Skip to main content
Log in

Advances in Prostate Cancer Immunotherapies

  • Leading Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Prostate cancer is a major cause of mortality in men in the Western world. Although treatment of early stage prostate cancer with radiation therapy or prostatectomy is efficient in most cases, some patients develop a fatal hormone-refractory disease. Treatments in this case are limited to aggressive chemotherapies, which can reduce serum prostate-specific antigen (PSA) levels in some patients. Taxane- and platinum-compound-based chemotherapies produce a survival benefit of only a few months. Therefore, it is crucial to develop novel, well tolerated treatment strategies.

Over the past years, immunotherapy of hormone-refractory prostate cancer has been studied in numerous clinical trials. The fact that the prostate is a non-essential organ makes prostate cancer an excellent target for immunotherapy. Administration of antibodies targeting the human epidermal growth factor receptor-2 or the prostate-specific membrane antigen led to stabilisation of PSA levels in several patients. Vaccination of prostate cancer patients with irradiated allogeneic prostate cell lines has demonstrated that whole cell-based vaccines can significantly attenuate increases in PSA. Two different recombinant viral expression vectors have been applied in prostate cancer treatment: poxvirus and adenovirus vectors. Both vaccines have the advantages of using a natural method to induce immune responses and achieving high levels of transgene expression. Vaccinia viruses in combination with recombinant fowlpox or canarypox virus have been used to express recombinant PSA. Several studies demonstrated that this approach is safe and can lead to stabilisation of PSA values. A very promising approach in prostate cancer immunotherapy is vaccination of patients with dendritic cells. Thereby, peptides, recombinant proteins, tumour lysates or messenger RNA have been used to deliver antigens to autologous dendritic cells. Loading of dendritic cells with up to five different peptides derived from multiple proteins expressed in prostate cancer demonstrated that cytotoxic T-cell responses could be elicited in prostate cancer patients. Sipuleucel-T (APC8015), an immunotherapy product consisting of antigen-presenting cells, loaded ex vivo with a recombinant fusion protein consisting of prostatic acid phosphatase linked to granulocytemacrophage colony-stimulating factor, demonstrated in a phase III, placebo-controlled trial an improvement in median time to disease progression. The improvement in overall survival was 4.5 months for sipuleucel-T-treated patients compared with the placebo group.

Although there is a minor increase in overall survival of metastatic prostate cancer patients with some approaches, more effective therapeutic strategies need to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56(2): 106–30

    PubMed  Google Scholar 

  2. Stamey TA, Yang N, Hay AR, et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 1987; 317(15): 909–16

    PubMed  CAS  Google Scholar 

  3. Bilhartz DL, Tindall DJ, Oesterling JE. Prostate-specific antigen and prostatic acid phosphatase: biomolecular and physiologic characteristics. Urology 1991; 38(2): 95–102

    PubMed  CAS  Google Scholar 

  4. Partin AW, Pound CR, Clemens JQ, et al. Serum PSA after anatomic radical prostatectomy: the Johns Hopkins experience after 10 years. Urol Clin North Am 1993; 20(4): 713–25

    PubMed  CAS  Google Scholar 

  5. Gilligan T, Kantoff PW. Chemotherapy for prostate cancer. Urology 2002; 60 (3 Suppl. 1): 94–100

    PubMed  Google Scholar 

  6. Kantoff PW, Block C, Letvak L, et al. 14-Day continuous infusion of mitoxantrone in hormone-refractory metastatic adenocarcinoma of the prostate. Am J Clin Oncol 1993; 16(6): 489–91

    PubMed  CAS  Google Scholar 

  7. Tannock IF, Osoba D, Stockier MR, et al. Chemotherapy with mitoxantrone plus prednisone or prednisone alone for symptomatic hormone-resistant prostate cancer: a Canadian randomized trial with palliative end points. J Clin Oncol 1996; 14(6): 1756–64

    PubMed  CAS  Google Scholar 

  8. Kantoff PW, Halabi S, Conaway M, et al. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the Cancer and Leukemia Group B 9182 Study. J Clin Oncol 1999; 17(8): 2506–13

