Skip to main content
Log in

Understanding the Dose-Effect Relationship

Clinical Application of Pharmacokinetic-Pharmacodynamic Models

  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

It is a major goal of clinical pharmacology to understand the dose-effect relationship in therapeutics. Much progress towards this goal has been made in the last 2 decades through the development of pharmacokinetics as a discipline. The study of pharmacokinetics seeks to explain the time course of drug concentration in the body. Recognition of the crucial concepts of clearance and volume of distribution has provided an important link to the physiological determinants of drug disposition. Mathematical models of absorption, distribution, metabolism and elimination have been extensively applied, and generally their predictions agree remarkably well with actual observations. However, the time course of drug concentration cannot in itself predict the time course or magnitude of drug effect. When drug concentrations at the effect site have reached equilibrium and the response is constant, the concentration-effect relationship is known as pharmacodynamics. Mathematical models of pharmacodynamics have been used widely by pharmacologists to describe drug effects on isolated tissues. The crucial concepts of pharmacodynamics are potency — reflecting the sensitivity of the organ or tissue to a drug, and efficacy — describing the maximum response. These concepts have been embodied in a simple mathematical expression, the Emax model, which provides a practical tool for predicting drug response analogous to the compartmental model in pharmacokinetics for predicting drug concentration.

The application of pharmacodynamics to the study of drug action in vivo requires the linking of pharmacokinetics and pharmacodynamics to predict firstly the dose-concentration, and then the concentration-effect relationship. This may be done directly by equating the concentration predicted by a pharmacokinetic model to the effect site concentration, but this simplistic approach is often not appropriate for various reasons, including delay in drug equilibrium with the receptor site, use of indirect measures of drug action, the presence of active metabolites, or homeostatic responses, thus often necessitating the use of more complex models.

The relative pharmacodynamic bioavailability of different preparations of the same drug may be determined from the time course of a drug effect. Bioavailability determined in this way may differ markedly from bioavailability defined by measurements of drug concentration if active metabolites are formed or if effects are produced in the non-linear region of the concentration-effect relationship.

The influence of changes in the extent of plasma protein binding may be important in the interpretation of drug concentration measurements since it is generally held that only the unbound fraction is pharmacologically active. Clear examples of this phenomenon are few, but this reflects the general paucity of adequate observations rather than casting doubt on the usual assumption.

The design of rational dosing regimens for clinical therapeutics cannot be performed with a knowledge of pharmacokinelics alone. The time course of drug effect may be essentially independent of concentration when a dose produces near maximal effects throughout the dosing interval. If effects are between 20 and 80% of maximum, the response will decrease linearly even though concentrations are declining exponentially. Finally, at relatively small degrees of effect, the time course of drug effect and concentration will be in parallel. The usual ‘rule of thumb’ of dosing every half-life is a conservative strategy for limiting wide fluctuations in drug effect, but demands more from the patient in terms of dosing frequency than may be necessary to achieve consistent drug action. On the other hand, if therapeutic success is dependent more on cumulative response than moment to moment activity, the use of extended dosing intervals may markedly reduce the effectiveness of the same average dose. Considerations of these factors can be incorporated into a dosing scheme by combined application of the principles of pharmacokinelics and pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ariens, E.J. and Simonis, A.M.: A molecular basis for drug action. Journal of Pharmacy and Pharmacology 27: 137–257 (1964a).

    Article  Google Scholar 

  • Ariens, E.J. and Simonis, A.M.: A molecular basis for drug action. The interaction of one or more drugs with different receptors. Journal of Pharmacy and Pharmacology 16: 289–312 (1964b).

    Article  CAS  Google Scholar 

  • Bean, B.L.; Bronn, J.J.; Casals-Stenzel, J.; Fraser, R.; Lerer, A.F.; Millar, J.A. and Norton, J.J.: The relation of arterial pressure and plasma angiotensin II concentration. Circulation Research 44: 452–458 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Beller, G.A.; Smith, T.W.; Abelman, W.H.; Haber, E. and Hood, W.B., Jr: Digitalis intoxication. A prospective clinical study with serum level correlations. New England Journal of Medicine 284: 989–997 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bellville, J.R.; Cohen, E.N. and Hamilton, J.: The interaction of morphine and d-tubocurarine on respiration and grip strength in man. Clinical Pharmacology and Therapeutics 5: 35 (1964).

