Skip to main content
Log in

Pharmacokinetic Drug Interactions of Commonly Used Anticancer Drugs

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

With the use of combination chemotherapy as well as a wide range of symptomatic therapies (e.g. analgesics and antiemetics) for the treatment of patients with cancer, the field of oncology practises polypharmacy to an extreme degree. The risk for a drug interaction under these conditions is high, and the pharmacological characteristics of the anti-cancer drugs, such as steep dose-response curves, low therapeutic indices and severe toxicities, suggest that even small changes in the pharmacokinetic profile of the affected drug could significantly alter its toxicity or efficacy. In this review, drug interactions which quantitatively affect the absorption, distribution, biotransformation or excretion of the commonly used anticancer drugs are described. Most of the significant drug interactions involving this class of drugs occur at the level of biotransformation and excretion. For example, the renal excretion of methotrexate by glomerular filtration and tubular secretion is affected by a number of weak organic acids, such as probenecid, salicylates and penicillin, which compete for tubular secretion, resulting in delayed clearance of methotrexate. The best described example of an interaction at the level of biotransformation is the effect of allopurinol on the catabolism of 6-mercaptopurine. By inhibiting xanthine oxidase, allopurinol blocks the first-pass metabolism of 6-mercaptopurine following its oral administration, leading to a 4- to 5-fold increase in plasma concentrations. Known drug interactions may potentially be used to enhance the antitumour activity of a drug—for instance, the administration of tetrahydrouridine (a cytidine deaminase inhibitor) with cytarabine in an attempt to block its rapid inactivation to uridine arabinoside.

Overall, little information is available concerning the pharmacokinetic interactions of anticancer drugs with each other and with other classes of drugs in man, in part because the high incidence of toxicity and treatment failure, and empirical dosing methods, obscure the recognition of possible interactions. Awareness on the part of the clinician and more extensive pharmacokinetic investigation will be needed to recognise, document and avoid potentially harmful pharmacokinetic drug interactions involving this class of drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aherne GW, Piall E, Marks V, Mould G, White WF. Prolongation and enhancement of serum methotrexate concentrations by probenecid. British Medical Journal 1: 1097–1099, 1978

    PubMed  CAS  Google Scholar 

  • Alberts DS, Chen H-S, Liu R, Himmelstein KJ, Mayersohn M, et al. Bleomycin pharmacokinetics in man. I. Intravenous administration. Cancer Chemotherapy and Pharmacology 1: 177–181, 1978

    PubMed  CAS  Google Scholar 

  • Alberts DS, van Daalen Wetters T. The effect of phenobarbital on cyclophosphamide antitumour activity. Cancer Research 36: 2785–2789, 1976

    PubMed  CAS  Google Scholar 

  • Au JL-S, Rustum YM, Ledesma EJ, Mittelman A, Creaven PJ. Clinical pharmacological studies of concurrent infusion of 5-fluorouracil and thymidine in treatment of colorectal carcinomas. Cancer Research 42: 2930–2937, 1982

    PubMed  CAS  Google Scholar 

  • Bagley CM, Bostich FW, De Vita VT. Clinical pharmacology of cyclophosphamide. Cancer Research 33: 226–233, 1973

    PubMed  Google Scholar 

  • Baguley BC, Falkenhaug E-M. Plasma half-life of cytosine ara-binoside in patients with leukaemia — the effect of uridine. European Journal of Cancer 11: 43–49, 1975

    PubMed  CAS  Google Scholar 

  • Belt RJ, Himmelstein KJ, Patton TF, Bannister SJ, Sternson LA, et al. Pharmacokinetics of non-protein-bound platinum species following administration of cis-cichlorodiammineplatinum (II). Cancer Treatment Reports 63: 1515–1521, 1979

    PubMed  CAS  Google Scholar 

  • Bennett WM, Pastore L, Houghton DC. Fatal pulmonary toxicity in cisplatin-induced acute renal failure. Cancer Treatment Reports 64: 921–924, 1980

