Clinical Pharmacokinetics

, Volume 10, Issue 6, pp 477–497 | Cite as

Clinical Pharmacokinetics of H1-Receptor Antagonists (The Antihistamines)

  • D. M. Paton
  • Dianne R. Webster
Review Article

Summary

This article reviews clinical pharmacokinetic data on the H1-receptor antagonists, commonly referred to as the antihistamines. Despite their widespread use over an extendnd period, relatively little pharmacokinetic data are available for many of these drugs.

A number of H1-receptor antagonists have been assayed mainly using radioimmunoassay methods. These have also generally measured metabolites to greater or lesser extents. Thus, the interpretation of such data is complex. After oral administration of H1-receptor antagonists as syrup or tablet formulations, peak plasma concentrations are usually observed after 2 to 3 hours. Bioavailability has not been extensively studied, but is about 0.34 for chlorpheniramine, 0.40 to 0.60 for diphenhydramine, and about 0.25 for promethazine.

Most of these drugs are metabolised in the liver, this being very extensive in some instances (e.g. cyproheptadine and terfenadinej. Total body clearance in adults is generally in the range of 5 to 12 ml/min/kg (for astemizole, brompheniramine, chlorpheniramine, diphenhydramine, hydroxyzine, promethazine and triprolidine), while their elimination half-lives range from about 3 hours to about 18 days [cinnarizine about 3 hours; diphenhydramine about 4 hours; promethazine 10 to 14 hours; chlorpheniramine 14 to 25 hours; hydroxyzine about 20 hours; brompheniramine about 25 hours; astemizole and its active metabolites about 7 to 20 days (after long term administration); flunarizine about 18 to 20 davs]. Thev also have relatively large apparent volumes of distribution in excess of 4 L/kg.

In children, the elimination half-lives of chlorpheniramine and hydroxyzine are shorter than in adults. In patients with alcohol-related liver disease, the elimination half-life of diphenhydramine was increased from 9 to 15 hours, while in patients with chronic renal disease that of chlorpheniramine was very greatly prolonged. Little, if any, published information is available on the pharmacokinetics of these drugs in neonates, pregnancy or during lactation.