    PubMed  CAS  Google Scholar 

  9. Garcia P, Braguer D, Carles G, et al. Comparative effects of Taxol and Taxotere on two different human carcinoma cell lines. Cancer Chemother Pharmacol 1994; 34(4): 335–43

    PubMed  CAS  Google Scholar 

  10. Haldar S, Chintapalli J, Croce CM. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res 1996; 56(6): 1253–5

    PubMed  CAS  Google Scholar 

  11. Beer TM, Pierce WC, Lowe BA, et al. Phase II study of weekly docetaxel in symptomatic androgen-independent prostate cancer. Ann Oncol 2001; 12(9): 1273–9

    PubMed  CAS  Google Scholar 

  12. Berry W, Dakhil S, Gregurich MA, et al. Phase II trial of single-agent weekly docetaxel in hormone-refractory, symptomatic, metastatic carcinoma of the prostate. Semin Oncol 2001; 28 (4 Suppl. 15): 8–15

    PubMed  CAS  Google Scholar 

  13. Savarese DM, Halabi S, Hars V, et al. Phase II study of docetaxel, estramustine, and low-dose hydrocortisone in men with hormone-refractory prostate cancer: a final report of CALGB 9780 Cancer and Leukemia Group B. J Clin Oncol 2001; 19(9): 2509–16

    PubMed  CAS  Google Scholar 

  14. Beer TM, Eilers KM, Garzotto M, et al. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J Clin Oncol 2003; 21(1): 123–8

    PubMed  CAS  Google Scholar 

  15. Hainsworth JD, Meluch AA, Spigel DR, et al. Weekly docetaxel/estramustine phosphate in patients with increasing serum prostate-specific antigen levels after primary treatment for prostate cancer: a phase II trial of the Minnie Pearl Cancer Research Network. Clin Genitourin Cancer 2006; 4(4): 287–92

    PubMed  CAS  Google Scholar 

  16. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004; 351(15): 1513–20

    PubMed  CAS  Google Scholar 

  17. Tannock IF, de Wit R, Berry WR, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351(15): 1502–12

    PubMed  CAS  Google Scholar 

  18. Berry DL, Moinpour CM, Jiang CS, et al. Quality of life and pain in advanced stage prostate cancer: results of a Southwest Oncology Group randomized trial comparing docetaxel and estramustine to mitoxantrone and prednisone. J Clin Oncol 2006; 24(18): 2828–35

    PubMed  CAS  Google Scholar 

  19. Cabrespine A, Guy L, Khenifar E, et al. Randomized phase II study comparing paclitaxel and carboplatin versus mitoxantrone in patients with hormone-refractory prostate cancer. Urology 2006; 67(2): 354–9

    PubMed  Google Scholar 

  20. Bollag DM, McQueney PA, Zhu J, et al. Epothilones: a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995; 55(11): 2325–33

    PubMed  CAS  Google Scholar 

  21. Chang YF, Li LL, Wu CW, et al. Paclitaxel-induced apoptosis in human gastric carcinoma cell lines. Cancer 1996; 77(1): 14–8

    PubMed  CAS  Google Scholar 

  22. Oh WK, Manola J, Babcic V, et al. Response to second-line chemotherapy in patients with hormone refractory prostate cancer receiving two sequences of mitoxantrone and taxanes. Urology 2006; 67(6): 1235–40

    PubMed  Google Scholar 

  23. Smaletz O, Galsky M, Scher HI, et al. Pilot study of epothilone B analog (BMS-247550) and estramustine phosphate in patients with progressive metastatic prostate cancer following castration. Ann Oncol 2003; 14(10): 1518–24

    PubMed  CAS  Google Scholar 

  24. Galsky MD, Small EJ, Oh WK, et al. Multi-institutional randomized phase II trial of the epothilone B analog ixabepilone (BMS-247550) with or without estramustine phosphate in patients with progressive castrate metastatic prostate cancer. J Clin Oncol 2005; 23(7): 1439–46

    PubMed  CAS  Google Scholar 

  25. Hussain M, Tangen CM, Lara PN Jr, et al. Ixabepilone (epothilone B analogue BMS-247550) is active in chemotherapy-naive patients with hormone-refractory prostate cancer: a Southwest Oncology Group trial S0111. J Clin Oncol 2005; 23(34): 8724–9