    PubMed  CAS  Google Scholar 

  • Bleyer WA. The clinical pharmacology of methotrexate. Cancer 41: 36–51, 1978

    PubMed  CAS  Google Scholar 

  • Boston Collaboratiave Drug Surveillance Program. Allopurinol and cytotoxic drugs. Journal of the American Medical Association 227: 1036–1040, 1974

    Google Scholar 

  • Bourke RS, Chheda G, Bremer A, Watanabe O, Tower DB. Inhibition of renal tubular transport of methotrexate by probenecid. Cancer Research 35: 110–116, 1975

    PubMed  CAS  Google Scholar 

  • Brooks RJ, Dorr RT, Durie BGM. Interaction of allopurinol with 6-mercaptopurine and azathioprine. Biomedicine 36: 217–222, 1982

    CAS  Google Scholar 

  • Bus JS, Short RD, Gibson JE. Effect of phenobarbital and SKF 525A on the toxicity, elimination and metabolism of cyclophosphamide in newborn mice. Journal of Pharmacology and Experimental Therapeutics 184: 749–756, 1973

    PubMed  CAS  Google Scholar 

  • Campbell TN, Howell SB, Pfeifle CE, Wung WE, Bookstein J. Clinical pharmacokinetics of intraarterial cisplatin in humans. Journal of Clinical Oncology 1: 755–762, 1983

    PubMed  CAS  Google Scholar 

  • Capizzi RL, Keiser LW, Sartorelli AC. Combination chemotherapy — theory and practice. Seminars in Oncology 4: 227–253, 1977

    PubMed  CAS  Google Scholar 

  • Christophidis N, Vajda FJE, Lucas I, Drummer O, Moon WJ, et al. Fluorouracil therapy in patients with carcinoma of the large bowel: a pharmcokinetic comparison of various rates and routes of administration. Clinical Pharmacokinetics 3: 330–336, 1978

    Google Scholar 

  • Coffey JJ, White CA, Lesk AB, Rogers WI, Serpick AA. Effect of allopurinol on the pharmacokinetics of 6-mercaptopurine (NSC 755) in cancer patients. Cancer Research 32: 1283–1289, 1972

    PubMed  CAS  Google Scholar 

  • Cofrancesco E, Vigo A, Pogliani E. Antiheparin activity of adriamycin. Thrombosis Research 18: 743–746, 1980

    PubMed  CAS  Google Scholar 

  • Cohen MH, Creaven PJ, Fossieck BE, Johnston AV, Williams CL. Effect of oral prophylatic broad spectrum nonabsorbable antibiotics on the gastrointestinal absorption of nutrients and methotrexate in small cell bronchogenic carcinoma patients. Cancer 38: 1556–1559, 1976

    PubMed  CAS  Google Scholar 

  • Collins JM, Dedrick RL, King FG, Speyer JL, Myers CE. Nonlinear pharmacokinetic models for 5-fluorouracil in man: intravenous and intraperitoneal routes. Clinical Pharmacology and Therapeutics 28: 235–246, 1980

    PubMed  CAS  Google Scholar 

  • Convey JM, Straw JA. Nonlinear pharmacokinetics of thymidine, thymine, and fluorouracil and their kinetic interactions in normal dogs. Cancer Research 43: 4587–4595, 1983

    Google Scholar 

  • Corbett TH, Griswold DP, Mayo JG, Laster WR, Schabel FM. Cyclophosphamide-adriamycin combination chemotherapy of transplantable murine tumors. Cancer Research 35: 1568–1573, 1975

    PubMed  CAS  Google Scholar 

  • Creaven PJ, Cohen MH, Allen LM. Methotrexate plasma decay kinetics: possible alterations in patients undergoing gut sterilization. British Journal of Cancer 34: 571–575, 1976

    PubMed  CAS  Google Scholar 

  • Crom WR, Pratt CB, Green AA, Champion JE, Crom DB, et al. The effects of prior cisplatin therapy on the pharmacokinetics of high-dose methotrexate. Journal of Clinical Oncology 2: 655–661, 1984