The relatively long half-lives of a number of the older H1-receptor antagonists such as brompheniramine, chlorpheniramine and hydroxyzine suggest that they can be administered to adults once daily.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aberncthy, D.R. and Greenblatl, D.J.: Diphcnhydramine determination in human plasma by gas-liquid chromatography using nitrogen-phosphorous detection: Application to single lowdose pharmacokinetic studies. Journal of Pharmaceutical Sciences 72: 941–943 (1983).CrossRefGoogle Scholar
  2. Albert, K.S.. Hallmark, M.R.: Sakmar, E.: Wcidler, D.J. and Wagner, J.G.: Pharmacokinetics of diphenhydramine in man. Journal of Pharmacokinetics and Biopharmaccutics 3: 159–170 (1975).CrossRefGoogle Scholar
  3. Ali, H.M. and Beckett, A.H.: Rapid method for the determination of chlorpheniramine in urine. Journal of Chromatography 223: 208–212 (1981).PubMedCrossRefGoogle Scholar
  4. Athanikar, N.K.: Peng, G.W.: Nation, R.L.: Huang, S.-M. and Chiou, W.L.: Chlorpheniramine. I. Rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine by high-performance liquid chromatography. Journal of Chromatography 162: 367–376 (1979).PubMedCrossRefGoogle Scholar
  5. Barnhart, J.W. and Johnson, J.D.: Simplified gas-chromatographic method for the determination of chlorpheniramine in serum. Analytical Chemistry 49: 1085–1086 (1977).PubMedCrossRefGoogle Scholar
  6. Baugh, R. and Calvert, R.T.: A rapid method for the determination of diphenhydramine in plasma. British Journal of Clinical Pharmacology 3: 1062–1064 (1976).PubMedCrossRefGoogle Scholar
  7. Beckett, A.H. and Wilkinson, G.T.: Influence of urine pH and flow rate on the renal excretion of chlorpheniramine in man. Journal of Pharmacy and Pharmacology 17: 256–257 (1965).PubMedCrossRefGoogle Scholar
  8. Bellinger, W.G.: Goldbert, M.J.: Spector, R.: Chiang, C-K. and Ghoneim, M.M.: Diphenhydramine: Kinetics and psychomotor effects in elderly women. Clinical Pharmacology and Therapeutics 32: 387–391 (1982).CrossRefGoogle Scholar
  9. Biber, W.: Gundcrt-Remy, U. and Weber, E.: Relationship between antihistamine activity and plasma level of diphenydramine. European Journal of Clinical Pharmacology 7: 393–395 (1974).CrossRefGoogle Scholar
  10. Bruce, R.B.: Turnbull, L.B.: Newman, J.H. and Pilts, J.E.: Metabolism of brompheniramine. Journal of Medicinal Chemistry 11: 1031–1034 (1968).PubMedCrossRefGoogle Scholar
  11. Carruthers, S.G.: Shocman, D.W.: Hignite, C.E. and Azarnoff, D.L.: Correlation between plasma diphenhydramine level and sedative and anti-histamine effects. Clinical Pharmacology and Therapeutics 23: 375–382 (1978).PubMedGoogle Scholar
  12. Casy, A.F.: Chemistry of anti-Hi histamine antagonists: in Rocha and Silva (Eds) Histamine II and Anti-histamines. Chemistry. Metabolism and Physiological and Pharmacological Actions. Handbook of Experimental Pharmacology. Vol. 18. Part 2. pp. 93–108 (Springer Verlag, Berlin 1978).Google Scholar
  13. Chang, T.: Okcrholm, R.A. and Glazo, A.J.: Identification of diphenhydramine (Benadryl) metabolites in human subjects. Research Communications in Chemical Pathology and Pharmacology 9: 391–404 (1974).PubMedGoogle Scholar
  14. Chaudhuri, N.K.: Sevando, O.A.: Manniello, M.J.: Luders, R.C.. Chao, D.K. and Bartlett, M.F.: Metabolism of tripelcnnamine in man. Drug Metabolism and Disposition 4: 372–378 (1976).PubMedGoogle Scholar
