First-Pass Elimination Basic Concepts and Clinical Consequences

Summary

First-pass elimination takes place when a drug is metabolised between its site of administration and the site of sampling for measurement of drug concentration. Clinically, first-pass metabolism is important when the fraction of the dose administered that escapes metabolism is small and variable. The liver is usually assumed to be the major site of first-pass metabolism of a drug administered orally, but other potential sites are the gastrointestinal tract, blood, vascular endothelium, lungs, and the arm from which venous samples are taken. Bioavailability, defined as the ratio of the areas under the blood concentration-time curves, after extra- and intravascular drug administration (corrected for dosage if necessary), is often used as a measure of the extent of first-pass metabolism. When several sites of first-pass metabolism are in series, the bioavailability is the product of the fractions of drug entering the tissue that escape loss at each site.

The extent of first-pass metabolism in the liver and intestinal wall depends on a number of physiological factors. The major factors are enzyme activity, plasma protein and blood cell binding, and gastrointestinal motility. Models that describe the dependence of bioavailability on changes in these physiological variables have been developed for drugs subject to first-pass metabolism only in the liver. Two that have been applied widely are the ‘well-stirred’ and ‘parallel tube’ models. Discrimination between the 2 models may be performed under linear conditions in which all pharmacokinetic parameters are independent of concentration and time. The predictions of the models are similar when bioavailability is large but differ dramatically when bioavailability is small. The ‘parallel tube’ model always predicts a much greater change in bioavailability than the ‘well-stirred’ model for a given change in drug-metabolising enzyme activity, blood flow, or fraction of drug unbound.

Many clinically important drugs undergo considerable first-pass metabolism after an oral dose. Drugs in this category include alprenolol, amitriptyline, dihydroergotamine, 5-fluorouracil, hydralazine, isoprenaline (isoproterenol), lignocaine (lidocaine), lorcainide, pethidine (meperidine), mercaptopurine, metoprolol, morphine, neostigmine, nifedipine, pentazocine and propranolol. One major therapeutic implication of extensive first-pass metabolism is that much larger oral doses than intravenous doses are required to achieve equivalent plasma concentrations. For some drugs, extensive first-pass metabolism precludes their use as oral agents (e.g. lignocaine, naloxone and glyceryl trinitrate). Inhalation or buccal, rectal or transdermal administration may, in part, obviate the problems of extensive first-pass metabolism of an oral dose.

Drugs that undergo extensive first-pass metabolism may produce different plasma metabolite concentration-time profiles after oral and parenteral administration. After an oral dose, the concentration of the metabolite may reach a peak earlier than after a parenteral dose. Sometimes, metabolites have only been detected in plasma after an oral dose. Drugs in this category include alprenolol, amitriptyline, lorcainide, pethidine, nifedipine and propranolol. Although the plasma concentration-time profiles of metabolites may differ after oral and parenteral doses, the fraction of a dose eventually converted to a metabolite should be the same after each route of administration provided that the ingested drug is completely absorbed, is eliminated solely by metabolism in the liver, and has linear kinetics. Otherwise, the fraction of a dose administered that is converted to a metabolite may vary with route of administration (e.g. with isoprenaline and salbutamol). Variation in the concentration ratios between parent drug and metabolite may produce route-dependent differences in pharmacological and toxicological responses to a given concentration of the parent drug (e.g. with encainide, lorcainide, quinidine and verapamil).

Drugs that undergo extensive first-pass elimination exhibit pronounced interindividual variation in plasma concentrations or drug concentration-time curves after oral administration. This variation, often reflected in variability in drug response, poses one of the major problems in the clinical use of these drugs. Variability in first-pass metabolism is accounted for by differences in metabolising enzyme activity produced either by enzyme induction, inhibition, or by genetic polymorphism. Liver disease affects bioavailability by changing metabolising enzyme activity and plasma protein binding, and creating intra- and extrahepatic portacaval shunts. In addition, food, by causing transient increases in splanchnic-hepatic blood flow, may also decrease the first-pass metabolism of certain drugs.

The bioavailability of some drugs is dose- and time-dependent. The bioavailability of a single oral dose of 5-fluorouracil, hydralazine, lorcainide, phenacetin (acetophenetidin), propranolol and salicylamide increases as dose increases. When lorcainide, metoprolol, propranolol, dextropropoxyphene (propoxyphene) and verapamil are given repeatedly, their bioavailability increases. This time dependency may not be observed when the drugs are administered intravenously.

The liver has been most extensively studied with respect to first-pass metabolism. Relatively little information is available in humans on intestinal or pulmonary metabolism or on the effects of altered organ blood flow and plasma protein binding on first-pass metabolism. These potentially important areas require further exploration to broaden our understanding of the clinically important phenomenon of first-pass metabolism.

This is a preview of subscription content, access via your institution.

References

  1. Ablad, B.; Borg, K.O.; Johnsson, G.; Regårdh, C.-G. and Solvell, L.: Combined pharmacokinetic and pharmacodynamic studies on alprenolol and 4-hydoxy-alprenolol in man. Life Sciences 14: 693–704 (1974).

    PubMed  CAS  Article  Google Scholar 

  2. Ahmad, A.B.; Bennett, P.N. and Rowland, M.: Models of hepatic drug clearance: Discrimination between the ‘well stirred’ and ‘parallel-lube’ models. Journal of Pharmacy and Pharmacology 35: 219–224 (1983).

    PubMed  CAS  Article  Google Scholar 

  3. Ala-Hurula, V.; Myllyla, V.; Arvela, P.; Heikkila, J.; Karki, N. and Hokkanen, E.: Systemic availability of ergotamine tartrate after oral, rectal, and intramuscular administration. European Journal of Clinical Pharmacology 15: 51–55 (1979).

    PubMed  CAS  Article  Google Scholar 

  4. Alkalay, D.; Khemani, L.; Wagner Jr, W.E. and Bartlett, M.F.: Sublingual and oral administration of methyltestosterone. A comparison of drug bioavailability. Journal of Clinical Pharmacology 13: 142–151 (1973).

    CAS  Google Scholar 

  5. Alván, G.; Borgå, O.; Lind, M; Palmer, L. and Siwers, B.: First pass hydroxylation of nortriptyline: Concentrations of parent drug and major metabolites in plasma. European Journal of Clinical Pharmacology 11: 219–224 (1977a).