    PubMed  CAS  Google Scholar 

  • Cvitkovic E, Spaulding J, Bethune V, Martin J, Whitmore WF. Improvement of cis-dichlorodiammineplatinum (NSC 119875): therapeutic index in an animal model. Cancer 39: 1357–1361, 1977

    PubMed  CAS  Google Scholar 

  • Daley-Yates, PT, McBrien DCH. Enhancement of cisplatin nephrotoxicity by probenecid. Cancer Treatment Reports 68: 445–446, 1984

    PubMed  CAS  Google Scholar 

  • D’Incalci M, Bolis G, Facchinetti T, Mangioni C, Morasca L, et al. Decreased half life of cyclophosphamide in patients under continual treatment. European Journal of Cancer 15: 7–10, 1979

    PubMed  Google Scholar 

  • Dixon RL. The interaction between various drugs and methotrexate. Toxicology and Applied Pharmacology 6: 308, 1978

    Google Scholar 

  • Dixon RL, Henderson ES, Rall DP. Plasma protein binding of methotrexate and its displacement by various drugs. Federation Proceedings 24: 454, 1965

    Google Scholar 

  • Dodion P, Riggs CE, Akman SR, Tamburini JM, Colvin OM, et al. Interactions between cyclophosphamide and adriamycin metabolism in rats. Journal of Pharmacology and Experimental Therapeutics 229: 51–57, 1984

    PubMed  CAS  Google Scholar 

  • Dorr RT, Alberts DS. Cimetidine enhancement of cyclophosphamide antitumor activity. British Journal of Cancer 45: 35–43, 1982

    PubMed  CAS  Google Scholar 

  • Edwards G, Calvert RT, Crowther D, Bramwell V, Scharffe H. Repeated investigations of cyclophosphamide disposition in myeloma patients receiving intermittent chemotherapy. British Journal of Clinical Pharmacology 10: 281–285, 1980

    PubMed  CAS  Google Scholar 

  • Ellison NM, Servi RJ. Acute renal failure and death following sequential intermediate-dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration. Cancer Treatment Reports 69: 342–343, 1985

    PubMed  CAS  Google Scholar 

  • Evans WE, Crom WR, Sinjule JA, Yee GC, Stewart CF, et al. Pharmacokinetics of anticancer drugs in children. Drug Metabolism Reviews 14: 847–886, 1983

    PubMed  CAS  Google Scholar 

  • Evans WE, Crom WR, Yee GC, Green AA, Hayes FA, et al. Adriamycin pharmacokinetics in children. Proceedings of the American Association of Cancer Research 21: 176, 1980

    Google Scholar 

  • Field RB, Gang M, Kleine I, Venditti JM, Waravdekar VS. The effect of phenobarbital or 2-diethylaminoethyl-2-,2-dipheyl-valerate on the activation of cyclophosphamide in vivo. Journal of Pharmacology and Experimental Therapeutics 180: 475–483, 1972

    PubMed  CAS  Google Scholar 

  • Graham MI, Shaw IC, Souhami RL, Sidau B, Harper PG, et al. Decreased plasma half-life of cyclophosphamide during repeated high-dose administration. Cancer Chemotherapy and Pharmacology 10: 192–193, 1983

    PubMed  CAS  Google Scholar 

  • Grochow LB, Colvin M. Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics 4: 380–394, 1979

    PubMed  CAS  Google Scholar 

  • Haim N, Kedar A, Robinson E. Methotrexate-related deaths in patients previously treated with cis-diamminedichloride platinum. Cancer Chemotherapy and Pharmacology 13: 223–225, 1984

    PubMed  CAS  Google Scholar 

  • Hamilton L, Elion GB. The fate of 6-mercaptopurine in man. Annals of the New York Academy of Science 60: 304–314, 1954

    CAS  Google Scholar 

  • Hanasono GK, Fischer LJ. Plasma levels and urinary excretion of [14C] cyclophosphamide and its radioactive metabolites in rats pretreated with prednisolone. Biochemical Pharmacology 21: 272–276, 1972

