Skip to main content

Advertisement

Log in

Homocysteine Lowering with Folic Acid and Vitamin B Supplements

Effects on Cardiovascular Disease in Older Adults

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is the leading cause of death in older men and women and contributes significantly to morbidity in later life. Folic acid and other vitamin B deficiencies and elevated total plasma homocysteine levels are associated with increased cardiovascular risk in geriatric patients, but recent studies have questioned the importance of these risk factors in older people. Data on the effects of homocysteine-lowering therapy (e.g. folic acid and vitamin B supplements) on surrogate CVD endpoints, such as atherosclerotic progression, endothelial function, inflammation and hypercoagulation, are conflicting. Findings from randomised clinical trials using clinical CVD outcomes show that folic acid and vitamin B supplements may not provide cardiovascular protection. Furthermore, these findings raise questions about whether the combination of folic acid and B vitamins may actually be harmful. Other large randomised clinical trials are underway to help clarify the role of folic acid and vitamin B supplements in CVD prevention in older people. Data to date do not support use of homocysteine-lowering therapies in either middle-aged or older adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

References

  1. Thom T, Haase N, Rosamond W, et al. Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee [published erratum appears in Circulation 2006; 113 (14): e696]. Circulation 2006; 113(6): e85–151

    Article  PubMed  Google Scholar 

  2. Stein JH, Carlsson CM, Papcke-Benson K, et al. The effects of lipid-lowering and antioxidant vitamin therapies on flow-mediated vasodilation of the brachial artery in older adults with hypercholesterolemia. J Am Coll Cardiol 2001; 38: 1806–13

    Article  PubMed  CAS  Google Scholar 

  3. Carlsson CM, Pharo LM, Aeschlimann SE, et al. Effects of multivitamins and low-dose folic acid supplements on flow-mediated vasodilation and plasma homocysteine levels in older adults. Am Heart J 2004; 148: E11

    Article  PubMed  Google Scholar 

  4. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002; 288: 2015–22

    Article  Google Scholar 

  5. Bots ML, Launer LJ, Lindemans J, et al. Homocysteine and short-term risk of myocardial infarction and stroke in the elderly: the Rotterdam Study. Arch Intern Med 1999; 159: 38–44

    Article  PubMed  CAS  Google Scholar 

  6. Whincup PH, Refsum H, Perry IJ, et al. Serum total homocysteine and coronary heart disease: prospective study in middle aged men. Heart 1999; 82: 448–54

    PubMed  CAS  Google Scholar 

  7. Arnesen E, Refsum H, Bonaa KH, et al. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24: 704–9

    Article  PubMed  CAS  Google Scholar 

  8. Stehouwer CD, Weijenberg MP, van den Berg M, et al. Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a 10-year follow-up. Arterioscler Thromb Vasc Biol 1998; 18: 1895–901

    Article  PubMed  CAS  Google Scholar 

  9. Ubbink JB, Fehily AM, Pickering J, et al. Homocysteine and ischaemic heart disease in the Caerphilly cohort. Atherosclerosis 1998; 140: 349–56

    Article  PubMed  CAS  Google Scholar 

  10. Wald NJ, Watt HC, Law MR, et al. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998; 158: 862–7

    Article  PubMed  CAS  Google Scholar 

  11. Aronow WS, Ahn C, Schoenfeld MR. Association between plasma homocysteine and extracranial carotid arterial disease in older persons. Am J Cardiol 1997; 79: 1432–3

    Article  PubMed  CAS  Google Scholar 

  12. Aronow WS, Ahn C, Gutstein H. Increased plasma homocysteine is an independent predictor of new atherothrombotic brain infarction in older persons. Am J Cardiol 2000; 86: 585–6, A10

    Article  PubMed  CAS  Google Scholar 

  13. Aronow WS, Ahn C. Increased plasma homocysteine is an independent predictor of new coronary events in older persons. Am J Cardiol 2000; 86: 346–7

    Article  PubMed  CAS  Google Scholar 

  14. Aronow WS, Ahn C. Association between plasma homocysteine and peripheral arterial disease in older persons. Coron Artery Dis 1998; 9: 49–50

