Skip to main content
Log in

Use of Transdermal Drug Formulations in the Elderly

  • Current Opinion
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Transdermal drug delivery systems are pharmaceutical forms designed to administer a drug through the skin to obtain a systemic effect. They ensure a constant rate of drug administration and a prolonged action. Several different types of transdermal delivery devices are available on the market. They are either matrix or reservoir systems and their main current uses are to treat neurological disorders, pain and coronary artery disease, and as hormone replacement therapy.

Transdermal drug administration has a number of advantages compared with the oral route: it avoids gastrointestinal absorption and hepatic first-pass metabolism, minimizes adverse effects arising from peak plasma drug concentrations and improves patient compliance. Compared with the parenteral route, transdermal administration entails no risk of infection. For elderly people, who are often polymedicated, transdermal drug delivery can be a good alternative route of administration.

Transdermal absorption depends on passive diffusion through the different layers of the skin. As skin undergoes many structural and functional changes with increasing age, it would be useful to know whether these alterations affect the transdermal diffusion of drugs. Studies have shown that age-related changes in hydration and lipidic structure result in an increased barrier function of the stratum corneum only for relatively hydrophilic compounds. In practice, no significant differences in absorption of drugs from transdermal delivery systems have been demonstrated between young and old individuals. The need for dose adaptation in elderly patients using transdermal drug delivery systems is therefore not related to differences in skin absorption but rather to age-related cardiovascular, cerebral, hepatic and/or renal compromise, and to ensuing geriatric pharmacokinetic and pharmacodynamic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III

Similar content being viewed by others

References

  1. Moser K, Kriwet K, Naik A, et al. Passive skin penetration enhancement and its quantification in vitro. Eur J Pharm Biopharm 2001; 52: 103–12

    Article  PubMed  CAS  Google Scholar 

  2. Aiache JM, Devissaguet JP, Guyot-Hermann AM. Galenica 2: biopharmacie. Paris: Technique et Documentation, 1978

    Google Scholar 

  3. Ranade VV. Drug delivery systems 6: transdermal drug delivery. J Clin Pharmacol 1991; 31: 401–18

    PubMed  CAS  Google Scholar 

  4. Potts RO, Guy RH. Predicting skin permeability. Pharm Res 1992; 9: 663–9

    Article  PubMed  CAS  Google Scholar 

  5. Rikke HL, Nielsen F, Sorensen JA, et al. Dermal penetration of fentanyl: inter- and intraindividual variations. Pharmacol Toxicol 2003; 93: 244–8

    Article  Google Scholar 

  6. Brown MB, Martin GP, Jones SA, et al. Dermal and transdermal drug delivery systems: current and future prospects. Drug Deliv 2006; 13: 175–87

    Article  PubMed  CAS  Google Scholar 

  7. Buri P, Puisieux F, Doelker E, et al. Formes pharmaceutiques nouvelles. Paris: Technique et Documentation, 1985

    Google Scholar 

  8. Meidan VM, Michniak BB. Emerging technologies in transdermal therapeutics. Am J Ther 2004; 11: 312–6

    Article  PubMed  Google Scholar 

  9. Thomas DR. Age-related changes in wound healing. Drugs Aging 2001; 18: 607–20

    Article  PubMed  CAS  Google Scholar 

  10. Aubert JP, Crickx B. La peau du sujet âgé. Rev Pratic 2003; 17: 1209–12

    Google Scholar 

  11. Lavker RM. Structural alterations in exposed and unexposed aged skin. J Invest Dermatol 1979; 73: 59–66

    Article  PubMed  CAS  Google Scholar 

  12. Roskos KV, Maibach HI. Percutaneous absorption and age: implications for therapy. Drugs Aging 1992; 2: 432–49

    Article  PubMed  CAS  Google Scholar 

  13. Gilchrest BA, Blog FB, Szabo G. Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol 1979; 73: 141–3

    Article  PubMed  CAS  Google Scholar 

  14. Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol 2005; 11: 221–35

    Article  PubMed  Google Scholar 

  15. Jacobson TM, Yuksel KU, Geesin JC, et al. Effects of aging and xerosis on the amino acid composition of human skin. J Invest Dermatol 1990; 95: 296–300