    PubMed  Google Scholar 

  26. Rosenberg JE, Galsky MD, Rohs NC, et al. A retrospective evaluation of second-line chemotherapy response in hormone-refractory prostate carcinoma: second line taxane-based therapy after first-line epothilone-B analog ixabepilone (BMS-247550) therapy. Cancer 2006; 106(1): 58–62

    PubMed  CAS  Google Scholar 

  27. Sternberg CN, Whelan P, Hetherington J, et al. Phase III trial of satraplatin, an oral platinum plus prednisone vs. prednisone alone in patients with hormone-refractory prostate cancer. Oncology 2005; 68(1): 2–9

    PubMed  CAS  Google Scholar 

  28. Latif T, Wood L, Connell C, et al. Phase II study of oral bis (aceto) ammine dichloro (cyclohexamine) platinum (IV) (JM-216, BMS-182751) given daily x 5 in hormone refractory prostate cancer (HRPC). Invest New Drugs 2005; 23(1): 79–84

    PubMed  CAS  Google Scholar 

  29. Veldscholte J, Voorhorst-Ogink MM, Bolt-de Vries J, et al. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta 1990; 1052(1): 187–94

    PubMed  CAS  Google Scholar 

  30. Chang CY, Walther PJ, McDonnell DP. Glucocorticoids manifest androgenic activity in a cell line derived from a metastatic prostate cancer. Cancer Res 2001; 61(24): 8712–7

    PubMed  CAS  Google Scholar 

  31. Srinivas S, Krishnan AV, Colocci N, et al. Phase II study evaluating oral triamcinolone in patients with androgen-independent prostate cancer. Urology 2006; 67(5): 1001–6

    PubMed  Google Scholar 

  32. Kammula US, White DE, Rosenberg SA. Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer. Cancer 1998; 83(4): 797–805

    PubMed  CAS  Google Scholar 

  33. Belldegrun A, Tso CL, Zisman A, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum Gene Ther 2001; 12(8): 883–92

    PubMed  CAS  Google Scholar 

  34. Ko YJ, Bubley GJ, Weber R, et al. Safety, pharmacokinetics, and biological pharmacodynamics of the immunocytokine EMD 273066 (huKS-IL2): results of a phase I trial in patients with prostate cancer. J Immunother 2004; 27(3): 232–9

    PubMed  CAS  Google Scholar 

  35. Small EJ, Reese DM, Urn B, et al. Therapy of advanced prostate cancer with granulocyte macrophage colony-stimulating factor. Clin Cancer Res 1999; 5(7): 1738–44

    PubMed  CAS  Google Scholar 

  36. Rini BI, Weinberg V, Bok R, et al. Prostate-specific antigen kinetics as a measure of the biologic effect of granulocyte-macrophage colony-stimulating factor in patients with serologic progression of prostate cancer. J Clin Oncol 2003; 21(1): 99–105

    PubMed  CAS  Google Scholar 

  37. Rini BI, Fong L, Weinberg V, et al. Clinical and immunological characteristics of patients with serologic progression of prostate cancer achieving long-term disease control with granulo-cyte-macrophage colony-stimulating factor. J Urol 2006; 175(6): 2087–91

    PubMed  Google Scholar 

  38. Schwaab T, Tretter CP, Gibson JJ, et al. Tumor-related immunity in prostate cancer patients treated with human recombinant granulocyte monocyte-colony stimulating factor (GM-CSF). Prostate 2006; 66(6): 667–74

    PubMed  CAS  Google Scholar 

  39. Dreicer R, Klein EA, Elson P, et al. Phase II trial of GM-CSF + thalidomide in patients with androgen-independent metastatic prostate cancer. Urol Oncol 2005; 23(2): 82–6

    PubMed  CAS  Google Scholar 

  40. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sei U S A 1994; 91(9): 4082–5

    Google Scholar 

  41. Figg WD, Dahut W, Duray P, et al. A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin Cancer Res 2001; 7(7): 1888–93

