Skip to main content
Log in

Clinical Significance of Esterases in Man

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Esterases, hydrolases which split ester bonds, hydrolyse a number of compounds used as drugs in humans. The enzymes involved are classified broadly as cholinesterases (including acetylcholinesterase), carboxylesterases, and arylesterases, but apart from acetylcholinesterase, their biological function is unknown. The acetylcholinesterase present in nerve endings involved in neurotransmission is inhibited by anticholinesterase drugs, e.g. neostigmine, and by organophosphorous compounds (mainly insecticides). Cholinesterases are primarily involved in drug hydrolysis in the plasma, arylesterases in the plasma and red blood cells, and carboxylesterases in the liver, gut and other tissues.

The esterases exhibit specificities for certain substrates and inhibitors but a drug is often hydrolysed by more than one esterase at different sites. Aspirin (acetylsalicylic acid), for example, is hydrolysed to salicylate by carboxylesterases in the liver during the firstpass. Only 60% of an oral dose reaches the systemic circulation where it is hydrolysed by plasma cholinesterases and albumin and red blood cell arylesterases. Thus, the concentration of aspirin relative to salicylate in the circulation may be affected by individual variation in esterase levels and the relative roles of the different esterases, and this may influence the overall pharmacological effect. Other drugs have been less extensively investigated than aspirin and these include heroin (diacetylmorphine), suxamethonium (succinylcholine), Clofibrate, Carbimazole, procaine and other local anaesthetics. Ester prodrugs are widely used to improve absorption of drugs and in depot preparations. The active drug is released by hydrolysis by tissue carboxylesterases.

Individual differences in esterase activity may be genetically determined, as is the case with atypical cholinesterases and the polymorphic distribution of serum paraoxonase and red blood cell esterase D. Disease states may also alter esterase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrige, W.N.: Two types of esterase (A and B) hydrolysing p-nitrophenylactate, propionate and butyrate, and a method of their determination. Biochemical Journal 53: 110–117 (1953).

    Google Scholar 

  • Ali, B. and Kaur, S.: Mammalian tissue acetylsalicylic acid esterases. Identification, distribution and discrimination from other esterases. Journal of Pharmacology and Experimental Therapeutics 226: 589–594 (1983).

    PubMed  CAS  Google Scholar 

  • Augustisson, K.B.: Multiple forms of esterase in vertebrate blood plasma. Annals of the New York Academy of Sciences 94: 844–860 (1961).

    Article  Google Scholar 

  • Bergmann, F.; Segal, R. and Rimon, S.: A new type of esterase in Hog-kidney extract. Biochemical Journal 67: 481–486 (1957).

    PubMed  CAS  Google Scholar 

  • Bleckman, W.J. and Lechner, B.L.: Clinical comparative evaluation of choline magnesium trisalicylate and acetylsalicylic acid in rheumatoid arthritis. Rheumatology and Rehabilitation 18: 119–124 (1979).

    Article  Google Scholar 

  • Builder, J.; Landecker, K.; Whitecross, D. and Piper, D.W.: Aspirin esterase of gastric mucosal origin. Gastroenterology 73: 15–18 (1977).

    PubMed  CAS  Google Scholar 

  • Bundgaard, H. and Hansen, A.B.: Prodrugs as drug delivery systems. Pharmacy International 2: 136–140 (1981).

    CAS  Google Scholar 

  • Costello, P.B.; Caruana, J.A. and Green, F.A.: The relative roles of hydrolases of the erythrocyte and other tissues in controlling aspirin survival in vivo. Arthritis and Rheumatism 27: 422–426 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Costello, P.B. and Green, F.A.: Aspirin survival in human blood modulated by the concentration of erythrocytes. Arthritis and Rheumatism 25: 550–555 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Costello, P.B. and Green, F.A: Identification and partial purification of the major hydrolysing enzyme in human blood. Arthritis and Rheumatism 26: 541–547 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss, J.; Shaw, J.M. and Ross, J.F.: Fluphenazine enanthate and fluphenazine decanoate: Intramuscular injection and es-terification as requirements for slow release characteristics in dogs. Journal of Pharmaceutical Sciences 65: 1310–1315 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Eckerson, H.W.; Collette, M.; Whyte, C. and La Du, B.N.: The human serum paroxonase/arylesterase polymorphism. American Journal of Human Genetics 35: 1126–1138 (1983a).

    PubMed  CAS  Google Scholar 

  • Eckerson, H.W.; Romson, J.; Wyte, C. and La Du, B.N.: The human serum paraoxonase polymorphism: Idenficiation of phenolypes by their response to salts. American Journal of Human Genetics 35: 214–227 (1983b).