  15. Cook, C.E.: Williams, D.L.: Myers, M.: Tallent, C.R.: Lecson, G.A. et al.: Radioimmunoassay for terfenadine in human plasma. Journal of Pharmaceutical Sciences 69: 1419–1422 (1980).PubMedCrossRefGoogle Scholar
  16. Davies, B.H. and Rocchiccioli, K.: Oxatomidc plasma levels in man during chronic dosing. Pharmalherapeutica 3: 365–369 (1983).Google Scholar
  17. DeAngelis, R.L.: Kearney, M.F. and Welch, R.M.: Determination of triprolidine in human plasma by quantitative TLC. Journal of Pharmacuctical Sciences 66: 841–843 (1977).CrossRefGoogle Scholar
  18. DiGregorio, G.J. and Ruch, E.: Human whole blood and parotid saliva concentrations of oral and intramuscular promethazine. Journal of Pharmaceutical Sciences 69: 1457–1459 (1980).PubMedCrossRefGoogle Scholar
  19. Douglas, W.W.: Histamine and 5-hydroxytryptamine (serotonin) and their antagonists: in Gilman et al, (Eds) The Pharmacological Basis of Therapeutics. 6th ed.. pp. 609–646 (MacMillan, New York 1980).Google Scholar
  20. Dube, L.M.: Bloch, R.: Warner, R.N.: Hyslop, R.M.: Popovich, N.G. and Gonzalez, M.A. Pharmacokinetics of chlorpheniramine in chronic renal failure: Effect of hemodialysis and peritoneal dialysis. American Pharmaceutical Association 127th Annual Meeting (Abstract No. 46) 10: 84 (1980).Google Scholar
  21. Findlay, J.W.A.: Rutz, R.F.: Sailstad, J.M.: Warren, J.T. and Welch, R.M.: Pseudoephedrine and triprolidine in plasma and breast milk of nursing mothers. British Journal of Clinical Pharmacology 18: 901–906 (1984).PubMedCrossRefGoogle Scholar
  22. Flor, S.C.: Determination of the calcium antagonist flunarizine in biological fluids by gas-liquid chromatography. Journal of Chromatography 272: 315–323 (1983).PubMedCrossRefGoogle Scholar
  23. Gartciz, DA.: Hook, R.H.: Walker, B.J. and Okcrholm, R.A.: Pharmacokinetics and biotransformation studies of terfenadine in man. Arzneimittel-Forschung 32: 1185–1190 (1982).Google Scholar
  24. Graham, G. and Boll, A.G.: Half-life of diphcnylpyraline in man. Journal of Pharmacokinetics and Biopharmacuetics 2: 191–195 (1974).Google Scholar
  25. Heykants, J.: Pharmacokinetics and metabolism of astcmizole in man; in Astcmizole: A New Non-Sedative. Long-Acting H1 Antagonist pp. 25–34 (Medical Education Services, Oxford 1984).Google Scholar
  26. Heykants, J.: DeCrec, J. and Horig, C.: Steady-state plasma levels of flunarizine in chronically treated patients. Arzneimittel-Forschung 29: 1168–1171 (1979).PubMedGoogle Scholar
  27. Heykants. J.: Geuens. I.: Wocstcnborghs. R.: Dony. J.: Scheygrond. H. and Amery, W.: Biocquivalcnce of two oxatomide formulations (a 30mg tablet and a 25 mg/ml suspension) in a group of seven healthy subjects. Janssen Pharmaceutica Clinical Research Report R35443/27 (1981).Google Scholar
  28. Heykants. J.: Hendriks. R.: Michicls. M. and Scheygrond. H.: Relative bioavailability in five volunteers of three oxalomide formulations in comparison to a drug solution. Janssen Pharmacuetica Clinical Rescarch Report R35443/17 (1978).Google Scholar
  29. Hcykants. J.: Michielson. L.: Lorreyne. W.: Wocstenborghs, R.: Scheygrond. H. and Ryntjcns. A.: Biocquivalcnce study of two flunarizine formulations (a 5mg capsule and a 10mg tablet) in a group of six healthy subjects. Janssen Pharmaceulica Clinical Research Report R14950/52 (1981).Google Scholar
