, Wilkinson GR, et al. Plasma binding and disposition of furosemide in the nephrotic syndrome and uremia. Clinical Pharmacology and Therapeutics 24: 199–207, 1978

    PubMed  CAS  Google Scholar 

  • Rane A, Lunde PKW, Jalling B, Jaffe SJ, Sjöqvist F. Plasma protein binding of dephenylhydantoin in normal and hyperbilirubinemic infants. Journal of Pediatrics 78: 877–882, 1971

    Article  PubMed  CAS  Google Scholar 

  • Rangno RE, Warnica W, Ogilvie RI, Kreeft J, Bridger E. Correlation of disopyramide pharmacokinetics with efficacy in ventricular tachyarrhythmia. Journal of Internal Medical Research 4 (Suppl. 1): 54–58, 1976

    CAS  Google Scholar 

  • Rapeport WG. Factors influencing the relationship between carbamazepine plasma concentration and its clinical effects in patients with epilepsy. Clinical Neuropharmacology 8: 141–149, 1985

    Article  PubMed  CAS  Google Scholar 

  • Rapeport WG, McInnes GT, Thompson GG, Forrest G, Park BK, et al. Hepatic enzyme induction and delta-aminolaevulinic acid synthetase activity: studies with carbamazepine. British Journal of Clinical Pharmacology 16: 133–137, 1983

    Article  PubMed  CAS  Google Scholar 

  • Rapeport WG, Rogers KM, McCubbin TD, Agnew E, Brodie MJ. Treatment of intractable neurogenic pain with carbamazepine. Scottish Medical Journal 29: 162–165, 1984

    PubMed  CAS  Google Scholar 

  • Reidenberg MM, Drayer DE. Alteration of drug protein binding in renal disease. Clinical Pharmacokinetics 9 (Suppl. 1): 18–26, 1984

    Article  PubMed  Google Scholar 

  • Reidenberg MM, Odar-Cederlöf I, van Bahr C, Borgå O, Sjöqvist F. Protein binding of disphenylhydantoin and desmethylimipramine in plasma from patients with poor renal function. New England Journal of Medicine 285: 264–267, 1971

    Article  PubMed  CAS  Google Scholar 

  • Reynolds F, Ziroyanis PN, Jones N, Smith SE. Salivary phenytoin concentrations in epilepsy and in chronic renal failure. Lancet 2: 384–386, 1976

    Article  PubMed  CAS  Google Scholar 

  • Ridd MJ, Brown KF, Moore RC, Nation RL. Drug plasma binding and non-esterified fatty acids: methodologic considerations. International Journal of Pharmaceutics 11: 11–20, 1982

    Article  CAS  Google Scholar 

  • Rimmer EM, Buss DC, Routledge PA, Richens A. Should we routinely measure free plasma phenytoin concentrations? British Journal of Clinical Pharmacology 17: 99–102, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Rimmer EM, Buss DC, Routledge PA, Richens A. Monitoring free plasma concentrations of phenytoin: a reply. British Journal of Clinical Pharmacology 18: 972–973, 1984b

    Google Scholar 

  • Riva R, Albani F, Ambrosetto G, Contin M, Cortelli P, et al. Diurnal fluctuations in free and total plasma concentrations of carbamazepine at steady-state and correlation with intermittent side effects in epileptic patients. Epilepsia 25: 676–681, 1984a

    Article  Google Scholar 

  • Riva R, Albani F, Baruzzi A, Galvani I, Perucca E. Determination of unbound valproic acid concentration in plasma by equilibrium dialysis and gas-liquid chromatography: methodological aspects and observations in epileptic patients. Therapeutic Drug Monitoring 4: 341–352, 1982