    PubMed  CAS  Google Scholar 

  • Gupta, J.D. and Gupta, V.: Serum aspirin esterase activity in women with habitual aspirin uptake. Clinica Chimica Acta 81: 261–265 (1977).

    Article  CAS  Google Scholar 

  • Harris, P.A. and Riegelman, S.: Acetylsalicylic acid hydrolysis in human blood and plasma. I. Methodology and in vitro studies. Journal of Pharmaceutical Sciences 56: 713–716 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Hopkinson, D.A.; Mestriner, M.A.; Cortner, J. and Hans, H.: Esterase D a new human polymorphism. Annals of Human Genetics 37: 119–137 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Horai, S. and Matsunaga, E.: Differential enzyme activities in human esterase D phenotypes. Human Genetics 66: 168–170 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Inoue, M.; Morikowa, M.; Tsubo, M.; Ito, Y. and Sugiura, M.: Comparative study of human intestinal and hepatic esterases as related to enzymatic properties and hydrolysing activity for ester-type drugs. Japanese Journal of Pharmacology 30: 529–535 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Inturrisi, C.E.; Mitchell, B.M.; Foley, K.M.; Schultz, M.; Shin, S.-U.; Honde, R.W.P.: The pharmacokinetics of heroin in patients with chronic pain. New England Journal of Medicine 310: 1213–1217 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Kampmann, J.P. and Hansen, M.J.: Clinical pharmacokinetics of antithyroid drugs. Clinical Pharmacokinetics 6: 401–428 (1981).

    Article  PubMed  CAS  Google Scholar 

  • La Du, B.N. and Snady, H.: Esterases of human tissue; in Brodie and Gillette (Eds) Handbook of Experimental Pharmacology Concepts in Biochemical Pharmacology, pp. 447–479 (1971).

  • Landecker, K.D.; Wellington, J.E.; Thomas, J.H. and Piper, D.W.: Aspirin and related drugs: Their action and uses. Agents and Actions Suppl. 1: 71–79 (1977).

    PubMed  CAS  Google Scholar 

  • Lee, V.H.L.: Esterase activities in adult rabbit eyes. Journal of Pharmaceutical Sciences 72: 239–244 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Lehman, H. and Liddell, J.: Genetic variants of human serum pseudoCholinesterase. Progress in Medical Genetics 3: 75–105 (1964).

    Google Scholar 

  • Levy, G.: Clinical pharmacokinetics of salicylates: A re-assessment. British Journal of Clinical Pharmacology 10: 285S–290S (1980).

    Article  PubMed  Google Scholar 

  • Lockridge, O.; Mottershaw-Jackson, N.; Eckerson, H.W. and La Du, B.M: Hydrolysis of diacetyl morphine (heroin) by human serum Cholinesterase. Journal of Pharmacology and Experimental Therapeutics 215: 1–8 (1980).

    PubMed  CAS  Google Scholar 

  • Lotti, M.; Ketterman, A.; Waskell, L. and Talcott, R.: Meperidine carboxylesterase in mouse and human livers. Biochemical Pharmacology 32: 3735–3738 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Mandell, A.I.; Steutz, F. and Kitabchi, A.E.: Dipivalyl epinephrine: A new pro-drug in the treatment of glaucoma. Ophthalmology 85: 268–275 (1978).

    PubMed  CAS  Google Scholar 

  • Means, G.E. and Bender, M.C.: Acetylalion of human serum albumin by p-nitrophenyl acetate. Biochemistry 14: 4989–4994 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Menguy, R.; Desbaillets, L.; Masters, Y.F. and Okabe, S.: Evidence for sex-linked difference in aspirin metabolism. Nature 239: 102–103 (1972a).

    Article  PubMed  CAS  Google Scholar 

  • Menguy, R.; Desbaillets, L.; Okabe, S. and Masters, Y.F.: Abnormal aspirin metabolism in patients with cirrhosis and its possible relationship to bleeding in cirrhotics. Annals of Surgery 176: 412–418 (1972b).

    Article  PubMed  CAS  Google Scholar 

  • Mentlein, R. and Heymann, E.: Hydrolysis of ester- and amidetype drugs by the purified isoenzymes of nonspecific carboxylesterases from rat liver. Biochemical Pharmacology 33: 1243–1248 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Mirakur, R.K.; Elliott, P. and Lavey, T.D.: Plasma Cholinesterase activity and the duration of suxamethonium apnoea in children. Annals of the Royal College of Surgeons of England 66: 43–45 (1984).