  30. Hcykants, J. and Vanden Bussche. G.: On the pharmacokinctics nfasicmizolc in volunteers and patients. Janssen Pharmaceu-tica Clinical Research Report R435I2/62 (1983).Google Scholar
  31. Hcykanls. J. and Van Peer. A.: Steady-state pharmacokinetics of flunarizine in man arc predictable from single-dose kinetics. Janssen Pharmaceutica Clinical Research Report R14950/58 (1983).Google Scholar
  32. Hintze, K.L.: Wold, J.S. and Fischer, L.J.: Disposition of cyproheptadine in rats, mice and humans and identification of a stable epoxide-metabolite. Drug Metabolism and Disposition 3: 1–9 (1975).PubMedGoogle Scholar
  33. Holmes, Brogden, R.N.: Heel, R.C.: Speight, T.M. and Avery, O.S.: Flunarizinc: A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs 27: 6–44 (1984).PubMedCrossRefGoogle Scholar
  34. Howarth, P.H.: Emmanuel, M.B. and Holgate, S.T.: Astemizole, a potent histamine H1-receptor antagonist: Effect in allergic rhinoconjunctivitis, on antigen and histamine induced skin wheal responses and relationship to serum levels. British Journal of Clinical Pharmacology 18: 1–8 (1984).PubMedCrossRefGoogle Scholar
  35. Huang, S-M.: Athanikar, N.K.: Sridhar, K.: Huang, Y.C. and Chiou, W.L.: Pharmacokinetics of chlorpheniramine after oral and intravenous administration in normal subjects. European Journal of Clinical Pharmacology 22: 359–365 (1982).PubMedCrossRefGoogle Scholar
  36. Kabasakalian, P.: Taggart, M. and Townley, E.: Urinary excretion of pheniramine and its N-demethylated metabolites in man — comparison with chlorpheniramine and brompheniramine data. Journal of Pharmaceutical Sciences 57: 621–623 (1968).PubMedCrossRefGoogle Scholar
  37. Kennedy, K.A.: Halmi, K.A. and Fischer, L.J.: Urinary excretion of a quaternary-ammonium glucuronide metabolite of cyproheptadine in humans undergoing chronic drug therapy. Life Sciences 21: 1813–1820 (1977).PubMedCrossRefGoogle Scholar
  38. Kohlhof, K.J.: Stamp, D. and Ziggamia, J. A.: Analysis of doxylaminc in plasma by high-performance liquid chromatography. Journal of Pharmaceutical Sciences 72: 961–962 (1983).PubMedCrossRefGoogle Scholar
  39. Kok, T.H.H.G.: Taitz, L.S.: Bennett, M.J. and Holt, D.W.: Drowsiness due to clemastine transmitted in breast milk. Lancet 1: 914–915 (1982).PubMedCrossRefGoogle Scholar
  40. Kotzan, J.A.: Valiner, J.J.: Stewart, J.T.: Brown, W.J.: Viswanathan, C.T. et al.: Bioavailability of regular and controlled-releasc chlorpheniramine products. Journal of Pharmaceutical Sciences 71: 919–923 (1982).PubMedCrossRefGoogle Scholar
  41. Kuntzman, R.: Klutch, A.: Tsai, I. and Burns, J.J.: Physiological distribution and metabolic inactivalion of chlorcyclizine and cyclizinc. Journal of Pharmacology and Experimental Therapeutics 149: 29–35 (1965).PubMedGoogle Scholar
  42. Kuntzman, R.: Tsai, I. and Burns, J.J.: Importance of tissue and plasma binding in determining the retention of norchlorcyclizine and norcyclizine in man, dog and rat. Journal of Pharmacology and Experimental Therapeutics 158: 332–339 (1967).PubMedGoogle Scholar
  43. Lai, Stoll, R.G.: Look, Z.M. and Yacobi, A.: Urinary excretion of chlorpheniramine and pseudoephedrinc in humans. Journal of Pharmaceutical Sciences 68: 1243–1246 (1979).PubMedCrossRefGoogle Scholar
  44. Land, G.: Dean, K. and Bye, A.: Determination of cyclizinc and norcyclizine in plasma and urine using gas-liquid chromatography and nitrogen selective detection. Journal of Chromatography 222: 135–140 (1981).PubMedCrossRefGoogle Scholar