    PubMed  CAS  Google Scholar 

  • Benet, L.Z.: General treatment of linear mammillary models with elimination from any compartment as used in pharmacokinetics. Journal of Pharmaceutical Sciences 61: 536–541 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Boudoulas, H.; Lewis, R.P.; Kates, R.E. and Dalamangas, G.: Hypersensitivity to adrenergic stimulation after propranolol withdrawal in normal subjects. Annals of Internal Medicine 87: 433–436 (1977).

    PubMed  CAS  Google Scholar 

  • Box, G.E.P. and Lucas, H.L.: Design of experiments in non-linear situations. Biometrika 46: 77–90 (1959).

    Google Scholar 

  • Breckenridge, A.; Orme, M.; Wesseling, H.; Lewis, J.R. and Gibbons, R.: Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clinical Pharmacology and Therapeutics 15: 424–430 (1974).

    PubMed  CAS  Google Scholar 

  • Burland, W.L.; Duncan, W.A.M.; Hesselbo, T.; Mills, J.G. and Sharpe, P.C.: Pharmacological evaluation of cimetidine, a new histamine H2-receptor antagonist in healthy man. British Journal of Clinical Pharmacology 2: 481–486 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Collste, P.; Haglund, K. and von Bahr, C.: Plasma levels and effects of metoprolol after single and multiple oral doses. Clinical Pharmacology and Therapeutics 27: 441–449 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Di Stefano, J.J.: Optimized blood sampling protocols and sequential design of kinetic experiments. American Journal of Physiology 240: R259–R265 (1981).

    Google Scholar 

  • Eichelbaum, M.; Birkel, P.; Grube, E.; Gutgemann, U. and Somogyi, A.: Effects of verapamil on P-R intervals in relation to verapamil plasma levels following single i.v. and oral administration and during chronic treatment. Klinische Wochenschrift 58: 919–925 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Elson, J.; Strong, J.M.; Lee, W.K. and Atkinson, A.J.: Antiarrhythmic potency of N-acetylprocainamide. Clinical Pharmacology and Therapeutics 17: 134–140 (1975).

    PubMed  CAS  Google Scholar 

  • Esler, M.; Zweifer, A.; Randall, O. and DeQuattro, V.: Pathophysiologic and pharmacokinetic determinants of the antihypertensive response to propanolol. Clinical Pharmacology and Therapeutics 22: 299–308 (1977).

    PubMed  CAS  Google Scholar 

  • Forrester, W.; Lewis, R.P.; Weissler, A.M. and Wilke, T.A.: The onset and magnitude of the contractile response to commonly used digitalis glycosides in normal subjects. Circulation 49: 517–521 (1974).

    Article  Google Scholar 

  • Galeazzi, R.L.; Benet, L.Z. and Sheiner, L.B.: Relationship between the pharmacokinetics and pharmacodynamics of procainamide. Clinical Pharmacology and Therapeutics 20: 278–289 (1976).

    PubMed  CAS  Google Scholar 

  • Gero, A.: Intimate study of drug action III: Mechanisms of molecular drug action; in DiPalma (Ed) Drill’s Pharmacology in Medicine, pp.67–98 (McGraw-Hill, New York 1971).

    Google Scholar 

  • Gibaldi, M. and Perrier, D.: Pharmacokinetics (Marcel Dekker, New York 1975).

    Google Scholar 

  • Guentert, T.W.; Holford, N.H.G.; Coates, P.C.; Upton, R.A. and Riegelman, S.: Quinidine pharmacokinetics in man: Choice of a disposition model and absolute bioavailability studies. Journal of Pharmacokinetics and Biopharmaceutics 7: 315–330 (1979).

