Abstract
Radical prostatectomy has been the time-honoured and standard treatment option for prostate cancer. Erectile dysfunction (ED) is one of the common quality-of-life issues following radical prostatectomy. The recovery of potency following radical prostatectomy varies from 16% to 86%. Although major modifications in surgical technique appear to be promising, the reported ED rates are still high. The time period required for the recovery of erectile function after surgery varies from 6 to 24 months. During this period of neuropraxia lack of natural erections produces cavernosal hypoxia. This cavernosal hypoxia has been implicated as one of the most important factors in the pathophysiology of ED. Cavernosal hypoxia predisposes to cavernosal fibrosis, ultimately producing venous leak and long-term ED. Interruption of this cascade of events has been the major challenge for physicians. Physicians have several options available for the treatment of ED. However, oral treatment options have quickly become established as first-line treatment options. Sildenafil has been most extensively studied in the radical prostatectomy population. In patients who do not respond to oral therapy alone, standard treatment options (intracavernosal injections, vacuum constriction devices and intraurethral alprostadil) are useful. Use of penile prostheses is one of the oldest treatment options available for the treatment of ED but is used only as a last resort. Initial attempts to promote the earlier recovery of erectile function appear to be promising. However, further confirmatory studies are essential. The roles of gene transfer and growth factors are still in experimental stages. In this review we discuss the epidemiology, pathophysiology and treatment options available for ED following radical prostatectomy.
Similar content being viewed by others
References
Landis SH, Murray T, Bolden S, et al. Cancer statistics, 1999. CA Cancer J Clin 1999; 49(1): 8–31, 1
Shrader-Bogen CL, Kjellberg JL, McPherson CP, et al. Quality of life and treatment outcomes: prostate carcinoma patients’ perspectives after prostatectomy or radiation therapy. Cancer 1997; 79(10): 1977–86
Walsh PC, Marschke P, Ricker D, et al. Patient-reported urinary continence and sexual function after anatomic radical prostatectomy. Urology 2000; 55(1): 58–61
Walsh PC, Partin AW, Epstein JI. Cancer control and quality of life following anatomical radical retropubic prostatectomy: results at 10 years. J Urol 1994; 152 (5 Pt 2): 1831–6
Mulcahy JJ. Erectile function after radical prostatectomy. Semin Urol Oncol 2000; 18(1): 71–5
Catalona WJ, Carvalhal GF, Mager DE, et al. Potency, continence and complication rates in 1870 consecutive radical retropubic prostatectomies. J Urol 1999; 162(2): 433–8
Walsh PC, Donker PJ. Impotence following radical prostatectomy: insight into etiology and prevention. J Urol 1982; 128(3): 492–7
Quinlan DM, Epstein JI, Carter BS, et al. Sexual function following radical prostatectomy: influence of preservation of neurovascular bundles. J Urol 1991; 145(5): 998–1002
Sexton WJ, Benedict JF, Jarow JP. Comparison of long-term outcomes of penile prostheses and intracavernosal injection therapy. J Urol 1998; 159(3): 811–5
Litwin MS, Lubeck DP, Stoddard ML, et al. Quality of life before death for men with prostate cancer: results from the CaPSURE database. J Urol 2001; 165(3): 871–5
Rabbani F, Stapleton AM, Kattan MW, et al. Factors predicting recovery of erections after radical prostatectomy. J Urol 2000; 164(6): 1929–34
Catalona WJ, Basler JW. Return of erections and urinary continence following nerve sparing radical retropubic prostatectomy. J Urol 1993; 150(3): 905–7
Geary ES, Dendinger TE, Freiha FS, et al. Incontinence and vesical neck strictures following radical retropubic prostatectomy. Urology 1995; 45(6): 1000–6
Penson DF, McLerran D, Feng Z, et al. 5-year urinary and sexual outcomes after radical prostatectomy: results from the Prostate Cancer Outcomes Study. J Urol 2005; 173(5): 1701–5
Nandipati KC, Raina R, Agarwal A, et al. Five-year potency status after radical prostatectomy: role of oral therapy in erectaids [abstract no. 270]. In: 100th Annual Meeting of American Urological Association; 2005 May 21–26; San Antonio (TX). J Urol Suppl 2005; 173: 4