    PubMed  CAS  Google Scholar 

  • Hartman N, Basseches PJ, Powis G. Effect of cyclophosphamide pretreatment on the short-term disposition and biliary excretion of adriamycin metabolites in rat. Cancer Chemotherapy and Pharmacology 10: 11–15, 1982

    PubMed  CAS  Google Scholar 

  • Harvey VJ, Slevin ML, Dilloway MR, Clark PI, Johnston A, et al. The influence of cimetidine on the pharmacokinetics of 5-fluorouracil. British Journal of Clinical Pharmacology 18: 421–430, 1984

    PubMed  CAS  Google Scholar 

  • Hayakawa T, Kanai N, Yamada R, Kuroda R, Higashi H, et al. Effect of steroid hormone on activation of endoxan (cyclophosphamide). Biochemical Pharmacology 18: 129–135, 1969

    PubMed  CAS  Google Scholar 

  • Hayes DM, Cvitkovic E, Golbey RB, Scheiner E, Helson L, et al. High dose cis-platinum diammine dichloride. Amelioration of renal toxicity by mannitol diuresis. Cancer 39: 1372–1381, 1977

    PubMed  CAS  Google Scholar 

  • Hill DL, Kirk MC, Struck RF. Microsomal metabolism of nitrosoureas. Cancer Research 35: 296–301, 1975

    PubMed  CAS  Google Scholar 

  • Ho DHW, Frei E. Clinical pharmacology of 1-β-D-arabinofuranosyl-cytosine. Clinical Pharmacology and Therapeutaics 12: 944–954, 1971

    CAS  Google Scholar 

  • Howell SB, Olshen RA, Rice JA. Effect of probenecid on cerebrospinal fluid methotrexate kinetics. Clinical Pharmacology and Therapeutics 26: 641–646, 1979

    PubMed  CAS  Google Scholar 

  • Jacobs C, Coleman CN, Rich L, Hirst K, Weiner MW. Inhibition of cis-diamminedichloroplatinum secretion by the human kidney with probenecid. Cancer Research 44: 3632–3635, 1984

    PubMed  CAS  Google Scholar 

  • Jao JY, Jusko WJ, Cohen JL. Phenobarbital effects on cyclophosphamide pharmacokinetics in man. Cancer Research 32: 2761–2764, 1972

    PubMed  CAS  Google Scholar 

  • Kates RE, Tozer TN, Sorby DL. Increased methotrexate toxicity due to concurrent probenecid administration. Biochemical Pharmacology 25: 1485–1488, 1976

    PubMed  CAS  Google Scholar 

  • Kerr IG, Jolivet J, Collins JM, Drake JC, Chabner BA. Test dose for predicting high-dose methotrexate infusions. Clinical Pharmacology and Therapeutics 33: 44–51, 1983

    PubMed  CAS  Google Scholar 

  • Kirkwood JM, Ensminger W, Rosoweky A, Papathanosopoulos N, Frei E. Comparison of pharmacokinetics of 5-fluorouracil and 5-fluorouracil with concurrent thymidine infusions in a phase I trial. Cancer Research 40: 107–113, 1980

    PubMed  CAS  Google Scholar 

  • Koch-Weser J, Greenblatt DJ. Drug interactions in clinical perspective. European Journal of Clinical Pharmacology 11: 405–408, 1977

    PubMed  CAS  Google Scholar 

  • Kreis W, Woodcock TM, Gordon CS, Krakoff IH. Tetrahydrouridine: physiologic disposition and effect upon deamination of cytosine arabinoside in man. Cancer Treatment Reports 61: 1347–1353, 1977

    PubMed  CAS  Google Scholar 

  • Lee FYF, Workman P. Modification of CCNU pharmacokinetics by misonidazole — a major mechanism of chemosensitization in mice. British Journal of Cancer 47: 659–669, 1983

    PubMed  CAS  Google Scholar 

  • Lee FYF, Workman P. Nitroimidazoles as modifiers of nitrosourea pharmacokinetics. International Journal of Radiation Oncology Biology and Physics 10: 1627–1630, 1984

