Drugs & Aging

, Volume 21, Issue 6, pp 405–414 | Cite as

Cardiovascular Safety of β2-Adrenoceptor Agonist Use in Patients with Obstructive Airway Disease

A Systematic Review
Original Research Article



β2-Adrenoceptor agonists have been used as bronchodilators in the management of asthma and chronic obstructive pulmonary disease (COPD); however, there is evidence suggesting that β2-adrenoceptor agonist use may increase morbidity and mortality.


A systematic review of case-control studies and randomised controlled trials was performed to evaluate the cardiovascular safety of β2-adrenoceptor agonist use in patients with obstructive airway disease, defined as asthma or COPD.


Case-control studies have shown that β2-adrenoceptor agonist use is associated with an increased risk of myocardial infarction, congestive heart failure, cardiac arrest and sudden cardiac death. The degree of risk appears to be dose-dependent, and may be highest for new users and those with concomitant cardiac conditions. Pooled data from randomised placebo-controlled trials indicate that β2-adrenoceptor agonist use increases the risk of adverse cardiovascular events by more than 2-fold compared with placebo, thus providing evidence that the association seen in case-control studies is a causal one. Single doses of β2-adrenoceptor agonists significantly increase heart rate and decrease potassium concentrations compared with placebo.


Initiation of β2-adrenoceptor agonist treatment increases heart rate and decreases potassium concentrations, while continued use may increase the risk of adverse cardiovascular events. It could be through these effects of β-adrenergic stimulation that β2-adrenoceptor agonists may induce ischaemia, congestive heart failure, arrhythmias and sudden cardiac death. In addition to increasing adverse cardiovascular events, β2-adrenoceptor agonist use may induce respiratory tolerance and increase the risk of asthma attacks. It is not clear whether β2-adrenoceptor agonists should be used regularly in the treatment of obstructive airway disease, with or without concomitant cardiovascular disease.