    Article  PubMed  CAS  Google Scholar 

  • Riva R, Contin M, Albani F, Perucca E, Ambrosetto G, et al. Free and total plasma concentrations of carbamazepine and carbamazepine-10, 11-epoxide in epileptic patients: diurnal fluctuations and relationship with side effects. Therapeutic Drug Monitoring 6: 408–413, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Robert EW, Peters F, Winkle RA, Harrison DC, Meffin PJ. Pharmacokinetics and clinical efficacy of disopyramide phosphate. Circulation 57/58 (Suppl. II): 102, 1978

    Google Scholar 

  • Romach MK, Piafsky KM, Abel JG, Khow V, Sellers EM. Methadone binding to orosomucoid (α1-acid glycoprotein): determinant of free fraction in plasma. Clinical Pharmacology and Therapeutics 29: 211–217, 1981

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Barchowsky A, Bjornsson TD, Kitchell BB, Shand DG. Lidocaine plasma protein binding. Clinical Pharmacology and Therapeutics 27: 347–351, 1980a

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Shand DG, Barchowsky A, Wagner G, Stargel WW. Relationship between α1-acid glycoprotein and lidocaine disposition in myocardial infarction. Clinical Pharmacology and Therapeutics 30: 154–157, 1981a

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Finn AL, Barchowsky A, Shand DG. Lignocaine disposition in blood in epilepsy. British Journal of Clinical Pharmacology 12: 663–666, 1981b

    Article  PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Wagner GS, Shand DG. Increased alpha-1-acid glycoprotein and lidocaine disposition in myocardial infarction. Annals of Internal Medicine 93: 701–704, 1980b

    PubMed  CAS  Google Scholar 

  • Routledge PA, Stargel WW, Wagner GS, Shand DG. Increased plasma propranolol binding in myocardial infarction. British Journal of Clinical Pharmacology 9: 438–440, 1980c

    Article  PubMed  CAS  Google Scholar 

  • Rowland M. Plasma protein binding and therapeutic drug monitoring. Therapeutic Drug Monitoring 2: 29–37, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rowland M. Protein binding and drug clearance. Clinical Pharmacokinetics 9 (Suppl. 1): 10–17, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Cabello F, Erill S. Abnormal serum protein binding of acidic drugs in diabetes mellitus. Clinical Pharmacology and Therapeutics 36: 691–695, 1984

    Article  PubMed  CAS  Google Scholar 

  • Ruprah M, Perucca E, Richens A. Spuriously high values of unbound drug fraction in serum as determined by the new ultrafree anticonvulsant drug filters. British Journal of Clinical Pharmacology 12: 753–756, 1981

    Article  PubMed  CAS  Google Scholar 

  • Rylance GW, Butcher GM, Moreland T. Saliva carbamazepine levels in children. British Medical Journal 2: 1481, 1977

    Article  PubMed  CAS  Google Scholar 

  • Sawchuk RJ, Matzke GR. Contribution of 5-(4-hydroxyphenyl)-5-phenylhydantoin to the discrepancy between phenytoin analyses by EMIT and high pressure liquid chromatography. Therapeutic Drug Monitoring 6: 97–104, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sawyer DR, Ludden TM, Crawford MH. Continuous infusion of lidocaine in patients with cardiac arrhythmias: unpredictability of plasma concentrations. Archives of Internal Medicine 141: 43–45, 1981

    Article  PubMed  CAS  Google Scholar 

  • Schwartz ML, Meyer MB, Covino BG, Narang RM, Sethi V, et al. Antiarrhythmic effectiveness of intramuscular lidocaine: influence of different injection sites. Journal of Clinical Pharmacology 15: 77–83, 1974

    Google Scholar 

  • Shand DG, Pritchett ELC, Hammill SC, Stargel WW, Wagner GS. Pharmacokinetic studies: their role in determining therapeutic efficacy of agents designed to prevent sudden death. Ann. New York Acad. Sci. 382: 238–246, 1982

    Article  CAS  Google Scholar 

  • Shoeman DW, Benjamin DM, Azarnoff DL. The alteration of plasma proteins in uremia as reflected in the ability to bind diphenylhydantoin. Annals of the New York Academy of Sciences 226: 127–129, 1973