    Article  PubMed  CAS  Google Scholar 

  15. Moat SJ, Lang D, McDowell IF, et al. Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem 2004; 15: 64–79

    Article  PubMed  CAS  Google Scholar 

  16. Mattson MP, Kruman II, Duan W. Folic acid and homocysteine in age-related disease. Ageing Res Rev 2002; 1: 95–111

    Article  PubMed  CAS  Google Scholar 

  17. Lucock M. Is folic acid the ultimate functional food component for disease prevention? BMJ 2004; 328: 211–4

    Article  PubMed  CAS  Google Scholar 

  18. Lucock MD, Wild J, Smithells RW, et al. In vivo characterization of the absorption and biotransformation of pteroylmonoglutamic acid in man: a model for future studies. Biochem Med Metab Biol 1989; 42: 30–42

    Article  PubMed  CAS  Google Scholar 

  19. Kelly P, McPartlin J, Goggins M, et al. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr 1997; 65: 1790–5

    PubMed  CAS  Google Scholar 

  20. Dierkes J, Westphal S. Effect of drugs on homocysteine concentrations. Semin Vasc Med 2005; 5: 124–39

    Article  PubMed  Google Scholar 

  21. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999 Jul 31; 354(9176): 407–13

    Article  PubMed  CAS  Google Scholar 

  22. Quinn K, Basu TK. Folate and vitamin B12 status of the elderly. Eur J Clin Nutr 1996; 50: 340–2

    PubMed  CAS  Google Scholar 

  23. Russell RM, Krasinski SD, Samloff IM, et al. Folic acid malabsorption in atrophic gastritis: possible compensation by bacterial folate synthesis. Gastroenterology 1986; 91: 1476–82

    PubMed  CAS  Google Scholar 

  24. Krasinski SD, Russell RM, Samloff IM, et al. Fundic atrophic gastritis in an elderly population: effect on hemoglobin and several serum nutritional indicators. J Am Geriatr Soc 1986; 34: 800–6

    PubMed  CAS  Google Scholar 

  25. Selhub J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J Nutr Health Aging 2002; 6: 39–42

    PubMed  CAS  Google Scholar 

  26. Bostom AG, Silbershatz H, Rosenberg IH, et al. Nonfasting plasma total homocysteine levels and all-cause and cardiovascular disease mortality in elderly Framingham men and women. Arch Intern Med 1999; 159: 1077–80

    Article  PubMed  CAS  Google Scholar 

  27. Selhub J, Jacques PF, Wilson PW, et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270: 2693–8

    Article  PubMed  CAS  Google Scholar 

  28. Saw SM, Yuan JM, Ong CN, et al. Genetic, dietary, and other lifestyle determinants of plasma homocysteine concentrations in middle-aged and older Chinese men and women in Singapore. Am J Clin Nutr 2001; 73: 232–9

    PubMed  CAS  Google Scholar 

  29. Zamboni M, Di Francesco V, Zoico E, et al. Homocysteine and life-style in the elderly. Aging (Milan) 2001; 13: 437–42

    CAS  Google Scholar 

  30. Hernanz A, Fernandez-Vivancos E, Montiel C, et al. Changes in the intracellular homocysteine and glutathione content associated with aging. Life Sci 2000; 67: 1317–24

    Article  PubMed  CAS  Google Scholar 

  31. Kullo IJ, Ballantyne CM. Conditional risk factors for atherosclerosis. Mayo Clin Proc 2005; 80: 219–30

    Article  PubMed  Google Scholar 

  32. Ortega RM, Jimenez A, Andres P, et al. Homocysteine levels in elderly Spanish people: influence of pyridoxine, vitamin B12 and folic acid intakes. J Nutr Health Aging 2002; 6: 69–71

    PubMed  CAS  Google Scholar 

  33. Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 1985; 37: 1–31

    PubMed  CAS  Google Scholar 

  34. Wang J, Dudman NP, Wilcken DE, et al. Homocysteine catabolism: levels of 3 enzymes in cultured human vascular endothelium and their relevance to vascular disease. Atherosclerosis 1992; 97: 97–106

    Article  PubMed  CAS  Google Scholar 

  35. Dekou V, Whincup P, Papacosta O, et al. The effect of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate reductase gene on homocysteine levels in elderly men and women from the British regional heart study. Atherosclerosis 2001; 154: 659–66

    Article  PubMed  CAS  Google Scholar 

  36. Russo GT, Friso S, Jacques PF, et al. Age and gender affect the relation between methylenetetrahydrofolate reductase C677T genotype and fasting plasma homocysteine concentrations in the Framingham Offspring Study Cohort. J Nutr 2003; 133: 3416–21