  1. 1.
    Bristow MR. β-adrenergic receptor blockade in chronic heart failure. Circulation 2000; 101: 558–69PubMedCrossRefGoogle Scholar
  2. 2.
    Ablad B, Carlsson E, Dahlof C, et al. Pharmacology of β-adrenoceptor blocking drugs: some aspects of the pharmacology of β-adrenoceptor blockers. Drugs 1976; 11Suppl. 1: 100–11PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson M. The β-adrenoceptor. Am J Respir Crit Care Med 1998; 158 (5 Pt 3): S146–53PubMedGoogle Scholar
  4. 4.
    Nishikawa M, Mak JCW, Barnes PJ. Effect of short- and long-acting β2-adrenoceptor agonists on pulmonary β2-adre-noceptor expression in human lung. Eur J Pharmacol 1996; 318: 123–9PubMedCrossRefGoogle Scholar
  5. 5.
    Bhagat R, Kalra S, Swystun VA, et al. Rapid onset of tolerance to the bronchoprotective effect of salmeterol. Chest 1995; 108(5): 1235–9PubMedCrossRefGoogle Scholar
  6. 6.
    Pansegrouw DF, Weich DJV, Le Roux FPJ. β-adrenergic receptor tachyphylaxis in acute severe asthma: a preliminary communication. S Afr Med J 1991; 80(7): 229–30PubMedGoogle Scholar
  7. 7.
    Brodde O-E. Pathophysiology of the β-adrenoceptor system in chronic heart failure: consequences for treatment with agonists, partial agonists or antagonists? Eur Heart J 1991; 12Suppl. F: 54–62PubMedCrossRefGoogle Scholar
  8. 8.
    Wadworth AN, Murdoch D, Brogden RN. Atenolol: a reappraisal of its pharmacologic properties and therapeutic use in cardiovascular disorders. Drugs 1991; 42: 568–10Google Scholar
  9. 9.
    Freemantle N, Cleland J, Young P, et al. Beta blockade after myocardial infarction: systematic review and meta regression analysis. BMJ 1999; 318: 1730–7PubMedCrossRefGoogle Scholar
  10. 10.
    Aurbach AD, Goldman L. β-blockers and reduction of cardiac events in noncardiac surgery: scientific review. JAMA 2002; 287(11): 1435–44CrossRefGoogle Scholar
  11. 11.
    UK Prospective Diabetes Study Group. Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 1998; 317: 713–20CrossRefGoogle Scholar
  12. 12.
    Steinbeck G, Andresen D, Bach P, et al. A comparison of electrophysiologically guided antiarrhythmic drug therapy with β-blocker therapy in patients with symptomatic, sustained ventricular tachyarrhythmias. N Engl J Med 1992; 327: 987–92PubMedCrossRefGoogle Scholar
  13. 13.
    Sears MR. Adverse effects of β-agonists. J Allergy Clin Immunol 2002; 110 (6 Suppl.): S322–8PubMedCrossRefGoogle Scholar
  14. 14.
    Chatterjee K, De Marco T. Role of nonglycosidic inotropic agents: indications, ethics, and limitations. Med Clin North Am 2003; 87(2): 391–418PubMedCrossRefGoogle Scholar
  15. 15.
    Lulich KM, Goldie RG, Ryan G, et al. Adverse reactions to β2-agonist bronchodilators. Med Toxicol 1986; 1(4): 286–99PubMedGoogle Scholar
  16. 16.
    Salpeter SR, Ormiston TM, Salpeter EE. Cardiovascular effects of β-agonists in patients with asthma and chronic obstructive pulmonary disease: a meta-analysis. Chest. In pressGoogle Scholar
  17. 17.
    Au DH, Lemaitre RN, Curtis JR, et al. The risk of myocardial infarction associated with inhaled β-adrenoceptor agonists. Am J Respir Crit Care Med 2000; 161: 827–30PubMedGoogle Scholar
  18. 18.
    Au DH, Curtis JR, McDonell MB, et al. Association between inhaled β-agonists and the risk of unstable angina and myocardial infarction. Chest 2002; 121: 846–51PubMedCrossRefGoogle Scholar
  19. 19.
    Suissa S, Assimes T, Ernst P. Inhaled short acting β-agonist use in COPD and the risk of acute myocardial infarction. Thorax 2003; 58: 43–6PubMedCrossRefGoogle Scholar
  20. 20.
    Coughlin SS, Metayer C, McCarthy EP, et al. Respiratory illness, β-agonists, and risk of idiopathic dilated cardiomyopathy. Am J Epidemiol 1995; 142(4): 395–403PubMedGoogle Scholar
  21. 21.
    Martin RM, Dunn NR, Freemantle SN, et al. Risk of non-fatal cardiac failure and ischaemic heart disease with long acting β2-agonists. Thorax 1998; 53(7): 558–62PubMedCrossRefGoogle Scholar
  22. 22.