    Article  PubMed  CAS  Google Scholar 

  • Shang-Qiang J, Evenson MA. Effects of contaminants in blood collection devices on measurement of therapeutic drugs. Clinical Chemistry 29: 456–461, 1983

    Google Scholar 

  • Stiller RL, Perel JM, Lin FC, Narayaman S. A comparative study of serum versus plasma for tricyclic antidepressant drugs. Clinical Chemistry 26: 1000, 1980

    Google Scholar 

  • Strandjord RE, Johannessen SI. Single-drug therapy with carbamazepine in patients with epilepsy: serum levels and clinical effects. Epilepsia 20: 655–662, 1980

    Article  Google Scholar 

  • Strong JM, Mayfield DE, Atkinson AJ, Burris BC, Raymon F, et al. Pharmacologic activity, metabolism, and pharmacokinetics of glycinexylidide. Clinical Pharmacology and Therapeutics 17: 184–194, 1975

    PubMed  CAS  Google Scholar 

  • Svensson CK, Woodruff MN, Lalka D. Influence of protein binding and use of unbound (free) drug concentrations. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 187–219, Applied Therapeutics Inc., 1986

    Google Scholar 

  • Tavares-Almeida I, Gulyassy PF, Depner TA, Jarrad EA. Aromatic amino acid metabolites as potential protein binding inhibitors in human uremic plasma. Biochemical Pharmacology 34: 2431–2438, 1985

    Article  PubMed  CAS  Google Scholar 

  • Theodore WH, Yu L, Price B, Yonekawa W, Porter RJ, et al. The clinical value of free phenytoin levels. Annals of Neurology 18: 90–93, 1985

    Article  PubMed  CAS  Google Scholar 

  • Thibonnier M, Holford NHG, Upton RA, Blume CD, Williams RL. Pharmacokinetic-pharmacodynamic analysis of unbound disopyramide directly measured in serial plasma samples in man. J. Pharmacok. Biopharm. 12: 559–573, 1984

    CAS  Google Scholar 

  • Thomson PD, Melmon KL, Richardson JA, Cohn K, Steinbrunn W, et al. Lidocaine pharmacokinetics in advanced heart failure, liver disease, and renal failure in humans. Annals of Internal Medicine 78: 499–508, 1973

    PubMed  CAS  Google Scholar 

  • Tiula E, Neuvenon PJ. Antiepileptic drugs and α1-acid glycoprotein. New England Journal of Medicine 307: 1148, 1982

    PubMed  CAS  Google Scholar 

  • Tomson T, Bertilsson L. Potent therapeutic effect of carbamazepine 10, 11 epoxide in trigeminal neuralgia. Archives of Neurology 41: 598–601, 1984

    Article  PubMed  CAS  Google Scholar 

  • Troupin AS, Friel P. Anticonvulsant level in saliva, serum, and cerebrospinal fluid. Epilepsia 16: 223–227, 1975

    Article  PubMed  CAS  Google Scholar 

  • Troupin AS, Moretti Ojemann L, Halpern L, et al. Carbamazepine: a double-blind comparison with phenytoin. Neurology 27: 511–519, 1977

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi E, Inaba T, Mahon WA, Kalow W. The displacing effect of a fatty acid on the binding of diazepam to human serum albumin. Biochemical Pharmacology 24: 1361–1362, 1975

    Article  PubMed  CAS  Google Scholar 

  • Tucker GT, Boyes RN, Bridenbaugh PO, Moore DC. Binding of anilide-type anesthetics in human plasma. I. Relationships between binding, physiochemical properties, and anesthetic activity. Anesthesiology 33: 287–303, 1970

    Article  PubMed  CAS  Google Scholar 

  • Ueda CT, Dzindzio BS, Vosik WM. Serum disopyramide concentrations and suppression of ventricular premature contractions. Clin. Pharmacol. Ther. 36: 326–336, 1984