    CAS  Google Scholar 

  • Levin VA, Stearns J, Byrd A, Finn A, Weinkam RJ. The effect of phenobarbital pretreatment on the antitumour activity of l,3-bis(2-chloroethyl)-l-nitrosourea (BCNU), l-(2-chloroe-thyl)-3-cyclohexyl-l-nitrosourea(CCNU) and l-(2-chloroe-thyl)-3-(2,6-dioxo-3-piperidyl-l-nitrosourea (PCNU), and on the plasma pharmacokinetics and biotransformation of BCNU. Journal of Pharmacology and Experimental Therapeutics 208: 1–6, 1979

    PubMed  CAS  Google Scholar 

  • Levine AS, Sharp HL, Mitchell J, Krivit W, Nesbit ME. Combination therapy with 6-mercaptopurine (NSC-755) and allopurinol (NSC-1390) during induction and remission of acute leukemia in children. Cancer Chemotherapy Reports 53 (Part 1): 53–57, 1969

    CAS  Google Scholar 

  • Liegler DG, Henderson ES, Hahn MA, Oliverio VT. The effect of organic acids on renal clearance of methotrexate in man. Clinical Pharmacology and Therapeutics 10: 849–857, 1969

    PubMed  CAS  Google Scholar 

  • Mandel MA. The synergistic effect of salicylates on methotrexate toxicity. Plastic and Reconstructive Surgery 57: 733–739, 1976

    PubMed  CAS  Google Scholar 

  • Marinello AJ, Berrigan MJ, Struck RF, Guengerich FP, Gurtoo HL. Inhibition of NADPH-cytochrome P-450 reductase by cyclophosphamide and its metabolites. Biochemical and Biophysical Research Communications 99: 399–406, 1981

    PubMed  CAS  Google Scholar 

  • May FE, Stewart RB, Cluff LE. Drug interactions and multiple drug administration. Clinical Pharmacology and Therapeutics 22: 322–328, 1977

    PubMed  CAS  Google Scholar 

  • McDermott BJ, Van der Berg HW, Martin WMC, Murphy RF. Pharmacokinetic rationale for the interaction of 5-fluorouracil and misonidazole in humans. British Journal of Cancer 48: 705–710, 1983

    PubMed  CAS  Google Scholar 

  • McNally NJ. Enhancement of chemotherapy agents. International Journal of Radiation Oncology Biology and Physics 8: 593–598, 1982

    CAS  Google Scholar 

  • Melmon KL, Nierenberg DW. Drug interactions and the prepared observer. New England Journal of Medicine 304: 723–724, 1981

    PubMed  CAS  Google Scholar 

  • Menozzi M, Arcamone F. Binding of adriamycin to sulphated mucopolysaccharides. Biochemical and Biophysical Research Communications 80: 313–318, 1978

    PubMed  CAS  Google Scholar 

  • Mouridsen HT, Faber O, Skovsted L. The metabolism of cyclophosphamide. Cancer 37: 665–670, 1976

    PubMed  CAS  Google Scholar 

  • Neil GL, Moxley TE, Manak RC. Enhancement by tetrahydrouridine of 1-β-D-arabinofuranosylcytosine (cytarabine) oral activity in L1210 leukemic mice. Cancer Research 30: 2166–2172, 1970

    PubMed  CAS  Google Scholar 

  • Osman NM, Copley MP, Litterst CL. Amelioration of cisplatininduced nephrotoxicity by the diuretic acetazolamide in F344 rats. Cancer Treatment Reports 68: 999–1004, 1984

    PubMed  CAS  Google Scholar 

  • Ostrow S, Egorin MJ, Hahn D, Markus S, Aisner J, et al. Highdose cisplatin therapy using mannitol versus furosemide diuresis: comparative pharmacokinetics and toxicity. Cancer Treatment Reports 65: 73–78, 1981

    PubMed  CAS  Google Scholar 

  • Paxton JW. Interaction of probenecid with the protein binding of methotrexate. Pharmacology 28: 86–89, 1984