    PubMed  CAS  Google Scholar 

  37. Jacques PF, Selhub J, Bostom AG, et al. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999; 340: 1449–54

    Article  PubMed  CAS  Google Scholar 

  38. Bostom AG, Selhub J, Jacques PF, et al. Power shortage: clinical trials testing the “homocysteine hypothesis” against a background of folic acid-fortified cereal grain flour. Ann Intern Med 2001; 135: 133–7

    PubMed  CAS  Google Scholar 

  39. Carlsson CM, Stein JH. Clinical trials testing the homocysteine hypothesis. Ann Intern Med 2002; 137: 295–6

    PubMed  Google Scholar 

  40. Wilson KM, Lentz SR. Mechanisms of the atherogenic effects of elevated homocysteine in experimental models. Semin Vasc Med 2005; 5: 163–71

    Article  PubMed  Google Scholar 

  41. Tsai JC, Perrella MA, Yoshizumi M, et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A 1994; 91: 6369–73

    Article  PubMed  CAS  Google Scholar 

  42. Tawakol A, Omland T, Gerhard M, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997; 95: 1119–21

    Article  PubMed  CAS  Google Scholar 

  43. Smulders YM, Stehouwer CD. Folate metabolism and cardiovascular disease. Semin Vasc Med 2005; 5: 87–97

    Article  PubMed  Google Scholar 

  44. Chen Z, Karaplis AC, Ackerman SL, et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 2001; 10: 433–43

    Article  PubMed  CAS  Google Scholar 

  45. Woo KS, Chook P, Lolin YI, et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation 1997; 96: 2542–4

    Article  PubMed  CAS  Google Scholar 

  46. Gori AM, Corsi AM, Fedi S, et al. A proinflammatory state is associated with hyperhomocysteinemia in the elderly. Am J Clin Nutr 2005; 82: 335–41

    PubMed  CAS  Google Scholar 

  47. Woo CW, Siow YL, Pierce GN, et al. Hyperhomocysteinemia induces hepatic cholesterol biosynthesis and lipid accumulation via activation of transcription factors. Am J Physiol Endocrinol Metab 2005; 288: E1002–10

    Article  PubMed  CAS  Google Scholar 

  48. Aguilar B, Rojas JC, Collados MT. Metabolism of homocysteine and its relationship with cardiovascular disease. J Thromb Thrombolysis 2004; 18: 75–87

    Article  PubMed  CAS  Google Scholar 

  49. Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med 2002; 7: 5–11

    Article  PubMed  Google Scholar 

  50. Laukkanen MO, Mannermaa S, Hiltunen MO, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler Thromb Vasc Biol 1999; 19: 2171–8

    Article  PubMed  CAS  Google Scholar 

  51. Zairis MN, Ambrose JA, Manousakis SJ, et al. The impact of plasma levels of C-reactive protein, lipoprotein (a) and homocysteine on the long-term prognosis after successful coronary stenting: the Global Evaluation of New Events and Restenosis after Stent Implantation study. J Am Coll Cardiol 2002; 40: 1375–82

    Article  PubMed  CAS  Google Scholar 

  52. Hodish I, Matetzky S, Sela BA, et al. Effect of elevated homocysteine levels on clinical restenosis following percutaneous coronary intervention. Cardiology 2002; 97: 214–7

    Article  PubMed  CAS  Google Scholar 

  53. Durga J, Verhoef P, Bots ML, et al. Homocysteine and carotid intima-media thickness: a critical appraisal of the evidence. Atherosclerosis 2004; 176: 1–19

    Article  PubMed  CAS  Google Scholar 

  54. Chao CL, Kuo TL, Lee YT. Effects of methionine-induced hyperhomocysteinemia on endothelium-dependent vasodilation and oxidative status in healthy adults. Circulation 2000; 101: 485–90

    Article  PubMed  CAS  Google Scholar 

  55. Chen P, Poddar R, Tipa EV, et al. Homocysteine metabolism in cardiovascular cells and tissues: implications for hyperhomocysteinemia and cardiovascular disease. Adv Enzyme Regul 1999; 39: 93–109

    Article  PubMed  CAS  Google Scholar 

  56. James SJ, Melnyk S, Pogribna M, et al. Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J Nutr 2002; 132 (8 Suppl.): 2361S–6S