    PubMed  CAS  Google Scholar 

  • Hager, W.D.; Fenster, P.; Mayersohn, M.; Perrier, D.; Graves, P.; Marcus, F.I. and Goldman, S.: Digoxin-quinidine interaction. New England Journal of Medicine 302: 1238–1241 (1979).

    Article  Google Scholar 

  • Hannemann, R.E.; Randall, J.E.; Stoltman, W.P.; Bronsen, E.C.; Williams, E.J.; Long, R.A.; Hull, J.H. and Starbuck, R.R.: Digital plethysmography for assessing erythrityl tetranitrate bioavailability. Clinical Pharmacology and Therapeutics 29: 35–39 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Hill, A.V.: The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Journal of Physiology 40: iv–vii (1910).

    Google Scholar 

  • Holford, N.H.G.; Coates, P.E.; Guentert, T.W.; Riegelman, S. and Sheiner, L.B.: The effect of quinidine and its metabolites on the electrocardiogram and systolic time intervals: Concentration-effect relationships. British Journal of Clinical Pharmacology 11: 187–195 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Holford, N.H.G. and Sheiner, L.B.: Pharmacokinetic and pharmacodynamic modelling in vivo. Critical Revues in Bioengineering. In press (1981a).

  • Holford, N.H.G. and Sheiner, L.B.: Kinetics of pharmacologic response. Pharmacology and Therapeutics. In press (1981b).

  • Hull, C.J.; van Beem, H.B.H.; McLeod, K.; Sibbals, A. and Watson, M.J.: A pharmacodynamic model for pancuronium. British Journal of Anaesthesia 50: 1113–1123 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Hunder, G.G.; Sheps, S.G.; Allen, G.L. and Joyce, J.W.: Daily and alternate-day corticosteroid regimens in treatment of giant cell arteritis. Annals of Internal Medicine 82: 613–618 (1975).

    PubMed  CAS  Google Scholar 

  • Kaojarern, S.; Feldman, M.; Richardson, C.T. and Brater, D.C.: Tiotidine and cimetidine — kinetics and dynamics. Clinical Pharmacology and Therapeutics 29: 198–202 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Kelman, A.W. and Whiting, B.: Modelling of drug response in individual subjects. Journal of Pharmacokinetics and Biopharmaceutics 8: 115–130 (1980).

    PubMed  CAS  Google Scholar 

  • Kramer, W.G.; Kolibash, A.J.; Lewis, R.P.; Bathala, M.S.; Visconti, J.A. and Reuning, R.H.: Pharmacokinetics of digoxin: Relationship between intensity and predicted compartmental drug levels in man. Journal of Pharmacokinetics and Biopharmaceutics 7: 47–61 (1979).

    PubMed  CAS  Google Scholar 

  • Lertora, J.J.L.; Atkinson, A.J.; Kushner, W.; Nevin, M.J.; Lee, W.K.; Jones, C. and Schmid, F.R.: Long term antiarrhythmic therapy with N-acetylprocainamide. Clinical Pharmacology and Therapeutics 25: 273–282 (1979).

    PubMed  CAS  Google Scholar 

  • Levy, G.: Relationship between rate of elimination of tubocurarine and rate of decline of its pharmacological activity. British Journal of Anaesthesia 36: 694–695 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R.J.; Trager, W.F.; Chan, K.K.; Breckenridge, A.; Orme, M.; Roland, M. and Schary, W.: Warfarin-stereochemical aspects of its metabolism and the interaction with phenylbutazone. Journal of Clinical Investigation 53: 1607–1617 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Mayersohn, M. and Perrier, D.: Kinetics of pharmacologic response to cocaine. Research Communications in Chemical Pathology and Pharmacology 22: 465–474 (1978).

    PubMed  CAS  Google Scholar 

  • Meffin, P.J.; Winkle, R.A.; Blaschke, T.F.; Fitzgerald, J. and Harrison, D.C.: Response optimization of drug dosage: Antiarrhythmic studies with tocainide. Clinical Pharmacology and Therapeutics 22: 42–57 (1977).