    PubMed  Article  Google Scholar 

  6. Alván, G.; Lind, M.; Mellslröm, B. and von Bahr, C: Importance of “first-pass elimination” for interindividual differences in steady-state concentrations of the adrenergic ß-receptor antagonist alprenolol. Journal of Pharmacokinetics and Bio-pharmaceutics 5: 193–205 (1977b).

    Article  Google Scholar 

  7. Alván, G.; Piafsky, K.; Lind, M. and von Bahr, C: Effect of pentobarbital on the disposition of alprenolol. Clinical Pharmacology and Therapeutics 22: 316–321 (1977c).

    PubMed  Google Scholar 

  8. Amery, W.K.; Heykants, J.; Bruyneel, K. and Terryn, R.: Bioavailability and saturation of the presystemic metabolism of oral lorcainide therapy initiated in three different dose regimens. European Journal of Clinical Pharmacology 24: 517–519 (1983).

    PubMed  CAS  Article  Google Scholar 

  9. Andcrsson, K.-E.; Bergdahl, B.; Dencker, H. and Wettrell, G.: Proscillaridin activity in portal and peripheral venous blood after oral administration to man. European Journal of Clinical Pharmacology 11: 277–281 (1977).

    Article  Google Scholar 

  10. Aquilonius, S.-M.; Eckernäs, S.-A.; Hartvig, P.; Hultman, J.; Lindström, B. and Osterman, P.O.: A pharmacokinetic study of neostigmine in man using gas chromatography-mass spec-trometry. European Journal of Clinical Pharmacology 15: 367–371 (1979).

    PubMed  CAS  Article  Google Scholar 

  11. Armstrong, J.A.; Slaughter, S.E.; Marks, G.S. and Armstrong, P.W.: Rapid disappearance of nitroglycerin following incubation with human blood. Canadian Journal of Physiology and Pharmacology 58: 459–462 (1980).

    PubMed  CAS  Article  Google Scholar 

  12. Assinder, D.F.; Chasseaud, L.F. and Taylor, T.: Plasma isosor-bide diniiratc concentrations in human subjects after administration of standard and sustained-release formulations. Journal of Pharmaceutical Sciences 66: 775–778 (1977).

    PubMed  CAS  Article  Google Scholar 

  13. Azarnoff, D.L.; Karim, A.; Lambert, H.; Boylan, J. and Schoen-hardt, G.: Transdermal absorption: A unique opportunity for drug delivery, in Benet and Levy (Eds) Pharmacokinetics: A Modern View (Plenum Publishing Corp, New York 1983).

  14. Bai, S.A. and Abramson, F.P.: Interactions of phenobarbital with propranolol in the dog, I. Plasma protein binding. Journal of Pharmacology and Experimental Therapeutics 222: 589–594 (1982).

    PubMed  CAS  Google Scholar 

  15. Barr, W.H.: Factors involved in the assessment of systemic or biologic availability of drug products. Drug Information Bulletin 3: 27–69 (1969).

    Google Scholar 

  16. Barr, W.H.; Aceto Jr, T.; Chung, M. and Shukur, M.: Dose dependent drug metabolism during the absorptive phase. Revue Canadienne de Biologie 32: 31–42 (1973).

    CAS  Google Scholar 

  17. Benneu, P.N.; Aarons, L.J.; Bending, M.R.; Steiner, J.A. and Rowland M.: Pharmacokinetics of lidocaine and its deethy-lated metabolite: Dose and time dependency studies in man. Journal of Pharmacokinetics and Biopharmaceutics 10: 265–281 (1982).

    Article  Google Scholar 

  18. Blackwell, E.W.; Briant, R.H.; Conolly, M.E.; Davies, D.S. and Dollery, CT.: Metabolism of isoprenaline after aerosol and direct intrabronchial administration in man and dog. British Journal of Pharmacology 50: 581–591 (1973).

    Google Scholar 

  19. Blaschkc, T.F. and Rubin, P.C.: Hepatic first-pass metabolism in liver disease. Clinical Pharmacokinetics 4: 423–432 (1979).

    Article  Google Scholar 

  20. Bobik, A.; Jennings, G.; Skews, H.; Esler, M. and McLean, A.: Low oral bioavailability of dihydroergotamine and first-pass extraction in patients with orthostatic hypotension. Clinical Pharmacology and Therapeutics 30: 673–679 (1981).

    PubMed  CAS  Article  Google Scholar 

  21. Boycs, R.N.; Scott, D.B.; Jebson, P.J.; Godman, M.J. and Julian, D.G.: Pharmacokinetics of lidocaine in man. Clinical Pharmacology and Therapeutics 12: 105–116 (1971).

    Google Scholar 

  22. Branch, R.A.: Drugs as indicators of hepatic function. Hepatology 2: 97–105 (1982).

    PubMed  CAS  Article  Google Scholar 

  23. Branch, R.A. and Shand, D.G.: Propranolol disposition in chronic liver disease: A physiological approach. Clinical Pharmacokinetics 1: 264–279 (1976).

    PubMed  CAS  Article  Google Scholar 

  24. Brauer, R.W.: Liver circulation and function. Physiological Reviews 43: 115–213 (1963).

    PubMed  CAS  Google Scholar 

  25. Brazzcll, R.K.; Smith, R.B. and Kostenbauder, H.B.: Isolated perfused rabbit lung as a model for intravascular and intrabron-chial administration of bronchodilator drugs. I: Isoproterenol. Journal of Pharmaceutical Sciences 71: 1268–1278 (1982).

    Article  Google Scholar 

  26. Brunk, S.F. and Delle, M.: Morphine metabolism in man. Clinical Pharmacology and Therapeutics. 16: 51–57 (1974).

    PubMed  CAS  Google Scholar 

  27. Christophidis, N.; Vajda, F.J.E.; Lucas, I.; Drummer, O.; Moon, W.J. and Louis, W.J.: Fluorouracil therapy in patients with carcinoma of the large bowel: A pharmacokinetic comparison of various rates and routes of administration. Clinical Pharmacokinetics 3: 330–336 (1978).

    Article  Google Scholar 

  28. Clcaveland, C.R. and Shand, D.G.: Effect of route of administration on the relationship between ß-adrenergic blockade and plasma propranolol level. Clinical Pharmacology and Therapeutics 13: 181–185 (1972).