    PubMed  CAS  Google Scholar 

  • Pera MF, Zook BC, Harder HC. Effects of mannitol or furosemide diuresis on the nephrotoxicity and physiologic disposition of cis-dichlorodiammineplatinum (II) in rats. Cancer Research 39: 1269–1278, 1979

    PubMed  CAS  Google Scholar 

  • Perry DJ, Weiss RB, Taylor HG. Enhanced bleomycin toxicity during acute renal failure. Cancer Treatment Reports 66: 592–593, 1982

    PubMed  CAS  Google Scholar 

  • Pfeifle CE, Howell SB, Felthouse RD, Woliver TBS, Andrews PA, et al. High-dose cisplatin with sodium thiosulphate protection. Journal of Clinical Oncology 3: 237–244, 1985

    PubMed  CAS  Google Scholar 

  • Piazza E, Cortellazzo S, Ottolenghi L, Poggi A, Barbui T, et al. Heparin does not modify plasma daunomycin disappearance in acute leukaemia patients. British Journal of Cancer 42: 782–785, 1980

    PubMed  CAS  Google Scholar 

  • Reich SD, Bachur NR. Alterations in adriamycin efficacy by phenobarbital. Cancer Research 36: 3803–3806, 1976

    PubMed  CAS  Google Scholar 

  • Riggs CE, Egorin MJ, Akman SR, Angelou JE, Van Echo DA, et al. Doxorubicin metabolism is altered by combination therapy with cyclophosphamide and whole-body hyperthermia. Proceedings of the American Society of Clinical Oncology 1: 26, 1982

    Google Scholar 

  • Ross DA, Gale GR. Reduction of the renal toxicity of cis-dich-lorodiammineplatinum (II) by probenecid. Cancer Treatment Reports 63: 781–787, 1979

    PubMed  CAS  Google Scholar 

  • Sellers EM. Plasma protein displacement interactions are rarely of clinical significance. Pharmacology 18: 225–227, 1979

    PubMed  CAS  Google Scholar 

  • Sladek NE. Therapeutic efficacy of cyclophosphamide as a function of its metabolism. Cancer Research 32: 535–542, 1972

    PubMed  CAS  Google Scholar 

  • Sladek NE, Priest J, Doeden D, Mirocha CJ, Pathre S, et al. Plasma half-life and urinary excretion of cyclophosphamide in children. Cancer Treatment Reports 64: 1061–1066, 1980

    PubMed  CAS  Google Scholar 

  • Shen DD, Azarnoff D. Clinical pharmacokinetics of methotrexate. Clinical Pharmacokinetics 3: 1–13, 1978

    PubMed  CAS  Google Scholar 

  • Siemann DW. Potentiation of chemotherapy by hypoxic cell radiation sensitizers — a review. International Journal of Radiation Oncology Biology and Physics 8: 1029–1034, 1982

    CAS  Google Scholar 

  • Siemann DW. Effect of pretreatment with phenobarbital or SKF 525A on the toxicity and antitumour activity of lomustine. Cancer Treatment Reports 67: 259–265, 1983

    PubMed  CAS  Google Scholar 

  • Sommadossi J-P, Gewirtz DA, Cross DS, Goldman ID, Cano JP, et al. Modulation of 5-fluorouracil catabolism in isolated rat hepatocytes with enhancement of 5-fluorouracil glucuronide formation. Cancer Research 45: 116–121, 1985

    PubMed  CAS  Google Scholar 

  • Stolbach L, Begg C, Bennett JM, Silverstein M, Falkson G, et al. Evaluation of bone marrow toxic reaction in patients treated with allopurinol. Journal of the American Medical Association 247: 334–336, 1982

    PubMed  CAS  Google Scholar 

  • Stoller RG, Hande KR, Jacobs SA, Rosenberg SA, Chabner BA. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. New England Journal of Medicine 297: 630–634, 1977

    PubMed  CAS  Google Scholar 

  • Stoller RG, Myers CE, Chabner BA,. Analysis of cytidine deaminase and tetrahyrouridine interaction by use of ligand techniques. Biochemical Pharmacology 27: 53–59, 1978