    PubMed  CAS  Google Scholar 

  42. Drake MJ, Robson W, Mehta P, et al. An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer. Br J Cancer 2003; 88(6): 822–7

    PubMed  CAS  Google Scholar 

  43. Higano CS, Vogelzang NJ, Sosman JA, et al. Safety and biological activity of repeated doses of recombinant human Flt3 ligand in patients with bone scan-negative hormone-refractory prostate cancer. Clin Cancer Res 2004; 10(4): 1219–25

    PubMed  CAS  Google Scholar 

  44. Ross JS, Gray KE, Webb IJ, et al. Antibody-based therapeutics: focus on prostate cancer. Cancer Metastasis Rev 2005; 24(4): 521–37

    PubMed  CAS  Google Scholar 

  45. Ziada A, Barqawi A, Glode LM, et al. The use of trastuzumab in the treatment of hormone refractory prostate cancer: phase II trial. Prostate 2004; 60(4): 332–7

    PubMed  CAS  Google Scholar 

  46. Lara PN Jr, Chee KG, Longmate J, et al. Trastuzumab plus docetaxel in HER-2/neu-positive prostate carcinoma: final results from the California Cancer Consortium Screening and Phase II Trial. Cancer 2004; 100(10): 2125–31

    PubMed  CAS  Google Scholar 

  47. Schwaab T, Lewis LD, Cole BF, et al. Phase I pilot trial of the bispecific antibody MDXH210 (anti-Fc gamma RI X anti-HER-2/neu) in patients whose prostate cancer overexpresses HER-2/neu. J Immunother 2001; 24(1): 79–87

    PubMed  CAS  Google Scholar 

  48. Bostwick DG, Pacelli A, Blute M, et al. Prostate specific membrane antigen expression in prostatic intraepithelial neoplasia and adenocarcinoma: a study of 184 cases. Cancer 1998; 82(11): 2256–61

    PubMed  CAS  Google Scholar 

  49. Bander NH, Milowsky MI, Nanus DM, et al. Phase I trial of 1771utetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 2005; 23(21): 4591–601

    PubMed  CAS  Google Scholar 

  50. Milowsky MI, Nanus DM, Kostakoglu L, et al. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 2004; 22(13): 2522–31

    PubMed  CAS  Google Scholar 

  51. Morris MJ, Divgi CR, Pandit-Taskar N, et al. Pilot trial of unlabeled and indium-111-labeled anti-prostate-specific membrane antigen antibody J591 for castrate metastatic prostate cancer. Clin Cancer Res 2005; 11(20): 7454–61

    PubMed  CAS  Google Scholar 

  52. Wolf P, Gierschner D, Buhler P, et al. A recombinant PSMA-specific single-chain immunotoxin has potent and selective toxicity against prostate cancer cells. Cancer Immunol Immunother 2006 Nov; 55(11): 1367–73

    PubMed  CAS  Google Scholar 

  53. Roos AK, Moreno S, Leder C, et al. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol Ther 2006; 13(2): 320–7

    PubMed  CAS  Google Scholar 

  54. Kim JJ, Trivedi NN, Wilson DM, et al. Molecular and immunological analysis of genetic prostate specific antigen (PSA) vaccine. Oncogene 1998; 17: 3125–35

    PubMed  CAS  Google Scholar 

  55. Kim JJ, Yang JS, Nottingham LK, et al. Induction of immune responses and safety profiles in rhesus macaques immunized with a DNA vaccine expressing human prostate specific antigen. Oncogene 2001; 20(33): 4497–506

    PubMed  CAS  Google Scholar 

  56. Marshall DJ, San Mateo LR, Rudnick KA, et al. Induction of Th1-type immunity and tumor protection with a prostate-specific antigen DNA vaccine. Cancer Immunol Immunother 2005; 54(11): 1082–94

    PubMed  CAS  Google Scholar 

  57. Marshall DJ, Rudnick KA, McCarthy SG, et al. Interleukin-18 enhances Th1 immunity and tumor protection of a DNA vaccine. Vaccine 2006; 24(3): 244–53