    PubMed  CAS  Google Scholar 

  57. Chambers JC, McGregor A, Jean-Marie J, et al. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 1999; 99: 1156–60

    Article  PubMed  CAS  Google Scholar 

  58. Shai I, Stampfer MJ, Ma J, et al. Homocysteine as a risk factor for coronary heart disease and its association with inflammatory biomarkers, lipids and dietary factors. Atherosclerosis 2004; 177: 375–81

    Article  PubMed  CAS  Google Scholar 

  59. Stanger O, Herrmann W, Pietrzik K, et al. DACH-LIGA homocystein (German, Austrian and Swiss Homocysteine Society): consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med 2003; 41: 1392–403

    PubMed  CAS  Google Scholar 

  60. Jacques PF, Bostom AG, Wilson PW, et al. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Am J Clin Nutr 2001; 73: 613–21

    PubMed  CAS  Google Scholar 

  61. Kario K, Duell PB, Matsuo T, et al. High plasma homocyst(e)ine levels in elderly Japanese patients are associated with increased cardiovascular disease risk independently from markers of coagulation activation and endothelial cell damage. Atherosclerosis 2001; 157: 441–9

    Article  PubMed  CAS  Google Scholar 

  62. Vasan RS, Beiser A, D’Agostino RB, et al. Plasma homocysteine and risk for congestive heart failure in adults without prior myocardial infarction. JAMA 2003; 289: 1251–7

    Article  PubMed  CAS  Google Scholar 

  63. Matetzky S, Freimark D, Ben-Ami S, et al. Association of elevated homocysteine levels with a higher risk of recurrent coronary events and mortality in patients with acute myocardial infarction. Arch Intern Med 2003; 163: 1933–7

    Article  PubMed  CAS  Google Scholar 

  64. Boushey CJ, Beresford SA, Omenn GS, et al. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 1995; 274: 1049–57

    Article  PubMed  CAS  Google Scholar 

  65. Sacco RL, Anand K, Lee HS, et al. Homocysteine and the risk of ischemic stroke in a triethnic cohort: the NOrthern MAnhattan Study. Stroke 2004; 35: 2263–9

    Article  PubMed  CAS  Google Scholar 

  66. Klerk M, Verhoef P, Clarke R, et al. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 2002; 288: 2023–31

    Article  PubMed  CAS  Google Scholar 

  67. McKay DL, Perrone G, Rasmussen H, et al. Multivitamin/mineral supplementation improves plasma B-vitamin status and homocysteine concentration in healthy older adults consuming a folate-fortified diet. J Nutr 2000; 130: 3090–6

    PubMed  CAS  Google Scholar 

  68. McKinley MC, McNulty H, McPartlin J, et al. Low-dose vitamin B6 effectively lowers fasting plasma homocysteine in healthy elderly persons who are folate and riboflavin replete. Am J Clin Nutr 2001; 73: 759–64

    PubMed  CAS  Google Scholar 

  69. Rydlewicz A, Simpson JA, Taylor RJ, et al. The effect of folic acid supplementation on plasma homocysteine in an elderly population. QJM 2002; 95: 27–35

    Article  PubMed  CAS  Google Scholar 

  70. Henning BF, Tepel M, Riezler R, et al. Long-term effects of vitamin B12, folate, and vitamin B6 supplements in elderly people with normal serum vitamin B12 concentrations. Gerontology 2001; 47: 30–5

    Article  PubMed  CAS  Google Scholar 

  71. Homocysteine Lowering Trialists’ Collaboration. Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr 2005; 82: 806–12

    Google Scholar 

  72. Till U, Rohl P, Jentsch A, et al. Decrease of carotid intima-media thickness in patients at risk to cerebral ischemia after supplementation with folic acid, vitamins B6 and B12. Atherosclerosis 2005; 181: 131–5

    Article  PubMed  CAS  Google Scholar 

  73. Schnyder G, Roffi M, Pin R, et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2001; 345: 1593–600

    Article  PubMed  CAS  Google Scholar 

  74. Lange H, Suryapranata H, De Luca G, et al. Folate therapy and in-stent restenosis after coronary stenting. N Engl J Med 2004; 350: 2673–81

    Article  PubMed  CAS  Google Scholar 

  75. Woo KS, Chook P, Lolin YI, et al. Folic acid improves arterial endothelial function in adults with hyperhomocystinemia. J Am Coll Cardiol 1999; 34: 2002–6

    Article  PubMed  CAS  Google Scholar 

  76. Bellamy MF, McDowell IF, Ramsey MW, et al. Oral folate enhances endothelial function in hyperhomocysteinaemic subjects. Eur J Clin Invest 1999; 29: 659–62