  45. La-son, G.A.: Chan, K.Y.: Knapp, W.C.: Biebenbach, S.A.: Wright, G.J. and Okcrholm, R.A.: Metabolic disposition of terfenadine in laboratory animals. Arzneimittel-Forschung 32: 1173–1178 (1982).Google Scholar
  46. Lin, C.: Lim, J. and Symchowicz, S.: Bioavailability of d-pseu doephedrinc and azaladinc from a repeat action tablet formulation. Journal of International Medical Research 10: 122–125 (1982).PubMedGoogle Scholar
  47. Meredith, C.G.: Christian, C.D.: Johnson, R.F.. Madhavan, S.V. and Schenker, S.: Diphenhydramine disposition in chronic liver disease. Clinical Pharmacology and Therapeutics 35: 474–479 (1984).PubMedCrossRefGoogle Scholar
  48. Meuldermans, W.: Hendricks, J.: Harkmans, R.: Swysen, E.: Woestcnborghs, R. et al.: Excretion and metabolism of flunarizine in rats and dogs. Arzncimittel-Forschung 33: 1142–1151 (1983).Google Scholar
  49. Meuldermans, W.: Hendricks, J.: Knaeps, F.: Lauwers, W.: Heykants, J. and Grindel, J.M.: Plasma levels, biotransformation and excretion of oxatomidc(R35 443) in rats, dogs and man. Xenobiotica 14: 445–462 (1984).PubMedCrossRefGoogle Scholar
  50. Michicls, M.: Hendriks, R.: Knaeps, F.: Woestenborghs, R. and Hcykams, J.: Absorption and tissue distribution of flunarizine in rats, pigs and dogs. Arzneimittel-Forschung 33: 1135–1142 (1983).Google Scholar
  51. Michicls. M.: Hendricks, R.: Prinsen, P. and Heykants. J.: Radioimmunoassay for oxatomide: Improvement of specificity Janssen Pharamceutica Clinical Research Report (R35 443/28) (1978).Google Scholar
  52. Moolenaar, F.: Ensing, J.G.: Bolhuis, B.G. and Visser, J.: Absorption rate and bioavailability of promethazine from rectal and oral dosage forms. International Journal of Pharmaceutics 9: 353–357 (1981).CrossRefGoogle Scholar
  53. Morrison, P.J.: Bradbrook, I.D. and Rogers, H.J.: Plasma cinnarizine levels resulting from oral administration as capsule or tablet formulation investigated by gas-liquid chromatography. British Journal of Clinical Pharmacology 7: 349–352 (1979).PubMedCrossRefGoogle Scholar
  54. Nauta, W.T. and Rekker, R.F.: Structure-activity relationships of H1-receptor antagonists: in Rocha and Silva (Ed.) Histamine 11 and Anti-histamines: Chemistry. Metabolism and Physiological and Pharmacological Actions. Handbook of Experimental Pharmacology. Vol. 18. Part 2. (Springer-Verlag, Berlin 1978).Google Scholar
  55. Nitsche, V. and Mascher, H.: Rapid high-performance liquid Chromatographie assay of cinnarizine in human plasma. Journal of Chromatography 227: 521–525 (1982).PubMedCrossRefGoogle Scholar
  56. Okerholm, R.A.: Weiner, D.L.: Hook, R.H.: Walker, B.J.: Leeson, G.A. et al.: Bioavailability of terfenadine in man. Biopharmacculics and Drug Disposition 2: 185–190 (1981).CrossRefGoogle Scholar
  57. Paton. D.M.: Receptors for histamine; in Schacter (Ed.) Histamine and Anti-histamines. International Encyclopedia of Pharmacology and Therapeutics. Section 74. Vol. I. pp. 3–24 (1972).Google Scholar
  58. Peets, E.A.: Jackson, M. and Symchowicz, S.: Metabolism of chlorpheniramine maleate in man. Journal of Pharmacology and Experimental Therapeutics 180: 464–472 (1972).Google Scholar