Breza J, Aboseif SR, Orvis BR, et al. Detailed anatomy of penile neurovascular structures: surgical significance. J Urol 1989; 141(2): 437–43
Polascik TJ, Walsh PC. Radical retropubic prostatectomy: the influence of accessory pudendal arteries on the recovery of sexual function. J Urol 1995; 154(1): 150–2
Rogers CG, Trock BP, Walsh PC. Preservation of accessory pudendal arteries during radical retropubic prostatectomy: surgical technique and results. Urology 2004; 64(1): 148–51
Mulhall JP, Graydon RJ. The hemodynamics of erectile dysfunction following nerve-sparing radical retropubic prostatectomy. Int J Impot Res 1996; 8(2): 91–4
Mulhall JP, Slovick R, Hotaling J, et al. Erectile dysfunction after radical prostatectomy: hemodynamic profiles and their correlation with the recovery of erectile function. J Urol 2002; 167(3): 1371–5
Moreland RB, Traish A, McMillin MA, et al. PGE1 suppresses the induction of collagen synthesis by transforming growth factor-beta 1 in human corpus cavernosum smooth muscle. J Urol 1995; 153 (3 Pt 1): 826–34
Daley JT, Brown ML, Watkins T, et al. Prostanoid production in rabbit corpus cavernosum: I. regulation by oxygen tension. J Urol 1996; 155(4): 1482–7
Zippe CD, Raina R, Thukral M, et al. Management of erectile dysfunction following radical prostatectomy. Curr Urol Rep 2001; 2(6): 495–503
Moreland RB. Is there a role of hypoxemia in penile fibrosis: a viewpoint presented to the Society for the Study of Impotence. Int J Impot Res 1998; 10(2): 113–20
Leungwattanakij S, Bivalacqua TJ, Usta MF, et al. Cavernous neurotomy causes hypoxia and fibrosis in rat corpus cavernosum. J Androl 2003 Mar–Apr; 24(2): 239–45
User HM, Hairston JH, Zelner DJ, et al. Penile weight and cell subtype specific changes in a post-radical prostatectomy model of erectile dysfunction. J Urol 2003; 169(3): 1175–9
Iacono F, Giannella R, Somma P, et al. Histological alterations in cavernous tissue after radical prostatectomy. J Urol 2005; 173(5): 1673–6
De Luca V, Pescatori ES, Taher B, et al. Damage to the erectile function following radical pelvic surgery: prevalence of venoocclusive dysfunction. Eur Urol 1996; 29(1): 36–40
Montorsi F, Guazzoni G, Strambi LF, et al. Recovery of spontaneous erectile function after nerve-sparing radical retropubic prostatectomy with and without early intracavernous injections of alprostadil: results of a prospective, randomized trial. J Urol 1997; 158(4): 1408–10
Ogura K, Ichioka K, Terada N, et al. Role of sildenafil citrate in treatment of erectile dysfunction after radical retropubic prostatectomy. Int J Urol 2004; 11(3): 159–63
Feng MI, Huang S, Kaptein J, et al. Effect of sildenafil citrate on post-radical prostatectomy erectile dysfunction. J Urol 2000; 164(6): 1935–8
Zippe CD, Jhaveri FM, Klein EA, et al. Role of Viagra after radical prostatectomy. Urology 2000; 55(2): 241–5
Raina R, Lakin MM, Agarwal A, et al. Long-term effect of sildenafil citrate on erectile dysfunction after radical prostatectomy: 3-year follow-up. Urology 2003; 62(1): 110–5
Raina R, Nandipati KC, Agarwal A, et al. Five-year efficacy of sildenafil citrate after radical prostatectomy [abstract no. 737]. In: 100th Annual Meeting of American Urological Association; 2005 May 21–26; San Antonio (TX). J Urol Suppl 2005; 173: 4
Raina R, Lakin MM, Agarwal A, et al. Efficacy and factors associated with successful outcome of sildenafil citrate use for erectile dysfunction after radical prostatectomy. Urology 2004; 63(5): 960–6
Zagaja GP, Mhoon DA, Aikens JE, et al. Sildenafil in the treatment of erectile dysfunction after radical prostatectomy. Urology 2000; 56(4): 631–4
El-Galley R, Rutland H, Talic R, et al. Long-term efficacy of sildenafil and tachyphylaxis effect. J Urol 2001; 166(3): 927–31
Padma-Nathan H, McMurray JG, Pullman WE, et al. On-demand IC351 (Cialis) enhances erectile function in patients with erectile dysfunction. Int J Impot Res 2001; 13(1): 2–9
Corbin JD, Francis SH. Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract 2002 Jul–Aug; 56(6): 453–9
Crowe SM, Streetman DS. Vardenafil treatment for erectile dysfunction. Ann Pharmacother 2004; 38(1): 77–85
Carson CC, Rajfer J, Eardley I, et al. The efficacy and safety of tadalafil: an update. BJU Int 2004; 93(9): 1276–81