    PubMed  CAS  Google Scholar 

  58. Roos AK, Pavlenko M, Charo J, et al. Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate 2005; 62(3): 217–23

    PubMed  CAS  Google Scholar 

  59. Pavlenko M, Roos AK, Lundqvist A, et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 2004; 91(4): 688–94

    PubMed  CAS  Google Scholar 

  60. Miller AM, Ozenci V, Kiessling R, et al. Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J Immunother 2005; 28(4): 389–95

    PubMed  CAS  Google Scholar 

  61. Johnson LE, Frye TP, Arnot AR, et al. Safety and immunological efficacy of a prostate cancer plasmid DNA vaccine encoding prostatic acid phosphatase (PAP). Vaccine 2006; 24(3): 293–303

    PubMed  CAS  Google Scholar 

  62. Zlotocha S, Staab MJ, Horvath D, et al. A phase I study of a DNA vaccine targeting prostatic acid phosphatase in patients with stage DO prostate cancer. Clin Genitourin Cancer 2005; 4(3): 215–8

    PubMed  CAS  Google Scholar 

  63. Mincheff M, Tchakarov S, Zoubak S, et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol 2000; 38(2): 208–17

    PubMed  CAS  Google Scholar 

  64. Todorova K, Ignatova I, Tchakarov S, et al. Humoral immune response in prostate cancer patients after immunization with gene-based vaccines that encode for a protein that is proteasomally degraded. Cancer Immun 2005; 5: 1–8

    PubMed  Google Scholar 

  65. Simons JW, Mikhak B, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony- stimulating factor using ex vivo gene transfer. Cancer Res 1999; 59: 5160–8

    PubMed  CAS  Google Scholar 

  66. Hrouda D, Todryk SM, Perry MJ, et al. Allogeneic whole-tumour cell vaccination in the rat model of prostate cancer. BJU Int 2000; 86(6): 742–8

    PubMed  CAS  Google Scholar 

  67. Eaton JD, Perry MJ, Nicholson S, et al. Allogeneic whole-cell vaccine: a phase I/II study in men with hormone-refractory prostate cancer. BJU Int 2002; 89(1): 19–26

    PubMed  CAS  Google Scholar 

  68. Simons JW, Carducci MA, Mikhak B, et al. Phase I/II trial of an allogeneic cellular immunotherapy in hormone-naive prostate cancer. Clin Cancer Res 2006; 12 (11 Pt 1): 3394–401

    PubMed  CAS  Google Scholar 

  69. Michael A, Ball G, Quatan N, et al. Delayed disease progression after allogeneic cell vaccination in hormone-resistant prostate cancer and correlation with immunologic variables. Clin Cancer Res 2005; 11(12): 4469–78

    PubMed  CAS  Google Scholar 

  70. Kass E, Schlom J, Thompson J, et al. Induction of protective host immunity to carcinoembryonic antigen (CEA), a self-antigen in CEA transgenic mice, by immunizing with a recombinant vaccinia-CEA virus. Cancer Res 1999; 59(3): 676–83

    PubMed  CAS  Google Scholar 

  71. Moss B. Vaccinia virus: a tool for research and vaccine development. Science 1991; 252(5013): 1662–7

    PubMed  CAS  Google Scholar 

  72. Hodge JW, Schlom J, Donohue SJ, et al. A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a non-human primate. Int J Cancer 1995; 63: 231–7

    PubMed  CAS  Google Scholar 

  73. Sanda MG, Smith DC, Charles LG, et al. Recombinant vaccinia-PSA (Prostvac) can induce a prostate-specific immune response in androgen-modulated human prostate cancer. Urology 1999; 53: 260–6

    PubMed  CAS  Google Scholar 

  74. Gulley J, Chen AP, Dahut W, et al. Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 2002; 53(2): 109–17

    PubMed  CAS  Google Scholar 

  75. Eder JP, Kantoff PW, Roper K, et al. A phase I trial of a recombinant vaccinia virus expressing prostate-specific antigen in advanced prostate cancer. Clin Cancer Res 2000; 6(5): 1632–8