    PubMed  CAS  Google Scholar 

  • Mitenko, P.A. and Ogilvie, R.I.: Rational intravenous doses of theophylline. New England Journal of Medicine 289: 600–603 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Murphy, J.; Casey, W. and Lasagna, L.: The effect of dosage regimes on the diuretic efficacy of chlorothiazide in human subjects. Journal of Pharmacology and Experimental Therapeutics 134: 286–290 (1961).

    PubMed  CAS  Google Scholar 

  • Nagashima, R.; O’Reilly, R.A. and Levy, G.: Kinetics of pharmacologie effects in man: The anticoagulant action of warfarin. Clinical Pharmacology and Therapeutics 10: 22–35 (1969).

    PubMed  CAS  Google Scholar 

  • O’Reilly, R.A.: Studies on the optical enantiomorphs of warfarin in man. Clinical Pharmacology and Therapeutics 16: 348–354 (1974).

    PubMed  Google Scholar 

  • O’Reilly, R.A.; Trager, W.F.; Motley, C.H. and Howald, W.: Stereoselective interaction of phenylbutazone with [12C/13C] warfarin pseudoracemates in man. Journal of Clinical Investigation 65: 746–753 (1980).

    Article  PubMed  Google Scholar 

  • Powell, R.; Fenster, P.; Wandell, M.; Hager, D.; Graves, P.; Conrad, K. and Goldman, S.: Quinidine-digoxin interaction: Multiple-dose pharmacokinetics. Clinical Pharmacology and Therapeutics 27: 279 (1980).

    Google Scholar 

  • Powers, W.F.; Abbrecht, P.J. and Covell, D.G.: Systems and microcomputer approach to anticoagulant therapy. IEEE Transactions on Bio-Medical Engineering. BME-27: 520–523 (1980).

    Article  Google Scholar 

  • Reidenberg, M.; Odar-Cederlof, I.; Bahr, von C.; Borga, O. and Sjoqvist, F.: Protein binding of diphenylhydantoin and dismethylimipramine in plasma from patients with poor renal function. New England Journal of Medicine 285: 264–267 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Reiner, N.E.; Bioxham, D.D. and Thompson, W.L.: Nephrotoxicity of gentamicin and tobramycin given once daily or continuously in dogs. Journal of Antimicrobial Chemotherapy 4: 85–101 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Routledge, P.A.; Chapman, P.H.; Davies, D.M. and Rawlins, M.D.: Pharmacokinetics and pharmacodynamics of warfarin at steady state. British Journal of Clinical Pharmacology 8: 243–247 (1979).

    Article  PubMed  CAS  Google Scholar 

  • St John, R.C. and Draper, N.R.: D-optimality for regression designs — a review. Technometrics 17: 15–23 (1975).

    Article  Google Scholar 

  • Schroeder, P.; Klitgaard, N.A. and Simensen, E.: Significance of the acetylation phenotype and the therapeutic effect of procainamide. European Journal of Clinical Pharmacology 15: 63–68 (1979).

    Article  CAS  Google Scholar 

  • Shapiro, W.; Narhara, K. and Taubert, K.: Relationship of sma digoxin and digoxin to cardiac response following intravenous digitization in man. Circulation 42: 1065–1072 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Sheiner, L.B.: Computer-aided long-term anticoagulation therapy. Computers and Biomedical Research 2: 307–318 (1969).

    Article  Google Scholar 

  • Sheiner, L.B.; Stanski, D.R.; Vozeh, S.; Miller, R.D. and Ham, J.: Simultaneous modelling of pharmacokinetics and pharmacodynamics: Application to d-tubocurarine. Clinical Pharmacology and Therapeutics 25: 358–371 (1979).

    PubMed  CAS  Google Scholar 

  • Shepherd, A.M.M.; Wilson, M. and Stevenson, I.H.: Warfarin sensitivity in the elderly; in Crooks and Stevenson (Eds) Drugs and the Elderly, pp.199–209 (University Park Press, Baltimore 1979).