    Sengstock DM, Obeidat O, Pasnoori V, et al. Asthma, β-agonists, and development of congestive heart failure: results of the ABCHF Study. J Card Fail 2002; 8(4): 232–8PubMedCrossRefGoogle Scholar
  23. 23.
    Lemaitre RN, Siscovick DS, Psaty BM, et al. Inhaled β-2 adrenergic receptor agonists and primary cardiac arrest. Am J Med 2002; 113: 711–6PubMedCrossRefGoogle Scholar
  24. 24.
    Suissa S, Hemmelgarn B, Biais L, et al. Bronchodilators and acute cardiac death. Am J Respir Crit Care Med 1996; 154: 1598–602PubMedGoogle Scholar
  25. 25.
    Bennett JA, Smyth ET, Pavord ID, et al. Systemic effects of salbutamol and salmeterol in patients with asthma. Thorax 1994; 49: 771–4PubMedCrossRefGoogle Scholar
  26. 26.
    Braden GL, Germain MJ, Mulhern JG, et al. Hemodynamic, cardiac, and electrolyte effects of low-dose aerosolized terbutaline sulfate in asthmatic patients. Chest 1998; 114: 380–7PubMedCrossRefGoogle Scholar
  27. 27.
    Braun SR, Levy SF. Comparison of ipratropium bromide and albuterol in chronic obstructive pulmonary disease: a threecenter study. Am J Med 1991; 91(4A): 28–32SCrossRefGoogle Scholar
  28. 28.
    Buch J, Bundgaard A. Cardiovascular effects of intramuscular or inhaled terbutaline in asthmatics. Acta Pharmacol Toxicol (Copenh) 1984; 54(3): 183–8CrossRefGoogle Scholar
  29. 29.
    Burgess CD, Ayson M, Rajasingham S, et al. The extrapulmonary effects of increasing doses of formoterol in patients with asthma. Eur J Clin Pharmacol 1998; 54: 141–7PubMedCrossRefGoogle Scholar
  30. 30.
    Burggraaf J, Westendorp RGJ, in’t Veen JCCM, et al. Cardiovascular side effects of inhaled salbutamol in hypoxic asthmatic patients. Thorax 2001; 56: 567–9PubMedCrossRefGoogle Scholar
  31. 31.
    Cazzola M, Imperatore F, Salzillo A, et al. Cardiac effects of formoterol and salmeterol in patients suffering from COPD with pre-existing cardiac arrhythmias and hypoxemia. Chest 1998; 114(2): 411–5PubMedCrossRefGoogle Scholar
  32. 32.
    Chan CK, Loke J, Snyder PE, et al. Oral terbutaline augments cardiac performance in chronic obstructive pulmonary disease. Am J Med Sci 1988; 296(1): 33–8PubMedCrossRefGoogle Scholar
  33. 33.
    Hall IP, Woodhead MA, Johnston ID. Effect of high-dose salbutamol on cardiac rhythm in severe chronic airflow obstruction: a controlled study. Respiration 1994; 61(4): 214–8PubMedCrossRefGoogle Scholar
  34. 34.
    Jartti T, Kaila T, Tahvanainen K, et al. The acute effects of inhaled salbutamol on the β-to-beat variability of heart rate and blood pressure assessed by spectral analysis. Br J Clin Pharmacol 1997; 43(4): 421–8PubMedCrossRefGoogle Scholar
  35. 35.
    Marlin GE, Bush DE, Berend N. Comparison of ipratropium bromide and fenoterol in asthma and chronic bronchitis. Br J Clin Pharmacol 1978; 6(6): 547–9PubMedCrossRefGoogle Scholar
  36. 36.
    Vathenen AS, Britton JR, Ebden P, et al. High-dose inhaled albuterol in severe chronic airflow limitation. Am Rev Respir Dis 1988; 138(4): 850–5PubMedCrossRefGoogle Scholar
  37. 37.
    Wong CS, Pavord ID, Williams J, et al. Bronchodilator, cardiovascular, and hypokalemic effects of fenoterol, salbutamol, and terbutaline in asthma. Lancet 1990; 336: 1396–9PubMedCrossRefGoogle Scholar
  38. 38.
    Seccareccia F, Pannozzo F, Dima F, et al. Heart rate as a predictor of mortality: the MATISS Project. Am J Public Health 2001; 91(8): 1258–63PubMedCrossRefGoogle Scholar
  39. 39.
    Aalbers R, Ayres J, Backer V, et al. Formoterol in patients with chronic obstructive pulmonary disease: a randomized, controlled, 3-month trial. Eur Respir J 2002; 19(5): 936–43PubMedCrossRefGoogle Scholar
  40. 40.
    Anderson G, Wilkins E, Jariwalla AG. Fenoterol in asthma. Br J Dis Chest 1979; 73(1): 81–4PubMedCrossRefGoogle Scholar
  41. 41.
    Bensch G, Lapidus RJ, Levine BE, et al. A randomized, 12-week, double-blind, placebo-controlled study comparing formoterol dry powder inhaler with albuterol metered-dose inhaler. Ann Allergy Asthma Immunol 2001; 86: 19–27PubMedCrossRefGoogle Scholar