    Google Scholar 

  29. Collins, J.M.; Dedrick, R.L.; King, F.G.; Speyer, J.L. and Myers, C.E.: Nonlinear pharmacokinetic models for 5-fluorouracil in man: Intravenous and inlraperitoneal routes. Clinical Pharmacology and Therapeutics 28: 235–246 (1980).

    PubMed  CAS  Article  Google Scholar 

  30. Collstc, P.; Borg, K.-O.; Aström, H. and von Bahr, C: Contribution of 4-hydroxy-alprenolol to adrenergic beta receptor blockade of alprenolol. Clinical Pharmacology and Therapeutics 25: 416–422 (1979a).

    Google Scholar 

  31. Collstc, P.; Seideman, P.; Borg, K.-O.; Haglund, K. and von Bahr, C: Influence of pentobarbital on effect and plasma levels of alprenolol and 4-hydroxy-alprenolol. Clinical Pharmacology and Therapeutics 25: 423–427 (1979b).

    Google Scholar 

  32. Conolly, M.E.; Davies, D.S.; Dollery, C.T.; Morgan, CD.; Paterson, J.W. and Sandler, M.: Metabolism of isoprenaline in dog and man. British Journal of Pharmacology 46: 458–472 (1972).

    PubMed  CAS  Article  Google Scholar 

  33. Dahl, S.G.: Pharmacokinetics of methotrimeprazine after single and multiple doses. Clinical Pharmacology and Therapeutics 19: 435–442 (1976).

    PubMed  CAS  Google Scholar 

  34. de Boer, A.G.; Breimer, D.D.; Mattie, H.; Pronk, J. and Gubbens-Stibbe, J.M.: Rectal bioavailability of lidocaine in man: Partial avoidance of “first-pass” metabolism. Clinical Pharmacology and Therapeutics 26: 701–709 (1979).

    PubMed  Google Scholar 

  35. de Boer, A.G.; Moolenaar, F.; de Leede, L.G.J. and Breimer, D.D.: Rectal drug administration: Clinical pharmacokinetic considerations. Clinical Pharmacokinetics 7: 285–311 (1982).

    PubMed  Article  Google Scholar 

  36. Diem, K. (Ed.): Documenta Geigy, Scientific Tables (Geigy Pharmaceuticals, New York 1962).

    Google Scholar 

  37. Drayer, D.E.: Pharmacologically active drug metabolites: Therapeutic and toxic activities, plasma and urine data in man, accumulation in renal failure. Clinical Pharmacokinetics 1: 426–443 (1976).

    PubMed  CAS  Article  Google Scholar 

  38. Edwards, D.J.; Svensson, C.K.; Visco, J.P. and Lalka, D.: Clinical pharmacokinetics of pethidine: 1982. Clinical Pharmacokinetics 7: 421–433 (1982).

    PubMed  CAS  Article  Google Scholar 

  39. Ehrnebo, M.; Boreus, L.O. and Lönroth, U.: Bioavailability and first-pass metabolism of oral pentazocine in man. Clinical Pharmacology and Therapeutics 22: 888–892 (1977).

    PubMed  CAS  Google Scholar 

  40. Eichelbaum, M.; Birkel, P.; Grube, E.; Gutgemann, U. and Somogyi, A.: Effects of verapamil on P-R-intervals in relation to verapamil plasma levels following single i.v. and oral administration and during chronic treatment. Klinische Wochenschrift 58: 919–925 (1980).

    PubMed  CAS  Article  Google Scholar 

  41. Eichelbaum, M.; Somogyi, A.; von Unruh, G.E. and Dengler, H.J.: Simultaneous determination of the intravenous and oral pharmacokinetic parameters of D,L-verapamil using stable isotope-labelled verapamil. European Journal of Clinical Pharmacology 19: 133–137 (1981).

    PubMed  CAS  Article  Google Scholar 

  42. Ensminger, W.D.; Rosowsky, A.; Raso, V.; Levin, D.C.; Glode, M.; Come, S.; Steele, G. and Frei, E. III.: A clinical-pharmacological evaluation of hepatic arterial infusions of 5-fluoro-2′-deoxyuridine and 5-fluorouracil. Cancer Research 38: 3784–3792 (1978).

    PubMed  CAS  Google Scholar 

  43. Evans, G.H. and Shand, D.G.: Disposition of propranolol, V. Drug accumulation and steady-state concentrations during chronic oral administration in man. Clinical Pharmacology and Therapeutics 14: 487–493 (1973).

    PubMed  CAS  Google Scholar 

  44. Evans, M.E.; Walker, S.R.; Brittain, R.T. and Paterson, J.W.: The metabolism of salbutamol in man. Xenobiotica 3: 113–120 (1973).

    PubMed  CAS  Article  Google Scholar 

  45. Findlay, J.W.A.; Butz, R.F. and Welch, R.M.: Codeine kinetics as determined by radioimmunoassay. Clinical Pharmacology and Therapeutics 22: 439–446 (1977).

    PubMed  CAS  Google Scholar 

  46. Fishman, J.; Roffwarg, H. and Hellman, L.: Disposition of naloxone-7,8-H in normal and narcotic-dependent men. Journal of Pharmacology and Experimental Therapeutics 187: 575–580 (1973).

    PubMed  CAS  Google Scholar 

  47. Fleckenstein, L; Mundy, G.R.; Horovitz, R.A. and Mazzullo, J.M.: Sodium salicylamide. Relative bioavailability and subjective effects. Clin. Pharmacol. Therap. 19: 451–458 (1976).

    CAS  Google Scholar 

  48. Frcedman, S.B.; Richmond, D.R.; Ashley, J.J. and Kelly, D.T.: Verapamil kinetics in normal subjects and patients with coronary artery spasm. Clinical Pharmacology and Therapeutics 30: 644–652 (1981).

    Article  Google Scholar 

  49. Fung, H.-L. and Kamiya, A.: Disposition of nitroglycerin in rat plasma and selected blood vessels. Eighth International Congress of Pharmacology (IUPHAR), Tokyo, July 19–24, 1981, Abstract No. 1087, p. 552 (1981).