Montorsi F, Nathan HP, McCullough A, et al. Tadalafil in the treatment of erectile dysfunction following bilateral nerve sparing radical retropubic prostatectomy: a randomized, double-blind, placebo controlled trial. J Urol 2004; 172(3): 1036–41
Keating GM, Scott LJ. Vardenafil: a review of its use in erectile dysfunction. Drugs 2003; 63(23): 2673–703
Brock G, Nehra A, Lipshultz LI, et al. Safety and efficacy of vardenafil for the treatment of men with erectile dysfunction after radical retropubic prostatectomy. J Urol 2003; 170 (4 Pt 1): 1278–83
Nehra A, Grantmyre J, Nadel A, et al. Vardenafil improved patient satisfaction with erectile hardness, orgasmic function and sexual experience in men with erectile dysfunction following nerve sparing radical prostatectomy. J Urol 2005; 173(6): 2067–71
Nandipati KC, Raina R, Agarwal A, et al. Efficacy and treatment satisfaction of PDE-5 inhibitors in management of erectile dysfunction following radical prostatectomy: SHIM analysis [abstract no. 99]. Thirteenth annual meeting with American Society of Andrology; Mar 29–Apr 4; Seattle; Washington, DC, 2005
Jeremy JY, Ballard SA, Naylor AM, et al. Effects of sildenafil, a type-5 cGMP phosphodiesterase inhibitor, and papaverine on cyclic GMP and cyclic AMP levels in the rabbit corpus cavernosum in vitro. Br J Urol 1997; 79(6): 958–63
Lee LM, Stevenson RW, Szasz G. Prostaglandin E1 versus phentolamine/papaverine for the treatment of erectile impotence: a double-blind comparison. J Urol 1989; 141(3): 549–50
Leungwattanakij S, Flynn Jr V, Hellstrom WJ. Intracavernosal injection and intraurethral therapy for erectile dysfunction. Urol Clin North Am 2001; 28(2): 343–54
Raina R, Lakin MM, Thukral M, et al. Long-term efficacy and compliance of intracorporeal (IC) injection for erectile dysfunction following radical prostatectomy: SHIM (IIEF-5) analysis. Int J Impot Res 2003; 15(5): 318–22
Lakin MM, Montague DK, VanderBrug Medendorp S, et al. Intracavernous injection therapy: analysis of results and complications. J Urol 1990; 143(6): 1138–41
Dennis RL, McDougal WS. Pharmacological treatment of erectile dysfunction after radical prostatectomy. J Urol 1988; 139(4): 775–6
Mulhall JP, Jahoda AE, Cairney M, et al. The causes of patient dropout from penile self-injection therapy for impotence. J Urol 1999; 162(4): 1291–4
Purvis K, Egdetveit I, Christiansen E. Intracavernosal therapy for erectile failure: impact of treatment and reasons for dropout and dissatisfaction. Int J Impot Res 1999; 11(5): 287–99
Mulhall JP, Jahoda AE, Ahmed A, et al. Analysis of the consistency of intraurethral prostaglandin E(l) (MUSE) during at-home use. Urology 2001; 58(2): 262–6
Padma-Nathan H, Hellstrom WJ, Kaiser FE, et al. Treatment of men with erectile dysfunction with transurethral alprostadil. Medicated Urethral System for Erection (MUSE) Study Group. N Engl J Med 1997; 336(1): 1–7
Costabile RA, Spevak M, Fishman IJ, et al. Efficacy and safety of transurethral alprostadil in patients with erectile dysfunction following radical prostatectomy. J Urol 1998; 160(4): 1325–8
Porst H. Transurethral alprostadil with MUSE (medicated urethral system for erection) vs intracavernous alprostadil: a comparative study in 103 patients with erectile dysfunction. Int J Impot Res 1997; 9(4): 187–92
Raina R, Agarwal A, Ausmundson S, et al. Long-term efficacy and compliance of MUSE for erectile dysfunction following radical prostatectomy: SHIM (IIEF-5) analysis. Int J Impot Res 2005; 17(1): 86–90
Levine LA, Dimitriou RJ. Vacuum constriction and external erection devices in erectile dysfunction. Urol Clin North Am 2001; 28(2): 335–41, ix
Cookson MS, Nadig PW. Long-term results with vacuum constriction device. J Urol 1993; 149(2): 290–4
Chen J, Sofer M, Kaver I, et al. Concomitant use of sildenafil and a vacuum entrapment device for the treatment of erectile dysfunction. J Urol 2004; 171(1): 292–5
Raina R, Agarwal A, Allamaneni SS, et al. Sildenafil citrate and vacuum constriction device combination enhances sexual satisfaction in erectile dysfunction after radical prostatectomy. Urology 2005; 65(2): 360–4
Nehra A, Kulaksizoglu H. Combination therapy for erectile dysfunction: where we are and what’s in the future. Curr Urol Rep 2002; 3(6): 467–70