    PubMed  CAS  Google Scholar 

  • Strum WB. A pH-dependent, carrier-mediated transport system for the folate analog, amethopterin, in rat jejunum. Journal of Pharmacology and Experimental Therapeutics 203: 640–645, 1977

    PubMed  CAS  Google Scholar 

  • Thyss A, Milano G, Kubar J, Namer M, Schneider M. Clinical and pharmacokinetic evidence of a life threatening interaction between methotrexate and ketoprofen. Lancet 1: 256–258, 1986

    PubMed  CAS  Google Scholar 

  • Uozumi J, Ishizawa M, Iuomoto Y, Baba T. Sodium thiosulphate inhibits cis-diamminedichloroplatinum (II) activity. Cancer Chemotherapy and Pharmacology 13: 82–85, 1984

    PubMed  CAS  Google Scholar 

  • van Prooijen R, van der Kleijn E, Haanen C. Pharmacokinetics of cytosine arbinoside in acute myeloid leukemia. Clinical Pharmacology and Therapeutics 21: 744–750, 1977

    PubMed  Google Scholar 

  • Vogler WR, Bain JA, Huguley CM, Palmer HG, Lowery ME. Metabolic and therapeutic effects of allopurinol in patients with leukemia and gout. American Journal of Medicine 40: 548–559, 1966

    Google Scholar 

  • Ward JM, Grabin ME, Berlin E, Young DM. Prevention of renal failure in rats receiving cis-diamminedichloroplatinum (II) by administration of furosemide. Cancer Research 37: 1238–1240, 1977a

    PubMed  CAS  Google Scholar 

  • Ward JM, Grabin ME, Leroy AF, Young DM. Modification of the renal toxicity of cis-dichlorodiammineplatinum (II) with furosemide in male F344 rats. Cancer Treatment Reports 61: 375–379, 1977b

    PubMed  CAS  Google Scholar 

  • Warren RD, Bender RA. Drug Interactions with antineoplastic agents. Cancer Treatment Reports 61: 1231–1241, 1977

    PubMed  CAS  Google Scholar 

  • Williams WM, Chen TS, Huang KC. Effect of penicillin on the renal tubular secretion of methotrexate in the monkey. Cancer Research 44: 1913–1917, 1984

    PubMed  CAS  Google Scholar 

  • Witten J, Frederiksen PL, Mouridsen HT. The pharmacokinetics of cyclophosphamide in man after treatment with allopurinol. Acta Pharmacologica et Toxicologica 46: 392–394, 1980

    PubMed  CAS  Google Scholar 

  • Wong PP, Currie VE, Mackey RW, Krakoff IH, Tan CTC, et al. Phase I evaluation of tetrahydrouridine combined with cytosine arabinoside. Cancer Treatment Reports 63: 1245–1249, 1979

    PubMed  CAS  Google Scholar 

  • Yee GC, Crom WR, Champion JE, Brodeur GM, Evans WE. Cisplatin-induced changes in bleomycin elimination. Cancer Treatment Reports 67: 587–589, 1983

    PubMed  CAS  Google Scholar 

  • Zimm S, Collins JM, O’Neill D, Chabner BA, Poplack DG. Inhibition of first-pass metabolism in cancer chemotherapy: interaction of 6-mercaptopurine and allopurinol. Clinical Pharmacology and Therapeutics 34: 810–817, 1983

    PubMed  CAS  Google Scholar 

  • Zimm S, Ettinger LJ, Holcenberg JS, Kamen BA, Vietti TJ, et al. Phase I and clinical pharmacological study of mercaptopurine administered as a prolonged intravenous infusion. Cancer Research 45: 1869–1873, 1985

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balis, F.M. Pharmacokinetic Drug Interactions of Commonly Used Anticancer Drugs. Clin-Pharmacokinet 11, 223–235 (1986). https://doi.org/10.2165/00003088-198611030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198611030-00004

Keywords

Navigation