  59. Perkins, J.G.: Bressler, R.: Heatherington, D.: Cato, A. and Dickerson, J.: A bioavailability and safety study comparing Actifed sustained-action (SA) capsules to Actifed immediate-release (IR) tablets. Current Therapeutic Research 28: 650–668 (1980).Google Scholar
  60. Porter, C.C.: Arisen, B.H.: Gruber, V.F.: Titus, D.C. and Vandcnhcuvel, W.J.A.: Human metabolism of cyproheptadine. Drug Metabolism and Disposition 3: 189–197 (1975).PubMedGoogle Scholar
  61. Puitemans, M.: Bogacrt, M.: Hoogewijs, G.: Dryon, L.: Massart, D.L. and Vanhaclsl, L.: Determination of cinnarizine in whole blood and plasma by reversed phase HPLC. and its application to a pharmacokinctic study. Journal of Liquid Chromatography 7: 2237–2251 (1984).CrossRefGoogle Scholar
  62. Quinn, J. and Calverl, R.: The disposition of promethazine in man. Journal of Pharmacy and Pharmacology 28: 59P (1976).Google Scholar
  63. Richards, D.M.: Brogden, R.N.: Heel, R.C.: Speight, T.M. and Avery, G.S.: Astemizole: A review of its pharmacodynamic properties and therapeutic efficacy. Drugs 28: 38–61 (1984a).PubMedCrossRefGoogle Scholar
  64. Richards, D.M.: Brogden, R.N.: Heel, R.C.: Speight, T.M. and Avery, G.S.: Oxatomidc: A review of its pharmacodynamic properties and therapeutic efficacy. Drugs 27: 210–231 (1984b).PubMedCrossRefGoogle Scholar
  65. Rumore, M.M.: Clinical pharmacokinetics of chlorpheniramine. Drug Intelligence and Clinical Pharmacy 18: 701–707 (1984).PubMedGoogle Scholar
  66. Sanders, S.W.: Warner, R.N.: Geogitis, J.W.: Eigen, H. and Gonzalez, M.A.: Dexchlorphcniramine disposition in man. American Pharmaceutical Association Journal 10: 84 (1980).Google Scholar
  67. Schwinghammer, T.L.: Juhl, R.P.: Dittcrt, L.W.: Mclechil, S.K.: Kroboth, F.J. and Chungi, V.S.: Comparison of the bioavailability of oral, rectal and intramuscular promethazine. Biopharmaceutics and Drug Disposition 5: 185–194 (1984).CrossRefGoogle Scholar
  68. Simons, F.E.R.: Frith, E.M. and Simons, K.J.: The pharmacokinetics and antihistamine effects of brompheniramine. Journal of Allergy and Clinical Immunology 70: 458–464 (1982a).PubMedCrossRefGoogle Scholar
  69. Simons, F.E.R.: Luciuk, G.H. and Simons, K.J.: Pharmacokinetics and efficacy of chlorpheniramine in children. Journal of Allergy and Clinical Immunology 69: 376–381 (1982b).PubMedCrossRefGoogle Scholar
  70. Simons, F.E.R.: Simons, K.J.: Becker, A.N. and Haydey, R.P.: Pharmacokinetics and antipruritic effects of hydroxyzine in children with atopic dermatitis. Journal of Paediatrics 104: 123–127 (1984a).CrossRefGoogle Scholar
  71. Simons. F.E.R.: Simons. K.J. and Frith. E.M.: The pharmacokinetics and antihistamine effects of the H-1 receptor antagonist hydroxyzine. Journal of Allergy and Clinical Immunology (In press 1984b).Google Scholar
  72. Simons, K.J.: Simons, F.E.R.: Luciuk, G.H. and Frith, E.M.: Urinary excretion of chlorpheniramine and its metabolites in children. Journal of Pharmaceutical Sciences 73: 595–599 (1984c).PubMedCrossRefGoogle Scholar
  73. Sorkin, E.M. and Heel, R.C.: Terfenadine: A review of its pharmacodynamic properties and therapeutic efficacy. Drugs 29: 34–56 (1985).PubMedCrossRefGoogle Scholar
  74. Spector, R.. Choudhury, A.K.: Chiang, C-K.: Goldberg, M.J. and Ghoneim, M.M.: Diphenhydramine in Orientals and Caucasians. Clinical Pharmacology and Therapeutics 28: 229–234 (1980).PubMedCrossRefGoogle Scholar
  75. Taylor, Ci.: Calvert, R.T. and Houston, J. Determination of promethazine in biological fluids. Analytical Letters 12: 1435–1442 (1979).CrossRefGoogle Scholar