    Article  PubMed  CAS  Google Scholar 

  • Urien S, Albengres E, Zini R, Tillement JP. Evidence for binding of certain acidic drugs to α1-AGP. Biochemical Pharmacology 31: 3687–3689, 1982

    Article  PubMed  CAS  Google Scholar 

  • van der Sluijs P, Meijer DKF. Binding of drugs with a quaternary ammonium group of alpha-1 acid glycoprotein and asialo alpha-1 acid glycoprotein. Journal of Pharmacology and Experimental Therapeutics 234: 703–707, 1985

    PubMed  Google Scholar 

  • van Oss CJ, Bronson PM, Border JR. Changes in the serum alpha glycoprotein distribution in trauma patients. Journal of Trauma 15: 451–455, 1975

    Article  PubMed  Google Scholar 

  • Verbeeck RK, DeSchepper PJ. Influence of chronic renal failure and hemodialysis on diflunisal protein binding. Clinical Pharmacology and Therapeutics 27: 628–635, 1980

    Article  PubMed  CAS  Google Scholar 

  • Whiting B, Holford NHG, Scheiner LB. Quantitative analysis of the disopyramide concentration-effect relationship. British Journal of Clinical Pharmacology 9: 67–75, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wiegand UW, Hintze KL, Slattery JT, Levy G. Protein binding of several drugs in serum and plasma of healthy subjects. Clinical Pharmacology and Therapeutics 27: 297–300, 1980

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR. Plasma and tissue binding considerations in drug disposition. Drug Metabolism Reviews 14: 427–465, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wilson JF, Marshall RW, Williams J, Richens A. Comparison of assay methods used to measure antiepileptic drugs in plasma. Therapeutic Drug Monitoring 5: 449–460, 1983

    Article  PubMed  CAS  Google Scholar 

  • Wong SHY, White WB, Fernandes R, Holden R, Lin FC, et al. Assessment of blood collection systems for the high performance liquid chromatography measurement of propranolol. Therapeutic Drug Monitoring 7: 358–363, 1985

    Article  PubMed  CAS  Google Scholar 

  • Wood AJJ, Kornhauser DM, Wilkinson GR, Shand DG, Branch RA. The influence of cirrhosis on steady-state blood concentrations of unbound propranolol after oral administration. Clinical Pharmacokinetics 3: 478–487, 1978

    Article  PubMed  CAS  Google Scholar 

  • Wood M, Shand DG, Wood AJJ. Altered drug-binding due to the use of indwelling heparinized cannulas (heparin lock) for sampling. Clin. Pharmacol. Therap. 25: 103–107, 1979

    CAS  Google Scholar 

  • Wyman MG, Lalka D, Hammersmith L, Cannom DS, Goldreyer BN. Multiple bolus technique for lidocaine administration during the first hours of an acute myocardial infarction. American Journal of Cardiology 41: 313–317, 1978

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Sugiyama I, Sawada Y, Iga T, Hanano M, et al. Effect of late pregnancy on salicylate, diazepam, warfarin, and propranolol binding: use of fluorescent probes. Clinical Pharmacology and Therapeutics 36: 201–208, 1984

    Article  PubMed  CAS  Google Scholar 

  • Yost RL, DeVane CL. Diurnal variation of α1-acid glycoprotein concentration in normal volunteers. Journal of Pharmaceutical Sciences 74: 777–779, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yu H-Y. Clinical implications of serum protein binding in epileptic children during sodium valproate maintenance therapy. Therapeutic Drug Monitoring 6: 414–423, 1984

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, C.K., Woodruff, M.N., Baxter, J.G. et al. Free Drug Concentration Monitoring in Clinical Practice. Clin-Pharmacokinet 11, 450–469 (1986). https://doi.org/10.2165/00003088-198611060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198611060-00003

Keywords

Navigation