  50. Garg, DC, Weidler, D.J. and Eshelman F.N.: Ranitidine bioavailability and kinetics in normal male subjects. Clinical Pharmacology and Therapeutics 33: 445–452 (1983).

    PubMed  CAS  Article  Google Scholar 

  51. Garrett, E.R.; Roseboom, H.; Green Jr, J.R. and Schuermann, W.: Pharmacokinetics of papaverine hydrochloride and the biopharmaceutics of its oral dosage forms. International Journal of Clinical Pharmacology 16: 193–208 (1978).

    CAS  Google Scholar 

  52. Geddes, D.M.; Nesbitt, K.; Traill, T. and Blackburn, J.P.: First pass uptake of 14C-propranolol by the lung. Thorax 34: 810–813 (1979).

    PubMed  CAS  Article  Google Scholar 

  53. George, C.F.: Drug metabolism by the gastrointestinal mucosa. Clinical Pharmacokinetics 6: 259–274 (1981).

    PubMed  CAS  Article  Google Scholar 

  54. Giacomini, K.M.; Giacomini, J.C.; Gibson, T.P. and Levy, G.: Propoxyphene and norpropoxyphene plasma concentrations after oral propoxyphene in cirrhotic patients with and without surgically constructed portacaval shunt. Clinical Pharmacology and Therapeutics 28: 417–424 (1980).

    PubMed  CAS  Article  Google Scholar 

  55. Gibson, T.P.; Giacomini, K.M.; Briggs, W.A.; Whitman, W. and Levy, G.: Propoxyphene and norpropoxyphene plasma concentrations in the anephric patient. Clinical Pharmacology and Therapeutics 27: 665–670 (1980).

    PubMed  CAS  Article  Google Scholar 

  56. Gomoll, A.W.; Byrne, J.E. and Mayol, R.F.: Comparative anti-arrhythmic (AA) and local anesthetic actions of encainide (E) and its two major metabolites. Pharmacologist 23: 209 (1981).

    Google Scholar 

  57. Gram, L.F. and Christiansen, J.: First-pass metabolism of imipramine in man. Clinical Pharmacology and Therapeutics 17: 555–563 (1975).

    PubMed  CAS  Google Scholar 

  58. Gram, L.F. and Overo, K.F.: First-pass metabolism of nortrip-tyline in man. Clinical Pharmacology and Therapeutics 18: 305–314 (1975).

    PubMed  CAS  Google Scholar 

  59. Gram, L.F.; Schou, J.; Way, W.L.; Heltberg, J. and Bodin, N.O.: d-Propoxyphene kinetics after single oral and intravenous doses in man. Clinical Pharmacology and Therapeutics 26: 473–482 (1979).

    PubMed  CAS  Google Scholar 

  60. Guemert, T.W.; Holford, N.H.G.; Coates, P.E.; Upton, R.A. and Riegelman, S.: Quinidine pharmacokinetics in man: Choice of a disposition model and absolute bioavailability studies. Journal of Pharmacokinetics and Biopharmaceutics 7: 315–330 (1979).

    Article  Google Scholar 

  61. Haglund, K.; Seideman, P.; Collste, P.; Borg, K.-O. and von Bahr, C: Influence of pentobarbital on metoprolol plasma levels. Clinical Pharmacology and Therapeutics 26: 326–329 (1979).

    PubMed  CAS  Google Scholar 

  62. Hansen, M.S.; Woods, S.L. and Wills, R.E.: Relative effectiveness of nitroglycerin ointment according to site of application. Heart and Lung 8: 716–720 (1979).

    PubMed  CAS  Google Scholar 

  63. Hengstmann, J.H.; Hengstmann, R.; Schwonzen, S. and Dengler, H.J.: Dihydroergotamine increases the bioavailability of orally administered etilefrine. European Journal of Clinical Pharmacology 22: 463–467 (1982).

    PubMed  CAS  Article  Google Scholar 

  64. Holford, N.H.G.; Coates, P.E.; Guentert, T.W.; Riegelman, S. and Sheiner, L.B.: The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: Concentration-effect relationships. British Journal of Clinical Pharmacology 11: 187–195 (1981).

    PubMed  CAS  Article  Google Scholar 

  65. Homeida, M.; Jackson, L. and Roberts, C.J.C.: Decreased first-pass metabolism of labetalol in chronic liver disease. British Medical Journal 2: 1048–1050 (1978).

    PubMed  CAS  Article  Google Scholar 

  66. Huet, P.-M. and LeLorier, J.: Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics. Clinical Pharmacology and Therapeutics 28: 208–215 (1980).

    PubMed  CAS  Article  Google Scholar 

  67. Huet, P.-M.; LeLorier, J.; Pomier, G. and Marleau, D.: Bioavailability of lidocaine in normal volunteers and cirrhotic patients. Gastroenterology 75: 969 (1978).

    Google Scholar 

  68. Inturrisi, C.E.; Colburn, W.A.; Verebey, K.; Dayton, H.E.; Woody, G.E. and O’Brien, C.P.: Propoxyphene and norpropoxyphene kinetics after single and repeated doses of propoxyphene. Clinical Pharmacology and Therapeutics 31: 157–167 (1982).

    PubMed  CAS  Article  Google Scholar 

  69. Iwamoto, K. and Klaassen, C.D.: First-pass effect of morphine in rats. Journal of Pharmacology and Experimental Therapeutics 200: 236–244 (1977a).

    PubMed  CAS  Google Scholar 

  70. Iwamoto, K. and Klaassen, C.D.: First-pass effect of nalorphine in rats. Journal of Pharmacology and Experimental Therapeutics 203: 365–376 (1977b).

    PubMed  CAS  Google Scholar 

  71. Jähnchen, E.; Bechtold, H.; Kasper, W.; Kersting, F.; Just, H.; Heykants, J. and Meinertz, T.; Lorcainide, I.: Saturable presystemic elimination. Clinical Pharmacology and Therapeutics 26: 187–195 (1979).

    PubMed  Google Scholar 

  72. Jonkman, J.H.G.; van Bork, L.E.; Wijsbeek, J.; Boihuis-deVries, A.S.; de Zeeuw, R.A.; Orie, N.G.M. and Cox, H.L.M.: First-pass effect after rectal administration of thiazinamium meth-ylsulfate. Journal of Pharmaceutical Sciences 68: 69–71 (1979).