    Google Scholar 

  • Morikawa, M.; Inoue, M.; Tsuboi, M.; Shomura, T.; Someya, S.: Murata, S.; Umeura, K. and Suguira, M.: A study of esterase — its application to biotransformation of midecamycin derivatives. Journal of Pharmacobio-Dynamics 5: 314–318 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Morikawa, M.; Inoue, M.; Tsuboi, M. and Suguira, M.: Studies on aspirin esterase of human serum. Japanese Journal of Pharmacology 29: 581–586 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Myers, C.; Lockridge, O. and La Du, B.N.: Hydrolysis of methyl prednisolone acetate by human serum Cholinesterase. Drug Metabolism and Disposition 10: 279–280 (1982).

    CAS  Google Scholar 

  • Nakashima, T. and Taurog, A.: Rapid conversion of Carbimazole to methimazole in serum. Evidence for an enzymatic mechanism. Clinical Endocrinology 10: 637–638 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Notari, R.E.: Prodrug design. Pharmacology and Therapeutics 14: 25–53 (1981).

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, J.R.: Effects of salicylate on human platelets. Lancet 1: 779–783 (1968).

    Article  PubMed  Google Scholar 

  • Ohta, N.; Kurono, Y. and Ikeda, K.: Esterase like activity of human serum. Journal of Pharmaceutical Sciences 72: 385–388 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Owen, J.A. and Nakatsu, K.: Diacetyl morphine (heroin) hydrolases in human blood. Canadian Journal of Physiology and Pharmacology 61: 8705 (1983).

    Article  Google Scholar 

  • Pannatier, A.; Jenner, P.; Testa, B. and Etter, J.C.: The skin as a drug-metabolising organ. Drug Metabolism Reviews 8(2): 319–343 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Playfer, J.R.; Eze, L.C.; Bullen, M.F. and Evans, D.A.P.: Genetic polymorphism and interethnic variability of plasma paraoxonase activity. Journal of Medicial Genetics 13: 337–342 (1976).

    Article  CAS  Google Scholar 

  • Rainsford, K.D.; Ford, N.L.V.; Brooks, P.M. and Watson, H.M.: Plasma aspirin esterases in normal individuals, patients with alcoholic liver disease and rheumatoid arthritis. Characterisation and the importance of enzymatic components. European Journal of Clinical Investigation 10: 413–420 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Rawlins, M.D.; Shuster, S.; Chapman, P.H.; Shaw, V. and O’Neill, V.A.: Drug metabolism in skin. Proceedings of the First World Conference in Clinical Pharmacology (1980).

  • Rowland, M. and Riegelman, S.: Pharmacokinetics of acetyl salicylic acid and salicylic acid after intravenous administration, in man. Journal of Pharmaceutical Science 57: 1313–1319 (1968).

    Article  CAS  Google Scholar 

  • Rowland, M.; Riegelman, S.; Harris, P.A. and Sholhoff, S.D.: Ab sorption kinetics of aspirin in man following oral administration of an aqueous solution. Journal of Pharmaceutical Science 61: 379–385 (1972).

    Article  CAS  Google Scholar 

  • Rylance, H.J. and Wallace, R.C.: Erythrocyte and plasma aspirin esterase. British Journal of Clinical Pharmacology 12: 436–438 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Sach, E.S. and Quiroga, E.: The variability of platelet collagen interactions: Its influence on aspirin inhibition of platelet aggregation. Thrombosis and Haemostasis 56: 658–668 (1976).

    Google Scholar 

  • Scott, E.M. and Wright, R.C.: Purification and substrate specificity of polymorphic forms of esterase D from human erythrocytes. American Journal of Human Genetics 30: 14–18 (1978).

    PubMed  CAS  Google Scholar 

  • Sedaghat, A. and Ahrens, E.H.: Lack of effect of cholestyramine on the pharmacokinetics of Clofibrate in man. European Journal of Clinical Investigation 5: 177–185 (1975).

    PubMed  CAS  Google Scholar 

  • Seymour, R.A. and Rawlins, M.D.: The efficacy and pharmacokinetics of aspirin in postoperative dental pain. British Journal of Clinical Pharmacology 13: 807–810 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Seymour, R.A.; Rawlins, M.D. and Clothier, A.: The efficacy and pharmacokinetics of sodium salicylate in postoperative dental pain. British Journal of Clinical Pharmacology 17: 161–163 (1984c).

    Article  PubMed  CAS  Google Scholar 

  • Seymour, R.A.; Williams, F.M.; Ward, A. and Rawlins, M.D.: Aspirin metabolism and efficacy in postoperative dental pain. British Journal of Clinical Pharmacology 17: 697–702 (1984a).