    Article  PubMed  CAS  Google Scholar 

  16. Bernstein EF, Underhill CB, Hahn PJ, et al. Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br J Dermatol 1996; 135: 255–62

    Article  PubMed  CAS  Google Scholar 

  17. Saint Leger D, Francois AM, Leveque JL, et al. Age-associated changes in stratum corneum lipids and their relation to dryness. Dermatologica 1988; 177: 159–64

    Article  PubMed  CAS  Google Scholar 

  18. Makrantonaki E, Zouboulis CC. Characteristics and pathomechanisms of endogenously aged skin. Dermatology 2007; 214: 352–60

    Article  PubMed  Google Scholar 

  19. Pochi PE, Strauss JS, Downing DT. Age related changes in sebaceous gland activity. J Invest Dermatol 1979; 73: 108–11

    Article  PubMed  CAS  Google Scholar 

  20. Waller JM, Maibach HI. Age and skin structure and function — a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol 2006; 12: 145–54

    Article  PubMed  Google Scholar 

  21. Uitto J. Connective tissue biochemistry of the aging dermis: age-associated alterations in collagen and elastin. Clin Geriatr Med 1989; 5: 127–47

    PubMed  CAS  Google Scholar 

  22. Kelly RI, Pearse R, Bull RH, et al. The effects of aging on the cutaneous microvasculature. J Am Acad Dermatol 1995; 33: 749–56

    Article  PubMed  CAS  Google Scholar 

  23. Roskos KV, Bircher AJ, Maibach HI, et al. Pharmacodynamic measurements of methyl nicotinate percutaneous absorption: the effect of aging on microcirculation. Br J Dermatol 1990; 122: 165–71

    Article  PubMed  CAS  Google Scholar 

  24. Sandby-Moller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 2003; 83: 410–3

    Article  PubMed  Google Scholar 

  25. Branchet MC, Boisnic S, Frances C, et al. Skin thickness changes in normal aging skin. Gerontology 1990; 36: 28–35

    Article  PubMed  CAS  Google Scholar 

  26. Yamamoto A, Serizawa S, Ito M, et al. Effect of aging on sebaceous gland activity and on the fatty acid composition of wax esters. J Invest Dermatol 1987; 89: 507–12

    Article  PubMed  CAS  Google Scholar 

  27. Grond S, Radbruch L, Lehmann KA. Clinical pharmacokinetics of transdermal opioids. Clin Pharmacokinet 2000; 38: 59–89

    Article  PubMed  CAS  Google Scholar 

  28. Roskos KV, Maibach HI, Guy RH. The effect of aging on percutaneous absorption in man. J Pharmacokinet Biopharm 1989; 17: 617–30

    PubMed  CAS  Google Scholar 

  29. Berner B, John VA. Pharmacokinetic characterisation of transdermal delivery systems. Clin Pharmacokinet 1994; 26: 121–34

    Article  PubMed  CAS  Google Scholar 

  30. Ansel HC, Popovich NG. Pharmaceutical dosage forms and drug delivery systems. Philadelphia (PA): Lea and Febiger, 1990

    Google Scholar 

  31. Wasilewski-Rasca AF, Vogt-Ferrier NV. CAPP-INFO-systèmes transdermiques (ou patchs): structure-utilisation-aspects pratiques [online]. Available from URL: http://www.hcuge.ch/Pharmacie/infomedic/cappinfo/cappinfo18.pdf [Accessed 2007 May 7]

  32. Beckett AH, Gorrod JW, Taylor DC. Comparison of oral and percutaneous routes in man for the systemic administration of ephedrines. J Pharm Pharmacol 1972; 24: 65–70

    Google Scholar 

  33. Burris JF, Papademetriou V, Wallin JD, et al. Therapeutic adherence in the elderly: transdermal clonidine compared to oral verapamil for hypertension. Am J Med 1991; 91: 22S–8S