    PubMed  CAS  Article  Google Scholar 

  73. Jordö, L.; Attman, P.O.; Aurell, M.; Johansson, L.; Johnsson, G. and Regårdh, C.-G.: Pharmacokinetic and pharmacodynamic properties of metoprolol in patients with impaired renal function. Clinical Pharmacokinetics 5: 169–180 (1980).

    PubMed  Article  Google Scholar 

  74. Jose, P.; Niederhauser, U.; Piper, P.J.; Robinson, C. and Smith, A. P.: Degradation of prostaglandin F2, in the human pulmonary circulation. Thorax 31: 713–719 (1976).

    PubMed  CAS  Article  Google Scholar 

  75. Kates, R.E.; Keefe, D.L.D.; Schwartz, J.; Harapat, S.; Kirsten, E.B. and Harrison, D.C.: Verapamil disposition kinetics in chronic atrial fibrillation. Clinical Pharmacology and Therapeutics 30: 44–51 (1981).

    PubMed  CAS  Article  Google Scholar 

  76. Kates, R.E.; Keefe, D.L. and Winkle, R.A.: Lorcainide disposition kinetics in arrhythmia patients. Clinical Pharmacology and Therapeutics 33: 28–34 (1983).

    PubMed  CAS  Article  Google Scholar 

  77. Keiding, S. and Chiarantini, E.: Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver. Journal of Pharmacology and Experimental Therapeutics 205: 465–470 (1978).

    PubMed  CAS  Google Scholar 

  78. Keiding, S.; Johansen, S.; Winkler, K.; Tonnesen, K. and Tygs-trup, N.: Michaelis-Menten kinetics of galactose elimination by the isolated perfused pig liver. American Journal of Physiology 230: 1302–1313 (1976).

    PubMed  CAS  Google Scholar 

  79. Kendall, M.J.; Quarterman, C.P.; Bishop, H. and Schneider, R.E.: Effects of inflammatory disease on plasma oxprenolol concentrations. British Medical Journal 2: 465–468 (1979).

    PubMed  CAS  Article  Google Scholar 

  80. Kornhauser, D.M.; Wood, A.J.J.; Vestal, R.E.; Wilkinson, G.R.; Branch, R.A. and Shand, D.G.: Biological determinants of propranolol disposition in man. Clinical Pharmacology and Therapeutics 23: 165–174 (1978).

    PubMed  CAS  Google Scholar 

  81. Lennard, M.S.; Silas, J.H.; Freestone, S.; Ramsay, L.E.; Tucker, G.T. and Woods, H.F.: Oxidation phenotype — a major determinant of metoprolol metabolism and response. New England Journal of Medicine 307: 1558–1560 (1982).

    PubMed  CAS  Article  Google Scholar 

  82. Levy, G. and Jusko, W.J.: Factors affecting the absorption of ribo-flavin in man. Journal of Pharmaceutical Sciences 55: 285–289 (1966).

    PubMed  CAS  Article  Google Scholar 

  83. Love, B.L.; Moore, R.G.; Thomas, J. and Chaturvedi, S.: Pharmacokinetics of zimelidine in humans — plasma levels and urinary excretion of zimelidine and norzimelidine after intravenous and oral administration of zimelidine. European Journal of Clinical Pharmacology 20: 135–139 (1981).

    PubMed  CAS  Article  Google Scholar 

  84. Ludden, T.M.; McNay Jr, J.L.; Shepherd, A.M.M. and Lin, M.S.: Clinical pharmacokinetics of hydralazine. Clinical Pharmacokinetics 7: 185–205 (1982).

    PubMed  CAS  Article  Google Scholar 

  85. Mahon, W.A.; Inaba, T. and Stone, R.M.: Metabolism of flura-zepam by the small intestine. Clinical Pharmacology and Therapeutics 22: 228–233 (1977).

    PubMed  CAS  Google Scholar 

  86. Mäntylä, R.; Allonen, H.; Kanto, J.; Kleimola, T. and Sellman, R.: Effect of food on the bioavailability of labetalol. British Journal of Clinical Pharmacology 9: 435–437 (1980).

    PubMed  Article  Google Scholar 

  87. Mason, W.D. and Winer, N.: Pharmacokinetics of oxprenolol in normal subjects. Clinical Pharmacology and Therapeutics 20: 401–412 (1976).

    PubMed  CAS  Google Scholar 

  88. Mather, L.E. and Tucker, G.T.: Systemic availability of orally administered meperidine. Clinical Pharmacology and Therapeutics 20: 535–540 (1976).

    PubMed  CAS  Google Scholar 

  89. McAllister Jr, R.G.; Foster, T.S.; Hamann, S.R. and Richards, V.: Pharmacokinetics of nifedipine after single intravenous (IV) and oral (PO) doses in normal subjects. Clinical Research 30: 763A (1982).

    Google Scholar 

  90. McAllister Jr, R.G. and Kirsten, E.B.: The pharmacology of verapamil. IV. Kinetic and dynamic effects after single intravenous and oral doses. Clinical Pharmacology and Therapeutics 31:418–426 (1982).

    PubMed  CAS  Article  Google Scholar 

  91. McLean, A.J.; Skews, H.; Bobik, A. and Dudley, F.J.: Interaction between oral propranolol and hydralazine. Clinical Pharmacology and Therapeutics 27: 726–732 (1980).

    PubMed  CAS  Article  Google Scholar 

  92. McNiff, E.F.; Yacobi, A.; Young-Chang, F.M.; Golden, L.H.; Goldfarb, A. and Fung, H.-L.: Nitroglycerin pharmacokinet-ics after intravenous infusion in normal subjects. Journal of Pharmaceutical Sciences 70: 1054–1058 (1981).

    PubMed  CAS  Article  Google Scholar 

  93. Meikle, A.W.; Jubiz, W.; Matsukura, S.; West, CD. and Tyler, F.H.: Effect of diphenylhydantoin on the metabolism of me-tyrapone and release of ACTH in man. Journal of Clinical Endocrinology 29: 1553–1558 (1969).

    CAS  Article  Google Scholar 

  94. Meinertz, T.; Kasper, W.; Kersting, F.; Just, H.; Bechtold, H. and Jähnchen, E.: Lorcainide. II. Plasma concentration-effect relationship. Clinical Pharmacology and Therapeutics 26: 196–204 (1979).