  42. 42.
    Boyd G. Salmeterol xinafoate in asthmatic patients under consideration for maintenance oral corticosteroid therapy. UK Study Group. Eur Respir J 1995; 8(9): 1494–8PubMedGoogle Scholar
  43. 43.
    Chapman KR, Arvidsson P, Chuchalin AG, et al. The addition of salmeterol 50µg bid to anticholinergic treatment in patients with COPD: a randomized, placebo controlled trial. Can Respir J 2002; 9(3): 178–85PubMedGoogle Scholar
  44. 44.
    D’Urzo AD, Chapman KR, Cartier A, et al. Effectiveness and safety of salmeterol in nonspecialist practice settings. Chest 2001; 119(3): 714–9PubMedCrossRefGoogle Scholar
  45. 45.
    Dahl R, Earnshaw JS, Palmer JB. Salmeterol: a four week study of a long-acting β-adrenoceptor agonist for the treatment of reversible airways disease. Eur Respir J 1991; 4(10): 1178–84PubMedGoogle Scholar
  46. 46.
    Dahl R, Greefhorst LA, Nowak D, et al. Inhaled formoterol dry powder versus ipratropium bromide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 164(5): 778–84PubMedGoogle Scholar
  47. 47.
    Donohue JF, van Noord JA, Bateman ED, et al. A 6-month, placebo-controlled study comparing lung function and health status changes in COPD patients treated with tiotropium or salmeterol. Chest 2002; 122(1): 47–55PubMedCrossRefGoogle Scholar
  48. 48.
    Fitzpatrick MF, Mackay T, Driver H, et al. Salmeterol in nocturnal asthma: a double blind, placebo controlled trial of a long acting inhaled β2-agonist. BMJ 1990; 301: 1365–8PubMedCrossRefGoogle Scholar
  49. 49.
    Milgrom H, Skonner DP, Bensch G, et al. Low-dose levalbuterol in children with asthma: safety and efficacy in comparison with placebo and racemic albuterol. J Allergy Clin Immunol 2001; 108: 938–45PubMedCrossRefGoogle Scholar
  50. 50.
    Nathan RA, Seltzer JM, Kemp JP, et al. Safety of salmeterol in the maintenance treatment of asthma. Ann Allergy Asthma Immunol 1995; 75(3): 243–8PubMedGoogle Scholar
  51. 51.
    Nielsen LP, Pedersen B, Faurschou P, et al. Salmeterol reduces the need for inhaled corticosteroid in steroid-dependent asthmatics. Respir Med 1999; 93(12): 863–8PubMedCrossRefGoogle Scholar
  52. 52.
    Pearlman DS, Stricker W, Weinstein S, et al. Inhaled salmeterol and fluticasone: a study comparing monotherapy and combination therapy in asthma. Ann Allergy Asthma Immunol 1999; 82(3): 257–65PubMedCrossRefGoogle Scholar
  53. 53.
    Rennard SI, Anderson W, ZuWallack R, et al. Use of a long-acting inhaled β2-adrenergic agonist, salmeterol xinafoate, in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001; 163(5): 1087–92PubMedGoogle Scholar
  54. 54.
    Richter B, Bender R, Berger M. Effects of on-demand β2-agonist inhalation in moderate-to-severe asthma: a randomized controlled trial. J Intern Med 2000; 247(6): 657–66PubMedCrossRefGoogle Scholar
  55. 55.
    Rossi A, Kristufek P, Levine BE, et al. Comparison of the efficacy, tolerability, and safety of formoterol dry powder and oral, slow-release theophylline in the treatment of COPD. Chest 2002; 121(4): 1058–69PubMedCrossRefGoogle Scholar
  56. 56.
    Siegel SC, Katz RM, Rachelefsky GS, et al. A placebo-controlled trial of procaterol: a new long-acting oral β2-agonist in bronchial asthma. J Allergy Clin Immunol 1985; 75: 698–705PubMedCrossRefGoogle Scholar
  57. 57.
    Spector SL, Garza Gomez M. Dose-response effects of albuterol aerosol compared with isoproterenol and placebo aerosols: response to albuterol, isoproterenol, and placebo aerosols. J Allergy Clin Immunol 1977; 59(4): 280–6PubMedCrossRefGoogle Scholar
  58. 58.
    Yates DH, Sussman HS, Shaw MJ, et al. Regular formoterol treatment in mild asthma: effect on bronchial responsiveness during and after treatment. Am J Respir Crit Care Med 1995; 152 (4 Pt 1): 1170–4PubMedGoogle Scholar
  59. 59.
    Haffner CA, Kendall MJ. Metabolic effects of β2-agonists. J Clin Pharm Ther 1992; 17(3): 155–64PubMedCrossRefGoogle Scholar
  60. 60.