    Article  PubMed  CAS  Google Scholar 

  34. Carmichael AJ. Skin sensitivity and transdermal drug delivery: a review of the problem. Drug Saf 1994; 10: 151–9

    Article  PubMed  CAS  Google Scholar 

  35. Murphy M, Carmichael AJ. Transdermal drug delivery systems and skin sensitivity reactions: incidence and management. Am J Clin Dermatol 2000; 1: 361–8

    Article  PubMed  CAS  Google Scholar 

  36. Pfeiffer RF. Potential of transdermal drug delivery in Parkinson’s disease. Drugs Aging 2002; 19: 561–70

    Article  PubMed  CAS  Google Scholar 

  37. Li GL, Vries JJ, van Steeg TJ, et al. Transdermal iontophoretic delivery of apomorphine in patients improved by surfactant formulation pre-treatment. J Control Release 2005; 101: 199–208

    Article  PubMed  CAS  Google Scholar 

  38. Woitalla D, Muller T, Benz S, et al. Transdermal lisuride delivery in the treatment of Parkinson’s disease. J Neural Transm 2004; 68 Suppl.: 89–95

    Article  CAS  Google Scholar 

  39. MacMahon DG. Use of apomorphine in clinical practice. Adv Neurol 1999; 80: 529–33

    PubMed  CAS  Google Scholar 

  40. Guldenpfennig WM, Poole KH, Sommerville KW, et al. Safety, tolerability, and efficacy of continuous transdermal dopaminergic stimulation with rotigotine patch in early-stage idiopathic Parkinson disease. Clin Neuropharmacol 2005; 28: 106–10

    Article  PubMed  Google Scholar 

  41. Watts RL, Jankovic J, Waters C, et al. Randomized, blind, controlled trial of rotigotine in early Parkinson disease. Neurology 2007; 68: 272–6

    Article  PubMed  CAS  Google Scholar 

  42. LeWitt PA, Lyons KE, Pahwa R, et al. Advanced Parkinson disease treated with rotigotine transdermal system: PREFER study. Neurology 2007; 68: 1262–7

    Article  PubMed  CAS  Google Scholar 

  43. Poewe WH, Rascol O, Quinn N, et al. Efficacy of pramipexole and transdermal rotigotine in advanced Parkinson’s disease: a double-blind, double-dummy, randomised controlled trial. Lancet Neurol 2007; 6: 513–20

    Article  PubMed  CAS  Google Scholar 

  44. Priano L, Gasco MR, Maura A, et al. Transdermal treatment options for neurological disorders: impact on the elderly. Drugs Aging 2006; 23: 357–75

    Article  PubMed  CAS  Google Scholar 

  45. Moller HJ, Hampel H, Hegerl U, et al. Double-blind, randomized, placebo-controlled clinical trial on the efficacy and tolerability of a physostigmine patch in patients with senile dementia of the Alzheimer type. Pharmacopsychiatr 1999; 32: 99–106

    Article  CAS  Google Scholar 

  46. Levy A, Brandeis R, Treves TA, et al. Transdermal physostigmine in the treatment of Alzheimer’s disease. Alzheimer Dis Assoc Disord 1994; 8: 15–21

    Article  PubMed  CAS  Google Scholar 

  47. Kankkunen T, Sulkava R, Vuorio M, et al. Transdermal iontophoresis of tacrine in vivo. Pharm Res 2002; 19: 704–7

    Article  PubMed  CAS  Google Scholar 

  48. Winblad B, Cummings J, Andreasen N, et al. A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer’s disease: rivastigmine patch versus capsule. Int J Geriatr Psychiatry 2007; 22: 456–67

    Article  PubMed  Google Scholar 

  49. Wilson AL, Langley LK, Monley J, et al. Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 1995; 51: 509–11

    Article  PubMed  CAS  Google Scholar 

  50. Snaedal J, Johannesson T, Jonsson JE, et al. The effects of nicotine in dermal plaster on cognitive functions in patients with Alzheimer’s disease. Dementia 1996; 7: 47–52