    Google Scholar 

  • Singh, B.N.; Williams, F.M.; Whitlock, R.M.; Collett, J. and Chew, C.: Plasma timolol levels and systolic time intervals. Clinical Pharmacology and Therapeutics 27: 159–166 (1980).

    Google Scholar 

  • Snyder, S.H.: Receptors, neurotransmitters and drug responses. New England Journal of Medicine 300: 465–472 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, A.; Rohner, H.G. and Gugler, R.: Pharmacokinetics and bioavailability of cimetidine in gastric and duodenal ulcer patients. Clinical Pharmacokinetics 5: 84–94 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Steiness, E.; Waldorff, S.; Hansen, P.B.; Kjaergård, H.; Buch, J. and Egeblad, H.: Reduction of digoxin-induced inotropism during quinidine administration. Clinical Pharmacology and Therapeutics 27: 791–795 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Van Dyke, C.; Jatlow, P.; Ungerer, J.; Barash, P.G. and Byck, R.: Oral cocaine; plasma concentration and central effects. Science 200: 211–213 (1978).

    Article  PubMed  Google Scholar 

  • Vaughan, D.P. and Trainor, A.: Derivation of general equations for linear mammillary models when the drug is administered by different routes. Journal of Pharmacokinetics and Biopharmaceutics 3: 203–218 (1975).

    PubMed  CAS  Google Scholar 

  • Veng Pedersen, P.: Model-independent method of analyzing input in linear pharmacokinetic systems having polyexponential impulse response. I: Theoretical analysis. Journal of Pharmaceutical Sciences 69: 298–305 (1980).

    Article  CAS  Google Scholar 

  • Wagner, J.G.; Agahajanian, G.K. and Bing, O.H.: Correlation of performance test scores with ‘tissue concentration’ of lysergic acid diethylamide in human subjects. Clinical Pharmacology and Therapeutics 9: 635–638 (1968).

    PubMed  CAS  Google Scholar 

  • Wagner, J.G.: Kinetics of pharmacologie response. I: Proposed relationships between response and drug concentration in the intact animal and man. Journal of Theoretical Biology 20: 171–201 (1968).

    Article  Google Scholar 

  • Wagner, J.G.: Fundamentals of Clinical Pharmacokinetics (Drug Intelligence, Hamilton 1975).

    Google Scholar 

  • Whelton, A.; Carter, G.G.; Craig, T.J.; Bryant, H.H.; Herbst, D.V. and Walker, W.G.: Comparison of the intrarenal disposition of tobramycin and gentamicin: Therapeutic and toxicologic answers. Journal of Antimicrobial Chemotherapy 4: 13–22 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Whitfield, L.R. and Levy, G.: Relationship between concentration and anticoagulant effect of heparin in plasma of normal subjects: Magnitude and predictability of interindividual differences. Clinical Pharmacology and Therapeutics 28: 509–516 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Whiting, B.; Holford, N.H.G. and Sheiner, L.B.: Quantitative analysis of the disopyramide concentration-response relationship. British Journal of Clinical Pharmacology 9: 67–75 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Whitlon, D.S.; Sadowski, J.A. and Suttie, J.W.: Mechanism of coumarin action: Significance of vitamin K epoxide reductase inhibition. Biochemistry 17: 1371–1377 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Winkle, R.A.; Meffïn, P.J.; Fitzgerald, J.W. and Harrison, D.C.: Clinical efficacy and pharmacokinetics of a new orally effective antiarrhythmic tocainide. Circulation 54: 884–889 (1976).

    Article  Google Scholar 

  • Yacobi, A.; Chii-Ming, L. and Levy, G.: Comparative pharmacokinetics of coumarin anticoagulants. LXV: Pharmacokinetic and pharmacodynamic studies of acute interaction between warfarin and phenylbutazone in rats. Journal of Pharmaceutical Sciences 69: 14–20 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holford, N.H.G., Sheiner, L.B. Understanding the Dose-Effect Relationship. Clin Pharmacokinet 6, 429–453 (1981). https://doi.org/10.2165/00003088-198106060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198106060-00002

Keywords

Navigation