    PubMed  CAS  Google Scholar 

  95. Melander, A.; Danielson, K.; Schersten, B. and Wahlin, E.: Enhancement of the bioavailability of propranolol and metoprolol by food. Clinical Pharmacology and Therapeutics 22: 108–112 (1977).

    PubMed  CAS  Google Scholar 

  96. Melander, A. and McLean, A.: Influence of food intake on pre-systemic clearance of drugs. Clinical Pharmacokinetics 8 (4): 286–296 (1983).

    PubMed  CAS  Article  Google Scholar 

  97. Mellström, B.; Alván, G.; Bertilsson, L.; Potter, W.Z.; Säwe, J. and Sjöqvist, F.: Nortriptyline formation after single oral and intramuscular doses of amitriptyline. Clinical Pharmacology and Therapeutics 32: 664–667 (1982).

    PubMed  Article  Google Scholar 

  98. Moore, R.G.; Triggs, E.J.; Shanks, C.A. and Thomas, J.: Pharmacokinetics of chlormethiazole in humans. European Journal of Clinical Pharmacology 8: 353–357 (1975).

    PubMed  CAS  Article  Google Scholar 

  99. Neal, E.A.; Meffin, P.J.; Gregory, P.B. and Blaschke, T.F.: Enhanced bioavailability and decreased clearance of analgesics in patients with cirrhosis. Gastroenterology 77: 96–102 (1979).

    PubMed  CAS  Google Scholar 

  100. Ochs, H.R.; Greenblatt, D.J.; Woo, E.; Franke, K.; Pfeifer, H.J. and Smith, T.W.: Single and multiple dose pharmacokinetics of oral quinidine sulfate and gluconate. American Journal of Cardiology 41: 770–777 (1978).

    PubMed  CAS  Article  Google Scholar 

  101. Pang, K.S. and Rowland, M.: Hepatic clearance of drugs, I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. Journal of Pharmacokinetics and Biopharmaceutics. 5: 625–653 (1977a).

    PubMed  CAS  Article  Google Scholar 

  102. Pang, K.S. and Rowland, M.: Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liver in situ preparation. Journal of Pharmacokinetics and Biopharmaceutics 5: 655–680 (1977b).

    PubMed  CAS  Article  Google Scholar 

  103. Pang, K.S. and Rowland, M.: Hepatic clearance of drugs. III. Additional experimental evidence supporting the “well-stirred” model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused rat liver in situ preparation. Journal of Pharmacokinetics and Biopharmaceutics 5: 681–699 (1977c).

    PubMed  CAS  Article  Google Scholar 

  104. Pantuck, E.J.; Kuntzman, R. and Conney, A.H.: Decreased concentration of phenacetin in plasma of cigarette smokers. Science 175: 1248–1250 (1972).

    PubMed  CAS  Article  Google Scholar 

  105. Pentikäinen, P.J.; Neuvonen, P.J.; Tarpila, S. and Syvälahti, E.: Effect of cirrhosis of the liver on the pharmacokinetics of chlormethiazole. British Medical Journal 2: 861–863 (1978).

    PubMed  Article  Google Scholar 

  106. Perucca, E. and Richens, A.: Reduction of oral bioavailability of lignocaine by induction of first pass metabolism in epileptic patients. Brit. J. Clin. Pharmacol. 7: 21–31 (1979).

    Article  Google Scholar 

  107. Poklis, A. and Mackell, M.A.: Pentazocine and tripelennamine (T’s and Blues) abuse: Toxicological findings in 39 cases. Journal of Analytical Toxicology 6: 109–114 (1982).

    PubMed  CAS  Google Scholar 

  108. Pond, S.M. and Kretschzmar, K.M.: Effect of phenytoin on me-peridine clearance and normeperidine formation. Clinical Pharmacology and Therapeutics 30: 680–686 (1981).

    PubMed  CAS  Article  Google Scholar 

  109. Pond, S.M.; Tong, T.; Benowitz, N.L. and Jacob, P.: Enhanced bioavailability of pethidine and pentazocine in patients with cirrhosis of the liver. Australian and New Zealand Journal of Medicine 10: 515–519 (1980).

    PubMed  CAS  Article  Google Scholar 

  110. Pond, S.M.; Tong, T.; Benowitz, N.L.; Jacob, P. and Rigod, J.: Presystemic metabolism of meperidine to normeperidine in normal and cirrhotic subjects. Clinical Pharmacology and Therapeutics 30: 183–188 (1981).

    PubMed  CAS  Article  Google Scholar 

  111. Porchet, H. and Bircher, J.: Noninvasive assessment of portal systemic shunting: Evaluation of a method to investigate systemic availability of oral glyceryl trinitrate by digial pleth-ysmography. Gastroenterology 82: 629–637 (1982).

    PubMed  CAS  Google Scholar 

  112. Potter, W.Z.; Calil, H.M.; Sutfin, T.A.; Zavadil, A.P. III; Jusko, W.J.; Rapoport, J. and Goodwin, F.K.: Active metabolites of imipramine and desipramine in man. Clinical Pharmacology and Therapeutics 31: 393–401 (1982).

    PubMed  CAS  Article  Google Scholar 

  113. Raaflaub, J. and Dubach, U.C.: On the pharmacokinetics of phenacetin in man. European Journal of Clinical Pharmacology 8: 261–265 (1975).

    PubMed  CAS  Article  Google Scholar 

  114. Regårdh, C.-G. and Johnsson, G.: Clinical pharmacokinetics of metoprolol. Clinical Pharmacokinetics 5: 557–569 (1980).

    PubMed  Article  Google Scholar 

  115. Reiter, M.J.; Shand, D.G. and Pritchett, E.L.C.: Comparison of intravenous and oral verapamil dosing. Clinical Pharmacology and Therapeutics 32: 711–720 (1982).

    PubMed  CAS  Article  Google Scholar 

  116. Rheingold, J.L.; Preissler, P.; Smith, P. and Wilkinson, P.K.: Surgical catheterization of hepatic-portal and peripheral circulations and maintenance in pharmacokinetic studies. Journal of Pharmaceutical Sciences 71: 840–842 (1982).