    PubMed  CAS  Google Scholar 

  76. Chen TT, Tao MH, Levy R. Idiotype-cytokine fusion proteins as cancer vaccines: relative efficacy of IL-2, IL-4, and granulo-cyte-macrophage colony-stimulating factor. J Immunol 1994; 153(10): 4775–87

    PubMed  CAS  Google Scholar 

  77. Disis ML, Bernhard H, Shiota FM, et al. Granulocyte-macro-phage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood 1996; 88(1): 202–10

    PubMed  CAS  Google Scholar 

  78. Tsang KY, Zaremba S, Nieroda CA, et al. Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 1995; 87: 982–90

    PubMed  CAS  Google Scholar 

  79. Kundig TM, Kalberer CP, Hengartner H, et al. Vaccination with two different vaccinia recombinant viruses: long-term inhibition of secondary vaccination. Vaccine 1993; 11(11): 1154–8

    PubMed  CAS  Google Scholar 

  80. Kaufman HL, Wang W, Manola J, et al. Phase II randomized study of vaccine treatment of advanced prostate cancer (E7897): a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 2004; 22(11): 2122–32

    PubMed  CAS  Google Scholar 

  81. Dipaola R, Plante M, Kaufman H, et al. A phase I trial of Pox PSA vaccines (PROSTVAC(R)-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOMtrade mark) in patients with prostate cancer. J Transi Med 2006; 4: 1–5

    CAS  Google Scholar 

  82. Gulley JL, Arlen PM, Bastian A, et al. Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 2005; 11(9): 3353–62

    PubMed  CAS  Google Scholar 

  83. Arlen PM, Gulley JL, Parker C, et al. A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res 2006; 12(4): 1260–9

    PubMed  CAS  Google Scholar 

  84. Rodriguez R, Schuur ER, Lim HY, et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57(13): 2559–63

    PubMed  CAS  Google Scholar 

  85. DeWeese TL, van der Poel H, Li S, et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res 2001; 61(20): 7464–72

    PubMed  CAS  Google Scholar 

  86. Ilan Y, Droguett G, Chowdhury NR, et al. Insertion of the adenoviral E3 region into a recombinant viral vector prevents antiviral humoral and cellular immune responses and permits long-term gene expression. Proc Natl Acad Sci U S A 1997; 94(6): 2587–92

    PubMed  CAS  Google Scholar 

  87. Yu DC, Chen Y, Seng M, et al. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59(17): 4200–3

    PubMed  CAS  Google Scholar 

  88. Yu DC, Chen Y, Dilley J, et al. Antitumor synergy of CV787, a prostate cancer-specific adenovirus, and paclitaxel and docetaxel. Cancer Res 2001; 61(2): 517–25

    PubMed  CAS  Google Scholar 

  89. Small EJ, Carducci MA, Burke JM, et al. A phase I trial of intravenous CG7870, a replication-selective, prostate-specific antigen-targeted oncolytic adenovirus, for the treatment of hormone-refractory, metastatic prostate cancer. Mol Ther 2006; 14(1): 107–17

    PubMed  CAS  Google Scholar 

  90. Loimas S, Toppinen MR, Visakorpi T, et al. Human prostate carcinoma cells as targets for herpes simplex virus thymidine kinase-mediated suicide gene therapy. Cancer Gene Ther 2001; 8(2): 137–44

    PubMed  CAS  Google Scholar 

  91. Cheon J, Kim HK, Moon DG, et al. Adenovirus-mediated suicide-gene therapy using the herpes simplex virus thymidine kinase gene in cell and animal models of human prostate cancer: changes in tumour cell proliferative activity. BJU Int 2000; 85(6): 759–66

    PubMed  CAS  Google Scholar 

  92. Chhikara M, Huang H, Vlachaki MT, et al. Enhanced therapeutic effect of HSV-tk+GCV gene therapy and ionizing radiation for prostate cancer. Mol Ther 2001; 3(4): 536–42

    PubMed  CAS  Google Scholar 

  93. Eastham JA, Chen SH, Sehgal I, et al. Prostate cancer gene therapy: herpes simplex virus thymidine kinase gene transduction followed by ganciclovir in mouse and human prostate cancer models. Hum Gene Ther 1996; 7(4): 515–23