    Article  PubMed  CAS  Google Scholar 

  • Seymour, R.A.; Williams, F.M.; Oxley, A.; Ward, A.; Fearns, M.; Brigham, K.; Rawlins, M.D. and Jones, P.: A comparative study of the effects of aspirin and paracetamol on platelet aggregation and bleeding time. European Journal of Clinical Pharmacology 26: 567–572 (1984b).

    Article  PubMed  CAS  Google Scholar 

  • Sinkula, A.A. and Yalkowsky, S.J.: Rationale for design of biologically reversible drug derivatives prodrugs. Journal of Pharmaceutical Sciences 64: 181–210 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Smith, D.A. and Cole, W.J.: Identification of an arylesterase as the enzyme hydrolysing diacetyl morphine (heroin) in human plasma. Biochemical Pharmacology: 367-370 (1976).

  • Sparkes, R.S.; Murphree, A.L.; Lingua, R.W.; Sparkes, M.C.; Field, L.L.; Funderburk, S.J. and Benedict, W.F.: Gene for hereditary retinoblastoma assigned to human chromosome 13 by linkage to esterase D. Science 219: 971–973 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Spenney, J.G.: Acetylsalicylic acid hydrolase of gastric mucosa. American Journal of Physiology 234: E606–E610 (1978).

    PubMed  CAS  Google Scholar 

  • Stoddart, J.C.: The suxamethonium-pseudocholinesterase relationship. British Journal of Anaesthesia 32: 466–469 (1960).

    Article  Google Scholar 

  • Sutor, A.M.; Bowie, E.J.W. and Owen, C.A.: Effect of aspirin sodium salicylate and acetyl-aminophen on bleeding. Mayo Clinic Proceedings 46: 178–181 (1971).

    PubMed  CAS  Google Scholar 

  • Tomasova, H.; Nevoral, J.; Pachl, J. and Kincl, V.: Aspirin esterase activity and Reye’s syndrome. Lancet 2: 43 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Trnavsky, K. and Zachar, M.: Correlation of serum aspirin esterase activity and halflife of salicylic acid. Agents and Actions 5: 549–552 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Viby-Mogensen, J.: Correlation of succinylcholine duration of action with plasma Cholinesterase activity in subjects with the genotypically normal enzyme. Anaesthesiology 53: 517–20 (1980).

    Article  CAS  Google Scholar 

  • Walker, C.H. and Machness, M.I.: Esterases: Problems of identification and classification. Biochemical Pharmacology 32: 3265–3269 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Way, E.L.; Kemp, J.W.; Young, J.M. and Grassietti, D.R.: The pharmacological effects of heroin in relationship to its rate of biotransformation. Journal of Pharmacology and Experimental Therapeutics 129: 144–154 (1960).

    PubMed  CAS  Google Scholar 

  • Way, EX.; Young, J.M. and Kemp, J.W.: Metabolism of heroin and its pharmacological implications. Bulletin on Narcotics 17: 25–33 (1965).

    CAS  Google Scholar 

  • White, K.N. and Hope, D.B.: Identification of aspirinase with one of the carboxyl esterases requiring a thiol group. Biochemical Journal 197: 771–773 (1981).

    PubMed  CAS  Google Scholar 

  • White, K.N. and Hope, D.B.: Characterisation of aspirin hydrolase of guinea pig liver cytoplasm. Biochemica Biophysica Acta 785: 132–137 (1984a).

    Article  CAS  Google Scholar 

  • White, K.N. and Hope, D.B.: Partial purification and characterisation of a microsomal carboxyl esterase specific for salicylate esters from guinea pig liver. Biochemica Biophysica Acta 785: 138–147 (1984b).

    Article  CAS  Google Scholar 

  • Williams, F.M.; Seymour, R.A.; Ward, A.; Jones, P. and Rawlins, M.D.: Effects of aspirin on bleeding time and platelet aggregation and its relation to plasma aspirin esterase activity. British Journal of Clinical Pharmacology 17: 609P (1984a).

    Google Scholar 

  • Williams, F.M.; Seymour, R.A.; Ward, A. and Rawlins, M.D.: Contribution of Cholinesterase to the activity of aspirin esterase in plasma. Proceedings of the 9th International Congress of Pharmacology, London (1984b).

    Google Scholar 

  • Yeh, S.J.: Localisation and characterisation of meperidine esterase of rats. Drug Metabolism and Disposition 10: 319–325 (1982).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, F.M. Clinical Significance of Esterases in Man. Clin Pharmacokinet 10, 392–403 (1985). https://doi.org/10.2165/00003088-198510050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198510050-00002

Keywords

Navigation