    PubMed  CAS  Article  Google Scholar 

  117. Ritschel, W.A.; Brady, M.E.; Tan, H.S.I.; Hoffman, K.A.; Yiu, I.M. and Grummich, K.W.: Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man. European Journal of Clinical Pharmacology 12: 457–461 (1977).

    PubMed  CAS  Article  Google Scholar 

  118. Roden, D.M.; Duff, HJ.; Altenbern, D. and Woosley, R.L.: Anti-arrhythmic activity of the O-demethyl metabolite of encain-ide. Journal of Pharmacology and Experimental Therapeutics 221: 552–557 (1982).

    PubMed  CAS  Google Scholar 

  119. Roden, D.M.; Wang, T.; Woosley, R.L.; Wood, A.J.J.; Branch, R.A.; Kupfer, A. and Wilkinson, G.R.: Pharmacokinetic and pharmacological aspects of polymorphic drug oxidation in man; in Benet and Levy (Eds) Pharmacokinetics: A Modern View (Plenum Publishing Corp, New York 1983).

    Google Scholar 

  120. Rowland, M.: Influence of route of administration on drug availability. Journal of Pharmaceutical Sciences 61: 70–74 (1972).

    PubMed  CAS  Article  Google Scholar 

  121. Rowland, M.; Benet, L.Z. and Graham, G.G.: Clearance concepts in pharmacokinetics. Journal of Pharmacokinetics and Bio-pharmaceutics 1: 123–136 (1973).

    CAS  Article  Google Scholar 

  122. Rowland, M.; Riegelman, S.; Harris, P.A.; Sholkoff, S.D. and Eyring, E.J.: Kinetics of acetylsalicylic acid disposition in man. Nature 215: 413–414 (1967).

    PubMed  CAS  Article  Google Scholar 

  123. Säwe, J.; Dahlström, B.; Paalzow, L. and Rane, A.: Morphine kinetics in cancer patients. Clinical Pharmacology and Therapeutics 30: 629–635 (1981).

    PubMed  Article  Google Scholar 

  124. Schneck, D.W. and Vary, J.E.: Mechanism by which hydralazine alters the bioavailability of propranolol. Clinical Pharmacology and Therapeutics 33: 260 (1983).

    Google Scholar 

  125. Schneider, R.E. and Bishop, H.: ß-Blocker plasma concentrations and inflammatory disease: Clinical implications. Clinical Pharmacokinetics 7: 281–284 (1982).

    PubMed  CAS  Article  Google Scholar 

  126. Schulz, P.; Turner-Tamiyasu, K.; Smith, G.; Giacomini, K.M. and Blaschke, T.F.: Amitriptyline disposition in young and elderly normal men. Clinical Pharmacology and Therapeutics 33: 360–366 (1983).

    PubMed  CAS  Article  Google Scholar 

  127. Shand, D.G.; Hammill, S.C.; Aanonsen, L. and Pritchett, E.L.C.: Reduced verapamil clearance during long-term oral administration. Clinical Pharmacology and Therapeutics 30: 701–703 (1981).

    PubMed  CAS  Article  Google Scholar 

  128. Shand, D.G.; Nuckolls, EM. and Oates, J.A.: Plasma propranolol levels in adults. With observations in four children. Clinical Pharmacology and Therapeutics 11: 112–120 (1970).

    PubMed  CAS  Google Scholar 

  129. Shand, D.G. and Rangno, R.E.: The disposition of propranolol, I. Elimination during oral absorption in man. Pharmacology 7: 159–168 (1972).

    PubMed  CAS  Article  Google Scholar 

  130. Shepherd, A.M.M.; Ludden, T.M.; Lin, M.S. and McNay, J.L.: Hydralazine elimination is saturable after oral but not intravenous administration. Clinical Research 30: 258A (1982).

    Google Scholar 

  131. Silber, B.; Holford, N.H.G. and Riegelman, S.: Stereoselective disposition and glucuronidation of propranolol in humans. Journal of Pharmaceutical Sciences 71: 699–704 (1982).

    PubMed  CAS  Article  Google Scholar 

  132. Szeto, H.H.; Inturrisi, C.E.; Houde, R.; Saal, S.; Cheigh, J. and Reidenberg, M.M.: Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure or cancer. Annals of Internal Medicine 86: 738–741 (1977).

    PubMed  CAS  Google Scholar 

  133. Talseth, T.: Studies on hydralazine, I. Serum concentrations of hydralazine in man after a single dose and at steady-state. European Journal of Clinical Pharmacology 10: 183–187 (1976a).

    CAS  Article  Google Scholar 

  134. Talseth, T.: Studies on hydralazine. III. Bioavailability of hydralazine in man. European Journal of Clinical Pharmacology 10: 395–401 (1976b).

    PubMed  CAS  Article  Google Scholar 

  135. Toothaker, R.D.; Craig, W.A. and Welling, P.G.: Effect of dose size on the pharmacokinetics of oral hydrocortisone suspension. Journal of Pharmaceutical Sciences 71: 1182–1185 (1982).

    PubMed  CAS  Article  Google Scholar 

  136. Tozcr, T.N.: Pharmacokinetic principles relevant to bioavailability studies; in Blanchard et al. (Eds) Principles and Perspectives in Drug Bioavailability, pp. 120–155 (Karger, Basel 1979).

  137. Tschanz, C; Steiner, I.A.; Hignite, C.E.; Huffman, D.H. and Azamoff, D.L.: Systemic availability of lidocaine in patients with liver disease. Clinical Research 25: 609A (1977).

    Google Scholar 

  138. Ueda, C.T.; Williamson, B.J. and Dzindzio, B.S.: Absolute quin-idine bioavailability. Clinical Pharmacology and Therapeutics 20: 260–265 (1976).

    PubMed  CAS  Google Scholar 

  139. Verbeeck, R.K.; Branch, R.A. and Wilkinson, G.R.: Meperidine disposition in man: Influence of urinary pH and route of administration. Clinical Pharmacology and Therapeutics 30: 619–628 (1981).

    PubMed  CAS  Article  Google Scholar 

  140. Vestal, R.E.; Kornhauser, D.M.; Hollifield, J.W. and Shand, D.G.: Inhibition of propranolol metabolism by chlorpromazine. Clinical Pharmacology and Therapeutics 25: 19–24 (1979).