    PubMed  CAS  Google Scholar 

  51. Henderson VW, Paganini-Hill A, Emanuel CK, et al. Estrogen replacement therapy in older women: comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994; 51: 896–900

    Article  PubMed  CAS  Google Scholar 

  52. Baldereschi M, Di Carlo A, Lepore V, et al. Estrogen-replacement therapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. Neurology 1998; 50: 996–1002

    Article  PubMed  CAS  Google Scholar 

  53. Transdermal selegiline. Med Lett Drugs Ther 2006; 1235: 41–2

    Google Scholar 

  54. Amsterdam JD, Bodkin JA. Selegiline transdermal system in the prevention of relapse of major depressive disorder: a 52-week, double-blind, placebo-substitution, parallel-group clinical trial. J Clin Psychopharmacol 2006; 26: 579–86

    Article  PubMed  CAS  Google Scholar 

  55. Robinson DS, Amsterdam JD. The selegiline transdermal system in major depressive disorder: a systematic review of safety and tolerability. J Affect Disord 2008; 105: 15–23

    Article  PubMed  CAS  Google Scholar 

  56. Pae CU, Lim HK, Han C, et al. Selegiline transdermal system: current awareness and promise. Prog Neuropsychopharmacol Biol Psychiatr 2007; 31: 1153–63

    Article  CAS  Google Scholar 

  57. Frampton JE, Plosker GL. Selegiline transdermal system in the treatment of major depressive disorder. Drugs 2007; 67: 257–65

    Article  PubMed  CAS  Google Scholar 

  58. Muijsers RB, Wagstaff AJ. Transdermal fentanyl: an updated review of its pharmacological properties and therapeutic efficacy in chronic cancer pain control. Drugs 2001; 61: 2289–307

    Article  PubMed  CAS  Google Scholar 

  59. Payne R. Factors influencing quality of life in cancer patients: the role of transdermal fentanyl in the management of pain. Semin Oncol 1998; 25: 47–53

    PubMed  CAS  Google Scholar 

  60. Payne R, Mathias SD, Pasta DJ, et al. Quality of life and cancer pain: satisfaction and side effects with transdermal fentanyl versus oral morphine. J Clin Oncol 1998; 16: 1588–93

    PubMed  CAS  Google Scholar 

  61. Kornick CA, Santiago-Palma J, Moryl N, et al. Benefit-risk assessment of transdermal fentanyl for the treatment of chronic pain. Drug Saf 2003; 26: 951–73

    Article  PubMed  CAS  Google Scholar 

  62. Klockgether-Radke AP, Gaus P, Neumann P. Opioid intoxication following transdermal administration of fentanyl. Anaesthesist 2002; 51: 269–71

    Article  PubMed  CAS  Google Scholar 

  63. Klockgether-Radke A, Hildebrandt J. Opioid intoxication: inappropriate administration of transdermal fentanyl. Anaesthesist 1997; 46: 428–9

    Article  PubMed  CAS  Google Scholar 

  64. Compendium Suisse des médicaments. Basel: Documed, 2007 [online]. Available from URL: http://www.kompendium.ch [Accessed 2007 May 9]

  65. Sittl R. Transdermal buprenorphine in cancer pain and palliative care. Palliat Med 2006; 20: 25–30

    Article  Google Scholar 

  66. Sorge J, Sittl R. Transdermal buprenorphine in the treatment of chronic pain: results of a phase III, multicenter, randomized, double-blind, placebo-controlled study. Clin Ther 2004; 26: 1808–20

    Article  PubMed  CAS  Google Scholar 

  67. Evans HC, Easthope SE. Transdermal buprenorphine. Drugs 2003; 63: 1999–2012

    Article  PubMed  CAS  Google Scholar 

  68. Girdler SS, Hinderliter AL, Wells EC, et al. Transdermal versus oral estrogen therapy in postmenopausal smokers: hemodynamic and endothelial effects. Obstet Gynecol 2004; 103: 169–80

    Article  PubMed  CAS  Google Scholar 

  69. Dören M, Samsioe G. Prevention of postmenopausal osteoporosis with oestrogen replacement therapy and associated compounds: update on clinical trials since 1995. Hum Reprod Update 2000; 6: 419–26