    Article  PubMed  CAS  Google Scholar 

  77. Title LM, Cummings PM, Giddens K, et al. Effect of folic acid and antioxidant vitamins on endothelial dysfunction in patients with coronary artery disease. J Am Coll Cardiol 2000; 36: 758–65

    Article  PubMed  CAS  Google Scholar 

  78. Chambers JC, Ueland PM, Obeid OA, et al. Improved vascular endothelial function after oral B vitamins: an effect mediated through reduced concentrations of free plasma homocysteine. Circulation 2000; 102: 2479–83

    Article  PubMed  CAS  Google Scholar 

  79. Doshi SN, Naka KK, Payne N, et al. Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. Clin Sci (Lond) 2001; 101: 629–35

    Article  CAS  Google Scholar 

  80. Woo KS, Chook P, Chan LL, et al. Long-term improvement in homocysteine levels and arterial endothelial function after 1-year folic acid supplementation. Am J Med 2002; 112: 535–9

    Article  PubMed  CAS  Google Scholar 

  81. Verhaar MC, Stroes E, Rabelink TJ. Folates and cardiovascular disease. Arterioscler Thromb Vasc Biol 2002; 22: 6–13

    Article  PubMed  CAS  Google Scholar 

  82. Neunteufl T, Heher S, Katzenschlager R, et al. Late prognostic value of flow-mediated dilation in the brachial artery of patients with chest pain. Am J Cardiol 2000; 86: 207–10

    Article  PubMed  CAS  Google Scholar 

  83. van Dijk RA, Rauwerda JA, Steyn M, et al. Long-term homocysteine-lowering treatment with folic acid plus pyridoxine is associated with decreased blood pressure but not with improved brachial artery endothelium-dependent vasodilation or carotid artery stiffness: a 2-year, randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol 2001; 21: 2072–9

    Article  PubMed  Google Scholar 

  84. Dusitanond P, Eikelboom JW, Hankey GJ, et al. Homocysteine-lowering treatment with folic acid, cobalamin, and pyridoxine does not reduce blood markers of inflammation, endothelial dysfunction, or hypercoagulability in patients with previous transient ischemic attack or stroke: a randomized substudy of the VITATOPS Trial. Stroke 2005; 36: 144–6

    Article  PubMed  CAS  Google Scholar 

  85. Manson JE, Hsia J, Johnson KC, et al. Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003; 349: 523–34

    Article  PubMed  CAS  Google Scholar 

  86. Baker F, Picton D, Blackwood S, et al. Blinded comparison of folic acid and placebo in patients with ischemic heart disease: an outcome trial [abstract]. Circulation 2002; 106Suppl. II: II–741

    Google Scholar 

  87. Lonn E, Yusuf S, Arnold MJ, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006; 354: 1567–77

    Article  PubMed  CAS  Google Scholar 

  88. Bonaa KH, Njolstad I, Ueland PM, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006; 354: 1578–88

    Article  PubMed  CAS  Google Scholar 

  89. B-Vitamin Treatment Trialists’ Collaboration. Homocysteine-lowering trials for prevention of cardiovascular events: a review of the design and power of the large randomized trials. Am Heart J 2006; 151: 282–7

    Article  Google Scholar 

  90. Schnyder G, Roffi M, Flammer Y, et al. Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart Study: a randomized controlled trial. JAMA 2002; 288: 973–9

    Article  PubMed  CAS  Google Scholar 

  91. Toole JF, Malinow MR, Chambless LE, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004; 291: 565–75

    Article  PubMed  CAS  Google Scholar 

  92. Hankey GJ, Eikelboom JW, Loh K, et al. Is there really a power shortage in clinical trials testing the “homocysteine hypothesis”? [letter]. Arterioscler Thromb Vasc Biol 2004; 24: E147

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author was supported in part through the Beeson Career Development Award (1K23 AG026752–01), a grant jointly funded by the National Institute on Aging, the John A. Hartford Foundation, Atlantic Philanthropies and the Starr Foundation. The author has no conflicts of interest relevant to the contents of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia M. Carlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlsson, C.M. Homocysteine Lowering with Folic Acid and Vitamin B Supplements. Drugs Aging 23, 491–502 (2006). https://doi.org/10.2165/00002512-200623060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200623060-00004

Keywords

Navigation