    PubMed  CAS  Google Scholar 

  141. Vu, V.T.; Bai, S.A. and Abramson, F.P.: Interactions of phenobarbital with propranolol in the dog. 2. Bioavailability, metabolism and pharmacokinetics. Journal of Pharmacology and Experimental Therapeutics 224: 55–61 (1983).

    PubMed  CAS  Google Scholar 

  142. Wagner, J.G.; Rocchini, A.P. and Vasiliades, J.: Prediction of steady-state verapamil plasma concentrations in children and adults. Clinical Pharmacology and Therapeutics 32: 172–181 (1982).

    PubMed  CAS  Article  Google Scholar 

  143. Walle, T.; Conradi, E.C; Walle, U.K.; Fagan, T.C. and Gaffney, T.E.: The predictable relationship between plasma levels and dose during chronic propranolol therapy. Clinical Pharmacology and Therapeutics 24: 668–677 (1978).

    PubMed  CAS  Google Scholar 

  144. Walle, T.; Conradi, E.C.; Walle, U.K.; Fagan, T.C. and Gaffney, T.E.: Propranolol glucuronide cumulation during iong-ierm propranolol therapy: A proposed storage mechanism for propranolol. Clinical Pharmacology and Therapeutics 26: 686–695 (1979).

    PubMed  CAS  Google Scholar 

  145. Walle, T.; Conradi, EC; Walle, U.K.; Fagan, T.C. and Gaffney, T.E.: 4-Hydroxypropranolol and its glucuronide after single and long-term doses of propranolol. Clinical Pharmacology and Therapeutics 27: 22–31 (1980).

    PubMed  CAS  Article  Google Scholar 

  146. Walle, T.; Fagan, T.C; Walle, U.K.; Oexmann, M.-J.; Conradi, E.C. and Gaffney, T.E.: Food-induced increase in propranolol bioavailability-relationship to protein and effects on metabolites. Clinical Pharmacology and Therapeutics 30: 790–795 (1981).

    PubMed  CAS  Article  Google Scholar 

  147. Wang, T.; Roden, D.M.; Wolfenden, H.T.; Woosley, R.L.; Wilkinson, G.R. and Wood, A.J.J.: Pharmacokinetics of encainide and its metabolites in man. Clinical Pharmacology and Therapcutics 31: 278 (1982).

    Google Scholar 

  148. Wells, P.G.; Feely, J.; Wilkinson, G.R. and Wood, A.J.J.: Effect of thyrotoxicosis on liver blood flow and propranolol disposition after long-term dosing. Clinical Pharmacology and Therapeutics 33: 603–608 (1983).

    PubMed  CAS  Article  Google Scholar 

  149. Wester, R.; Noonan, P.; Smeach, S. and Kosobud, L.: Estimate of nitroglycerin percutaneous first-pass metabolism. Pharmacologist 23: 203 (1981).

    Google Scholar 

  150. Wilkinson, G.R. and Shand, D.G.: A physiological approach to hepatic drug clearance. Clinical Pharmacology and Therapeutics 18: 377–390 (1975).

    PubMed  CAS  Google Scholar 

  151. Winkle, R.A.; Peters, F.; Kates, R.E.; Tucker, C. and Harrison, D.C.: Clinical pharmacology and antiarrhythmic efficacy of encainide in patients with chronic ventricular arrhythmias. Circulation 64: 290–296 (1981).

    PubMed  CAS  Article  Google Scholar 

  152. Winkler, K.; Bass, L.; Keiding, S. and Tygstrup, N.: The effect of hepatic perfusion on assessment of kinetic constants; in Lundquist and Tygstrup (Eds) Alfred Benson Symposium VI: Regulation of Hepatic Metabolism, pp. 797–807 (Munks-gaard, Copenhagen 1974).

  153. Winkler, K.; Keiding, S. and Tygstrup, N.: Clearance as a quantitative measure of liver function; in Paumgartner and Presig (Eds) The Liver. Quantitative Aspects of Structure and Functions, pp. 144–155 (Karger, Basel 1973).

  154. Winsor, T.: Plethysmographic comparison of sublingual and intramuscular ergotamine. Clinical Pharmacology and Therapeutics 29: 94–99 (1981).

    PubMed  CAS  Article  Google Scholar 

  155. Wood, A.J.J.; Kornhauser, D.M.; Wilkinson, G.R.; Shand, D.G. and Branch, R.A.: The influence of cirrhosis on steady-state blood concentrations of unbound propranolol after oral administration. Clinical Pharmacokinetics 3: 478–487 (1978).

    PubMed  CAS  Article  Google Scholar 

  156. Woodcock, B.G.; Schulz, W.; Kober, G. and Rietbrock, N.: Direct determination of hepatic extraction of verapamil in cardiac patients. Clinical Pharmacology and Therapeutics 30: 52–56 (1981).

    PubMed  CAS  Article  Google Scholar 

  157. Woosley, R.L.; Roden, D.M.; Duff, H.J.; Carey, EX.; Wood, A.J.J. and Wilkinson, G.R.: Co-inheritance of deficient oxidative metabolism of encainide and debrisoquine. Clinical Research 29: 501A (1981).

    Google Scholar 

  158. Wu, C.C.; Sokoloski, T.D.; Blanford, M.F. and Burkman, A.M.: Absence of metabolite in the disappearance of nitroglycerin following incubation with red blood cells. International Journal of Pharmacology 8: 323–329 (1981).

    CAS  Article  Google Scholar 

  159. Yu, V.C.; De Lamirande, E.; Horning, M.G. and Pang, K.S.: Dose-dependent kinetics of quinidine in the perfused rat liver preparation. Kinetics of formation of active metabolites. Drug Metabolism and Disposition 10: 568–572 (1982).

    PubMed  CAS  Google Scholar 

  160. Zimm, S.; Collins, J.M.; Riccardi, R.; O’Neill, D.; Narang, P.K.; Chabner, B. and Poplack, D.G.: Variable bioavailability of oral mercaptopurine. Is maintenance chemotherapy in acute lymphoblastic leukemia being optimally delivered? New England Journal of Medicine 308: 1005–1009 (1983).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Susan M. Pond.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pond, S.M., Tozer, T.N. First-Pass Elimination Basic Concepts and Clinical Consequences. Clin Pharmacokinet 9, 1–25 (1984). https://doi.org/10.2165/00003088-198409010-00001

Download citation