Mydlo JH, Volpe MA, Macchia RJ. Initial results utilizing combination therapy for patients with a suboptimal response to either alprostadil or sildenafil monotherapy. Eur Urol 2000; 38(1): 30–4
Raina R, Nandipati KC, Agarwal A, et al. Combination therapy using medicated urethral system for erection enhances sexual satisfaction in sildenafil citrate failure following nerve-sparing radical prostatectomy. J Androl 2005; 26(6): 757–60
Shabsigh R, Padma-Nathan H, Gittleman M, et al. Intracavernous alprostadil alfadex (EDEX/VIRIDAL) is effective and safe in patients with erectile dysfunction after failing sildenafil (Viagra). Urology 2000; 55(4): 477–80
Shabsigh R, Anastasiadis AG. Erectile dysfunction. Annu Rev Med 2003; 54: 153–68
Escrig A, Marin R, Mas M. Repeated PGE1 treatment enhances nitric oxide and erection responses to nerve stimulation in the rat penis by upregulating constitutive NOS isoforms. J Urol 1999; 162(6): 2205–10
Mydlo JH, Viterbo R, Crispen P. Use of combined intracorporal injection and a phosphodiesterase-5 inhibitor therapy for men with a suboptimal response to sildenafil and/or vardenafil monotherapy after radical retropubic prostatectomy. BJU Int 2005; 95(6): 843–6
Buvat J, Montorsi F. Safety and tolerability of apomorphine SL in patients with erectile dysfunction. BJU Int 2001; 88Suppl. 3: 30–5
Mulhall JP, Bukofzer S, Edmonds AL, et al. An open-label, uncontrolled dose-optimization study of sublingual apomorphine in erectile dysfunction. Clin Ther 2001; 23(8): 1260–71
Schwartz EJ, Wong P, Graydon RJ. Sildenafil preserves intracorporeal smooth muscle after radical retropubic prostatectomy. J Urol 2004; 171 (2 Pt 1): 771–4
Padma-Nathan H, McCullough AR, Giuliano F, et al. Postoperative nightly administration of sildenafil citrate significantly improves the return of normal spontaneous erectile function after bilateral nerve-sparing radical prostatectomy [abstract no. 1402]. In: 98th Annual Meeting of American Urological Association; 2002 Apr 26–May 1; Chicago (IL). J Urol Suppl 2003; 169: 375
Gallo L, Perdona S, Autorino R, et al. Recovery of erection after pelvic urologic surgery: our experience. Int J Impot Res 2005; 17(6): 484–93
Raina R, Agarwal A, Nandipati KC, et al. Interim analysis of the early use of MUSE following radical prostatectomy (RP) to facilitate early sexual activity and return of spontaneous erectile function [abstract no. 737]. In: 100th Annual Meeting of American Urological Association; 2005 May 21–26; San Antonio (TX). J Urol Suppl 2005; 173: 4
Nandipati KC, Raina R, Agarwal A, et al. Early combination therapy: intracavernosal injections and sildenafil following radical prostatectomy (RP) increases sexual activity and the return of natural erections. Int J Impot Res. In press
Small MP, Carrion HM. Penile prosthesis: new implant for management of impotence. J Fla Med Assoc 1975; 62(10): 21–5
Gerstenberger DL, Osborne D, Furlow WL. Inflatable penile prosthesis: follow-up study of patient-partner satisfaction. Urology 1979; 14(6): 583–7
McLaren RH, Barrett DM. Patient and partner satisfaction with the AMS 700 penile prosthesis. J Urol 1992; 147(1): 62–5
Montague DK, Angermeier KW. Contemporary aspects of penile prosthesis implantation. Urol Int 2003; 70(2): 141–6
Montague DK, Angermeier KW. Current status of penile prosthesis implantation. Curr Urol Rep 2000; 1(4): 291–6
Filippi S, Crescioli C, Vannelli GB, et al. Effects of NCX 4050, a new NO donor, in rabbit and human corpus cavernosum. Int J Androl 2003; 26(2): 101–8
Kalsi JS, Kell PD, Cellek S, et al. NCX-911, a novel nitric oxide-releasing PDE5 inhibitor relaxes rabbit corpus cavernosum in the absence of endogenous nitric oxide. Int J Impot Res 2004; 16(2): 195–200
Lee MC, El-Sakka Al, Graziottin TM, et al. The effect of vascular endothelial growth factor on a rat model of traumatic arteriogenic erectile dysfunction. J Urol 2002; 167 (2 Pt 1): 761–7
Acknowledgements
No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nandipati, K.C., Raina, R., Agarwal, A. et al. Erectile Dysfunction Following Radical Retropubic Prostatectomy. Drugs Aging 23, 101–117 (2006). https://doi.org/10.2165/00002512-200623020-00002
Published:
Issue Date:
DOI: https://doi.org/10.2165/00002512-200623020-00002