    Lockett M. Dangerous effects of isoprenaline in myocardial failure. Lancet 1963; II: 104–6Google Scholar
  61. 61.
    Kurland G, Williams J, Lewiston NJ. Fatal myocardial toxicity during continuous infusion intravenous isoproterenol therapy in asthma. J Allergy Clin Immunol 1979; 63: 407–11PubMedCrossRefGoogle Scholar
  62. 62.
    Neville E, Corris PA, Vivian J, et al. Nebulized salbutamol and angina. BMJ 1982; 285: 796–7PubMedCrossRefGoogle Scholar
  63. 63.
    Higgins RM, Cookson WOCM, Lane SM, et al. Cardiac arrhythmias caused by nebulized β-agonist therapy. Lancet 1987; 2(8563): 863–4PubMedCrossRefGoogle Scholar
  64. 64.
    Robin ED, McCauley R. Sudden cardiac death in bronchial asthma, and inhaled β-adrenergic agonists. Chest 1992; 101(6): 1699–702PubMedCrossRefGoogle Scholar
  65. 65.
    Raper R, Fisher M, Bihari D. Profound, reversible, myocardial depression in acute asthma treated with high-dose catecholamines. Crit Care Med 1992; 20(5): 710–2PubMedCrossRefGoogle Scholar
  66. 66.
    Tandon MK. Cardiopulmonary effects of fenoterol and salbutamol aerosols. Chest 1980; 77(3): 429–31PubMedCrossRefGoogle Scholar
  67. 67.
    Coleman JJ, Vollmer WM, Barker AF, et al. Cardiac arrhythmias during the combined use of β-adrenergic agonist drugs and theophylline. Chest 1986; 90(1): 45–51PubMedCrossRefGoogle Scholar
  68. 68.
    Windom HH, Burgess CD, Siebers RWL, et al. The pulmonary and extrapulmonary effects of inhaled β-agonists in patients with asthma. Clin Pharmacol Ther 1990; 48: 296–301PubMedCrossRefGoogle Scholar
  69. 69.
    Lipworth B, Clark RA, Dhillon DP, et al. Comparison of the effects of prolonged treatment with low and high doses of inhaled terbutaline on β-adrenoceptor responsiveness in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 1990; 142: 338–42PubMedGoogle Scholar
  70. 70.
    Newhouse MT, Chapman KR, McCallum AL, et al. Cardiovascular safety of high doses of inhaled fenoterol and albuterol in acute severe asthma. Chest 1996; 110: 595–603PubMedCrossRefGoogle Scholar
  71. 71.
    Au DH, Curtis JR, Psaty BM. Risk of myocardial ischemia and β-adrenoceptor agonists. Ann Med 2001; 33: 287–90PubMedCrossRefGoogle Scholar
  72. 72.
    Blomstrom-Lundqvist C, Scheinman MM, Aliot EM, et al. ACC/AHA/ESC guidelines for the management of patients with supraventricular arrhythmias: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to develop guidelines for the management of patients with supraventricular arrhythmias). Circulation 2003; 108(15): 1871–909PubMedCrossRefGoogle Scholar
  73. 73.
    Julius S. Effect of sympathetic overactivity on cardiovascular prognosis in hypertension. Eur Heart J 1998; 19Suppl. F: F14–8PubMedGoogle Scholar
  74. 74.
    Julius S, Palatini P, Nesbitt SD. Tachycardia: an important determinant of coronary risk in hypertension. J Hypertens 1998; 16Suppl. 1: S9–15Google Scholar
  75. 75.
    Umana E, Solares CA, Alpert MA. Tachycardia-induced cardio-myopathy. Am J Med 2003; 114(1): 51–5PubMedCrossRefGoogle Scholar
  76. 76.
    Gillum RF, Makuc DM, Feldman JJ. Pulse rate, coronary heart disease, and death: the NHANES I Epidemiologic Follow-Up Study. Am Heart J 1991; 121 (1 Pt 1): 172–7PubMedCrossRefGoogle Scholar
  77. 77.
    Berton GS, Cordiano R, Palmieri R, et al. Heart rate during myocardial infarction: relationship with one-year global mortality in men and women. Can J Cardiol 2002; 18(5): 495–502PubMedGoogle Scholar
  78. 78.
    Jouven X, Zureik M, Desnos M, et al. Resting heart rate as a predictive risk factor for sudden death in middle-aged men. Cardiovasc Res 2001; 50(2): 373–8PubMedCrossRefGoogle Scholar
  79. 79.
    Benetos A, Rudnichi A, Thomas F, et al. Influence of heart rate on mortality in a French population: role of age, gender and blood pressure. Hypertension 1999; 33: 44–52PubMedCrossRefGoogle Scholar
  80. 80.
    Palatini P, Casiglia E, Julius S, et al. High heart rate: a risk factor for cardiovascular death in elderly men. Arch Intern Med 1999; 159(6): 585–92PubMedCrossRefGoogle Scholar