  76. Taylor, G. and Houston, J. Simultaneous determination of promethazine and two of its circulating metabolites by highperformance liquid chromatography. Journal of Chromatography 230: 194–198 (1982).PubMedCrossRefGoogle Scholar
  77. Taylor, Ci. and Houston, J. Determinants of systemic availability of promethazine in rabbits. Journal of Pharmacy and Pharmacology 35: 284–288 (1983).PubMedCrossRefGoogle Scholar
  78. Taylor, G.: Houston, J.B.: Shaffer, J. and Mower, G.: Pharmacokinetics of promethazine and its sulphoxide metabolite after intravenous and oral administration to man. British Journal of Clinical Pharmacology 15: 287–293 (1983).PubMedCrossRefGoogle Scholar
  79. Tham, R.: Norlandcr, Hagermark, O. and Fransson, L.: Gaschromalography of clemastine. A study of plasma kinetics and biological effect. Arzncimittel-Forschung 28: 1017–1020 (1978).Google Scholar
  80. Thompson, J.A.: Bloedow, D.C. and Leffert, F.H.: Pharmacokinetics of intravenous chlorpheniramine in children. Journal of Pharmaceutical Sciences 70: 1284–1286 (1981).PubMedCrossRefGoogle Scholar
  81. Thompson, J.A. and Leffert, F.H.: Sensitive GLC-mass spectrometric determination of chlorpheniramine in serum. Journal of Pharmaceutical Sciences 69: 707–710 (1980).PubMedCrossRefGoogle Scholar
  82. Vallner, J.J.: Kotzan, J.A.: Stewart, J.T.: Brown, W.J.: Honigberg, I.L. el al.: Blood levels following multiple oral dosing of chlorpheniramine conventional and controlled release preparations. Biopharmaceutics and Drug Disposition 3: 95–104 (1982).CrossRefGoogle Scholar
  83. chlorpheniramine to seven subjects. Current Therapeutic Research 26: 449-453 (1979).Google Scholar
  84. Van Landcghem, V.H.: Burke, J.T. and Thcbaull, J.: The use of a human bioassay in determining the biocquivalcnce of two formulations of the antihistamine icrfenadine. Clinical Pharmacology and Therapeutics 27: 290–291 (1980).Google Scholar
  85. Woeslenborghs, R.. Embrechts, L. and Heykants, J.: Simultaneous determination of astemizote and its demethylated metabolite in animal plasma and tissues by high-performance liquid chromatography. Journal of Chromatography 278: 359–366 (1983).CrossRefGoogle Scholar
  86. Woeslenborghs, R.: Michielsen, L; Lorrcyne, W. and Heykants, J.: Sensitive gas chromatographic method for the determination of cinnarizine and flunarizine in biological samples. Journal of Chromatography 232: 85–91 (1982).CrossRefGoogle Scholar
  87. Wold, J.S. and Fischer, L.J.: The tissue distribution of cyproheptadine and its metabolites in rats and mice. Journal of Pharmacology and Experimental Therapeutics 183: 188–196 (1972).PubMedGoogle Scholar
  88. Woodward, J.K. and Munro, N.L.: Terfenadine, the first nonsedating antihistamine. Arzneimiltcl-Forschung 32: 1154–1156 (1982).Google Scholar
  89. Vacobi, A.: Stolt, R.G.: Chao, G.C.: Carter, J.E.: Baaske, D.M. et al.: Evaluation of sustained-action chlorpheniraminc-pscudocphedrine dosage forms in humans. Journal of Pharmaceutical Sciences 69: 1077–1081 (1980).CrossRefGoogle Scholar

Copyright information

© ADIS Press Limited 1985

Authors and Affiliations

  • D. M. Paton
    • 1
  • Dianne R. Webster
    • 1
  1. 1.Department of Pharmacology and Clinical Pharmacology, School of MedicineUniversity of AucklandAucklandNew Zealand

Personalised recommendations