    PubMed  CAS  Google Scholar 

  94. Herman JR, Adler HL, Aguilar-Cordova E, et al. In situ gene therapy for adenocarcinoma of the prostate: a phase I clinical trial. Hum Gene Ther 1999; 10(7): 1239–49

    PubMed  CAS  Google Scholar 

  95. Shalev M, Kadmon D, Teh BS, et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J Urol 2000; 163(6): 1747–50

    PubMed  CAS  Google Scholar 

  96. Teh BS, Aguilar-Cordova E, Kernen K, et al. Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer: a preliminary report. Int J Radiat Oncol Biol Phys 2001; 51(3): 605–13

    PubMed  CAS  Google Scholar 

  97. Teh BS, Ayala G, Aguilar L, et al. Phase I-II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer-interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys 2004; 58(5): 1520–9

    PubMed  CAS  Google Scholar 

  98. van der Linden RR, Haagmans BL, Mongiat-Artus P, et al. Virus specific immune responses after human neoadjuvant adenovirus-mediated suicide gene therapy for prostate cancer. Eur Urol 2005; 48(1): 153–61

    PubMed  Google Scholar 

  99. Satoh T, Teh BS, Timme TL, et al. Enhanced systemic T-cell activation after in situ gene therapy with radiotherapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 2004; 59(2): 562–71

    PubMed  CAS  Google Scholar 

  100. Fujita T, Teh BS, Timme TL, et al. Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 2006; 65(1): 84–90

    PubMed  CAS  Google Scholar 

  101. Ayala G, Satoh T, Li R, et al. Biological response determinants in HSV-tk + ganciclovir gene therapy for prostate cancer. Mol Ther 2006; 13(4): 716–28

    PubMed  CAS  Google Scholar 

  102. Freytag SO, Khil M, Stricker H, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62(17): 4968–76

    PubMed  CAS  Google Scholar 

  103. Freytag SO, Stricker H, Pegg J, et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformai radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63(21): 7497–506

    PubMed  CAS  Google Scholar 

  104. Trudel S, Trachtenberg J, Toi A, et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther 2003; 10(10): 755–63

    PubMed  CAS  Google Scholar 

  105. Ridgway D. The first 1000 dendritic cell vaccinees. Cancer Invest 2003; 21(6): 873–86

    PubMed  Google Scholar 

  106. Murphy G, Tjoa B, Radge H, et al. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 1996; 29: 371–80

    PubMed  CAS  Google Scholar 

  107. Murphy GP, Tjoa BA, Simmons SJ, et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: a phase II prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate 1999; 38: 73–8

    PubMed  CAS  Google Scholar 

  108. Murphy GP, Tjoa BA, Simmons SJ, et al. Higher-dose and less frequent dendritic cell infusions with PSMA peptides in hormone-refractory metastatic prostate cancer patients. Prostate 2000; 43(1): 59–62

    PubMed  CAS  Google Scholar 

  109. Tjoa BA, Erickson SJ, Bowes VA, et al. Follow-up evaluation of prostate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate 1997; 32: 272–8

    PubMed  CAS  Google Scholar 

  110. Tjoa BA, Simmons SJ, Bowes VA, et al. Evaluation of phase I/II clinical trials in prostate cancer with dendritic cells and PSMA peptides. Prostate 1998; 36: 39–44

    PubMed  CAS  Google Scholar 

  111. Tjoa BA, Simmons SJ, Elgamal A, et al. Follow-up evaluation of a phase II prostate cancer vaccine trial. Prostate 1999; 40(2): 125–9

    PubMed  CAS  Google Scholar 

  112. Salgaller ML, Lodge P, McLean JG, et al. Report of immune monitoring of prostate cancer patients undergoing T-cell therapy using dendritic cells pulsed with HLA-A2-specific peptides from prostate-specific membrane antigen (PSMA). Prostate 1998; 35: 144–51

    PubMed  CAS  Google Scholar 

  113. Simmons SJ, Tjoa BA, Rogers M, et al. GM-CSF as a systemic adjuvant in a phase II prostate cancer vaccine trial. Prostate 1999; 39(4): 291–7