  81. 81.
    Palatini P, Thijs L, Staessen JA, et al. Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension. Arch Intern Med 2002; 162(20): 2313–21PubMedCrossRefGoogle Scholar
  82. 82.
    Nordrehaug JE, Johanssen KA, von der Lippe G. Serum potassium concentration as a risk factor of ventricular arrhythmias early in acute myocardial infarction. Circulation 1985; 71(4): 645–9PubMedCrossRefGoogle Scholar
  83. 83.
    Bremner P, Burgess CD, Crane J, et al. Cardiovascular effects of fenoterol under conditions of hypoxaemia. Thorax 1992; 47(10): 814–7PubMedCrossRefGoogle Scholar
  84. 84.
    Lipworth B. Revisiting interactions between hypoxaemia and β2-agonists in asthma. Thorax 2001; 56: 506–7PubMedCrossRefGoogle Scholar
  85. 85.
    Brodde O-E, Howe U, Egerszegi S, et al. Effect of prednisolone and ketotifen on β2-adrenoceptors in asthmatic patients receiving β2-bronchodilators. Eur J Clin Pharmacol 1988; 34: 145–50PubMedCrossRefGoogle Scholar
  86. 86.
    Rodrigo GJ, Rodrigo C. Continuous vs intermittent β-agonists in the treatment of acute adult asthma: a systematic review with meta-analysis. Chest 2002; 122(1): 160–5PubMedCrossRefGoogle Scholar
  87. 87.
    Lipworth BJ. Risks versus benefits of inhaled β 2-agonists in the management of asthma. Drug Saf 1992; 7(1): 54–70PubMedCrossRefGoogle Scholar
  88. 88.
    Taylor DR, Sears M, Cockcroft DW. The β-agonist controversy. Med Clin North Am 1996; 80(4): 719–48PubMedCrossRefGoogle Scholar
  89. 89.
    Emilien G, Maloteaux JM. Current therapeutic uses and potential of β-adrenergic agonists and antagonists. Eur J Clin Pharmacol 1998; 53: 389–404PubMedCrossRefGoogle Scholar
  90. 90.
    Benson RL, Perlman F. Clinical aspects of epinephrine by inhalation. J Allergy Clin Immunol 1948; 19: 129–40Google Scholar
  91. 91.
    Committee on Safety of Drugs. Aerosols in asthma. Issue 5. LMCM, 1967.Google Scholar
  92. 92.
    Dodds WN, Soler NG, Thompson H. Deaths in asthma [letter]. BMJ 1975; 4: 345PubMedCrossRefGoogle Scholar
  93. 93.
    Kraan J, Koeter GH, vd Mark TW, et al. Changes in bronchial hyperreactivity induced by 4 weeks of treatment with antiasthmatic drugs in patients with allergic asthma: a comparison between budesonide and terbutaline. J Allergy Clin Immunol 1985; 76: 628–36PubMedCrossRefGoogle Scholar
  94. 94.
    Sears MR, Taylor DR, Print CG, et al. Regular inhaled β-agonist treatment in bronchial asthma. Lancet 1990; 336(8728): 1391–6PubMedCrossRefGoogle Scholar
  95. 95.
    Wahedna I, Wong CS, Wisniewski AF, et al. Asthma control during and after cessation of regular β 2-agonist treatment. Am Rev Respir Dis 1993; 148(3): 707–12PubMedCrossRefGoogle Scholar
  96. 96.
    Spitzer WO, Suissa S, Ernst P, et al. The use of β-agonists and the risk of death and near death from asthma. N Engl J Med 1992; 326(8): 501–6PubMedCrossRefGoogle Scholar
  97. 97.
    US Food and Drug Administration. Study of asthma drug halted. FDA Talk Paper; 2003 Jan 23: T–03–06Google Scholar
  98. 98.
    Salpeter SR, Ormiston TM, Salpeter EE. A meta-analysis of respiratory tolerance to regular β2-agonist use in patients with asthma. Ann Intern Med. In pressGoogle Scholar
  99. 99.
    Brophy JM, Joseph L, Rouleau JL. β-blockers in congestive heart failure. Ann Intern Med 2001; 134: 550–60PubMedGoogle Scholar
  100. 100.
    Salpeter SR, Ormiston TM, Salpeter EE, et al. Cardioselective β-blockers for chronic obstructive pulmonary disease: a meta-analysis. Respir Med 2003; 97(10): 1094–101PubMedCrossRefGoogle Scholar
  101. 101.
    Salpeter S, Ormiston T, Salpeter E. Cardioselective β-blocker use in patients with reactive airway disease: a meta-analysis. Ann Intern Med 2002; 137: 715–25PubMedGoogle Scholar

Copyright information

© Adis Data Information BV 2004

Authors and Affiliations

  1. 1.Stanford University School of MedicineStanfordUSA
  2. 2.Santa Clara Valley Medical CenterSan JoseUSA

Personalised recommendations