    Article  PubMed  Google Scholar 

  70. Sitruk-Ware R. Routes of delivery for progesterone and progestins. Maturitas 2007; 57: 77–80

    Article  PubMed  CAS  Google Scholar 

  71. Lund BC, Bever-Stille KA, Perry PJ. Testosterone and andropause: the feasibility of testosterone replacement therapy in elderly men. Pharmacotherapy 1999; 19: 951–6

    Article  PubMed  CAS  Google Scholar 

  72. Beer TM, Bland LB, Bussiere JR, et al. Testosterone loss and estradiol administration modify memory in men. J Urol 2006; 175: 130–5

    Article  PubMed  CAS  Google Scholar 

  73. Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabetes Metab 2003; 20: 886–98

    CAS  Google Scholar 

  74. King MJ, Badea I, Solomon J, et al. Transdermal delivery of insulin from a novel biphasic lipid system in diabetic rats. Diabetes Technol Ther 2002; 4: 479–88

    Article  PubMed  Google Scholar 

  75. Lee S, Snyder B, Newnham RE, et al. Noninvasive ultrasonic transdermal insulin delivery in rabbits using the light-weight cymbal array. Diabetes Technol Ther 2004; 6: 808–15

    Article  PubMed  CAS  Google Scholar 

  76. Longobardi G, Ferrara N, Abete P, et al. Efficacy of transdermal nitroglycerin patches evaluated by dipyridamole-induced myocardial ischemia in patients with coronary artery disease: comparison between continuous and intermittent schedule. Cardiovasc Drugs Ther 2002; 16: 535–42

    Article  PubMed  CAS  Google Scholar 

  77. Kiraly C, Kiss A, Timar S, et al. Effects of long-term transdermal nitrate treatment on left ventricular function in patients following myocardial infarction. Clin Cardiol 2003; 26: 120–6

    Article  PubMed  Google Scholar 

  78. Klemsdal TO, Gjesdal K. Intermittent or continuous transdermal nitroglycerin: still an issue, or is the case closed? Cardiovasc Drugs Ther 1996; 10: 5–10

    Article  PubMed  CAS  Google Scholar 

  79. Parker JO, Amies MH, Hawkinson RW, et al. Intermittent transdermal nitroglycerin therapy in angina pectoris: clinically effective without tolerance or rebound. Minitran Efficacy Study Group. Circulation 1995; 91: 1368–74

    Article  PubMed  CAS  Google Scholar 

  80. Bang LM, Easthope SE, Perry CM. Transdermal oxybutynin for overactive bladder. Drugs Aging 2003; 20: 857–64

    Article  PubMed  CAS  Google Scholar 

  81. Dmochowski RR, Nitti V, Staskin D, et al. Transdermal oxybutynin in the treatment of adults with overactive bladder: combined results of two randomized clinical trials. World J Urol 2005; 23: 263–70

    Article  PubMed  CAS  Google Scholar 

  82. Dmochowski RR, Starkman JS, Davila GW. Transdermal drug delivery treatment for overactive bladder. Int Braz J Urol 2006; 32: 513–20

    Article  PubMed  Google Scholar 

  83. Wasilewski-Rasca AF, Bonnabry P. Systèmes thérapeutiques transdermiques: aspects pratiques chez le patient âgé. Med Hyg 2004; 62: 2320–5

    Google Scholar 

  84. Lee AH, Anderson PO. Giving partial doses of transdermal patches. Am J Health Syst Pharm 1997; 54: 1759–60

    PubMed  CAS  Google Scholar 

  85. Dispositifs transdermiques contenant de l’aluminium: risques de brûlures [editorial]. Rev Prescrire 2007; 27: 191–2

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this article. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure-Zoé Kaestli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaestli, LZ., Wasilewski-Rasca, AF., Bonnabry, P. et al. Use of Transdermal Drug Formulations in the Elderly. Drugs Aging 25, 269–280 (2008). https://doi.org/10.2165/00002512-200825040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200825040-00001

Keywords

Navigation