    PubMed  CAS  Google Scholar 

  114. Perambakam S, Hallmeyer S, Reddy S, et al. Induction of specific T cell immunity in patients with prostate cancer by vaccination with PSA146-154 peptide. Cancer Immunol Im-munother 2006; 55(9): 1033–42

    CAS  Google Scholar 

  115. Fuessel S, Meye A, Schmitz M, et al. Vaccination of hormone-refractory prostate cancer patients with peptide cocktail-loaded dendritic cells: results of a phase I clinical trial. Prostate 2006; 66(8): 811–21

    PubMed  CAS  Google Scholar 

  116. Waeckerle-Men Y, Uetz-von Allmen E, Fopp M, et al. Dendritic cell-based multi-epitope immunotherapy of hormone-refractory prostate carcinoma. Cancer Immunol Immunother 2006 Dec; 55(12): 1524–33

    PubMed  Google Scholar 

  117. Small EJ, Fratesi P, Reese DM, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol 2000; 18(23): 3894–903

    PubMed  CAS  Google Scholar 

  118. Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24(19): 3089–94

    PubMed  CAS  Google Scholar 

  119. Burch PA, Breen JK, Buckner JC, et al. Priming tissue-specific cellular immunity in a phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res 2000; 6(6): 2175–82

    PubMed  CAS  Google Scholar 

  120. Rini BI, Weinberg V, Fong L, et al. Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (Provenge) plus bevacizumab in patients with serologie progression of prostate cancer after definitive local therapy. Cancer 2006; 107(1): 67–74

    PubMed  CAS  Google Scholar 

  121. Barrou B, Benoit G, Ouldkaci M, et al. Vaccination of pros-tatectomized prostate cancer patients in biochemical relapse, with autologous dendritic cells pulsed with recombinant human PSA. Cancer Immunol Immunother 2004; 53(5): 453–60

    PubMed  Google Scholar 

  122. Fong L, Brockstedt D, Benike C, et al. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol 2001; 166: 4254–9

    PubMed  CAS  Google Scholar 

  123. Pandha HS, John RJ, Hutchinson J, et al. Dendritic cell immunotherapy for urological cancers using cryopreserved al-logeneic tumour lysate-pulsed cells: a phase I/II study. BJU Int 2004; 94(3): 412–8

    PubMed  CAS  Google Scholar 

  124. Su Z, Dannull J, Yang BK, et al. Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 2005; 174(6): 3798–807

    PubMed  CAS  Google Scholar 

  125. Mu LJ, Kyte JA, Kvalheim G, et al. Immunotherapy with allotumour mRNA-transfected dendritic cells in androgenresistant prostate cancer patients. Br J Cancer 2005; 93(7): 749–56

    PubMed  CAS  Google Scholar 

  126. Dhodapkar MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–8

    PubMed  CAS  Google Scholar 

  127. Probst HC, Lagnel J, Kollias G, et al. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 2003; 18(5): 713–20

    PubMed  CAS  Google Scholar 

  128. Yee C, Thompson JA, Byrd D, et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 2002; 99(25): 16168–73

    PubMed  CAS  Google Scholar 

  129. Scandella E, Men Y, Gillessen S, et al. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of mono-cyte-derived dendritic cells. Blood 2002; 100: 1354–61

    PubMed  CAS  Google Scholar 

  130. Scandella E, Men Y, Legier D, et al. CCL19/CCL21 triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood 2004; 103: 1595–601

    PubMed  CAS  Google Scholar 

  131. Legier DF, Krause P, Scandella E, et al. Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J Immunol 2006; 176(2): 966–73

    Google Scholar 

  132. Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109(3): 409–17

    PubMed  CAS  Google Scholar 

  133. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33(5): 787–91

    PubMed  CAS  Google Scholar 

  134. Nair SK, Heiser A, Boczkowski D, et al. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6(9): 1011–7

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Wilhelm Sander-Foundation. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Basler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basler, M., Groettrup, M. Advances in Prostate Cancer Immunotherapies. Drugs Aging 24, 197–221 (2007). https://doi.org/10.2165/00002512-200724030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200724030-00003

Keywords

Navigation