Skip to main content

Advertisement

Log in

Clinically Important Drug Interactions with Intravenous Anaesthetics in Older Patients

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

There is a continuously growing population of older surgical patients who require an increasing number of anaesthetics and sedation. Pharmacokinetic and pharmacodynamic changes associated with increasing age are often not appreciated enough. Dose requirements for midazolam, a benzodiazepine commonly used for outpatient procedures, have been demonstrated in prospective studies to decrease with increasing age. On the other hand, rigorous prospective studies investigating the effect of age on the induction doses of other intravenous anaesthetics, such as thiopental sodium or propofol, are missing.

In addition, many of those patients take multiple drugs for medical problems often not related to the procedure. Drug interactions with anaesthetics are likely to occur, but are not well documented.

In this review we have summarised the documented and clinically relevant drug interactions with anaesthetics in the elderly population. We have identified a significant lack of scientific and outcome data and the need for more studies and education.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Klopfenstein CE, Herrmann FR, Michel JP, et al. The influence of an aging surgical population on the anesthesia workload: a ten-year survey. Anesth Analg 1998; 86(6): 1165–70

    PubMed  CAS  Google Scholar 

  2. Angus DC, Kelley MA, Schmitz RJ, et al. Caring for the critically ill patient: current and projected workforce requirements for care of the critically ill and patients with pulmonary disease: can we meet the requirements of an aging population? JAMA 2000 Dec 6; 284(21): 2762–70

    PubMed  CAS  Google Scholar 

  3. Turnheim K. Drug dosage in the elderly: is it rational? Drugs Aging 1998; 13(5): 357–79

    PubMed  CAS  Google Scholar 

  4. Dodds C. Anaesthetic drugs in the elderly. Pharmacol Ther 1995; 66(2): 369–86

    PubMed  CAS  Google Scholar 

  5. Hammerlein A, Derendorf H, Lowenthal DT. Pharmacokinetic and pharmacodynamic changes in the elderly: clinical implications. Clin Pharmacokinet 1998 Jul; 35(1): 49–64

    PubMed  CAS  Google Scholar 

  6. Turner N, Scarpace PJ, Lowenthal DT. Geriatric pharmacology: basic and clinical considerations. Annu Rev Pharmacol Toxicol 1992; 32: 271–302

    Google Scholar 

  7. Catterson ML, Preskorn SH, Martin RL. Pharmacodynamic and pharmacokinetic considerations in geriatric psychopharmacology. Psychiatr Clin North Am 1997; 20(1): 205–18

    PubMed  CAS  Google Scholar 

  8. Feely J, Coakley D. Altered pharmacodynamics in the elderly. Clin Geriatr Med 1990 May; 6(2): 269–83

    PubMed  CAS  Google Scholar 

  9. Fujita S. Aging and drug metabolism: alteration of liver drug metabolizing ability in male rats. Is it functional deterioration or feminization of the liver? Yakugaku Zasshi 1991 Nov; 111(11): 627–46

    PubMed  CAS  Google Scholar 

  10. Jones AG, Hunter JM. Anaesthesia in the elderly: special considerations. Drugs Aging 1996; 9(5): 319–31

    PubMed  CAS  Google Scholar 

  11. Klotz U. Effect of age on pharmacokinetics and pharmacodynamics in man. Int J Clin Pharmacol Ther 1998 Nov; 36(11): 581–5

    PubMed  CAS  Google Scholar 

  12. Ozdemir V, Fourie J, Busto U, et al. Pharmacokinetic changes in the elderly: do they contribute to drug abuse and dependence? Clin Pharmacokinet 1996; 31(5): 372–85

    PubMed  CAS  Google Scholar 

  13. Scott JC, Stanski DR. Decreased fentanyl and alfentanil dose requirements with age: a simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharmacol Exp Ther 1987 Jan; 240(1): 159–66

    PubMed  CAS  Google Scholar 

  14. Lemmens HJ, Bovill JG, Hennis PJ, et al. Age has no effect on the pharmacodynamics of alfentanil. Anesth Analg 1988 Oct; 67(10): 956–60

    PubMed  CAS  Google Scholar 

  15. Avram MJ, Krejcie TC, Niemann CU, et al. Isoflurane alters the recirculatory pharmacokinetics of physiologic markers. Anesthesiology 2000 Jun; 92(6): 1757–68

    PubMed  CAS  Google Scholar 

  16. Gepts E. Pharmacokinetic concepts for TCI anaesthesia. Anaesthesia 1998 Apr; 53Suppl. 1: 4–12

    PubMed  CAS  Google Scholar 

  17. Henthorn TK, Krejcie TC, Niemann CU, et al. Ketamine distribution described by a recirculatory pharmacokinetic model is not stereoselective. Anesthesiology 1999 Dec; 91(6): 1733–43

    PubMed  CAS  Google Scholar 

  18. Hull CJ. How far can we go with compartmental models? Anesthesiology 1990 Mar; 72(3): 399–402

    PubMed  CAS  Google Scholar 

  19. Krejcie TC, Avram MJ. What determines anesthetic induction dose? It’s the front-end kinetics, doctor! Anesth Analg 1999 Sep; 89(3): 541–4

    PubMed  CAS  Google Scholar 

  20. Bailey JM. Technique for quantifying the duration of intravenous anesthetic effect. Anesthesiology 1995 Nov; 83(5): 1095–103

    PubMed  CAS  Google Scholar 

  21. Hughes MA, Glass PS, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 1992 Mar; 76(3): 334–41

    PubMed  CAS  Google Scholar 

  22. Schraag S, Mohl U, Hirsch M, et al. Recovery from opioid anesthesia: the clinical implication of context-sensitive half-times. Anesth Analg 1998 Jan; 86(1): 184–90

    PubMed  CAS  Google Scholar 

  23. Davidson MH. Does differing metabolism by cytochrome p450 have clinical importance? Curr Atheroscler Rep 2000; 2(1): 14–9

    PubMed  CAS  Google Scholar 

  24. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000 Jan; 38(1): 41–57

    PubMed  CAS  Google Scholar 

  25. Dresser GK, Bailey DG. A basic conceptual and practical overview of interactions with highly prescribed drugs. Can J Clin Pharmacol 2002 Winter; 9(4): 191–8

    PubMed  Google Scholar 

  26. Thummel KE, Wilkinson GR. In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 1998; 38: 389–430

    PubMed  CAS  Google Scholar 

  27. Hemeryck A, Belpaire FM. Selective serotonin reuptake inhibitors and cytochrome P-450 mediated drug-drug interactions: an update. Curr Drug Metab 2002; 3(1): 13–37

    PubMed  CAS  Google Scholar 

  28. Miners JO. Evolution of drug metabolism: hitchhiking the technology bandwagon. Clin Exp Pharmacol Physiol 2001; 29(11): 1040–4

    Google Scholar 

  29. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34: 83–448

    PubMed  CAS  Google Scholar 

  30. Tanaka E. Clinically important pharmacokinetic drug-drug interactions of cytochrome P450 enzymes. J Clin Pharm Ther 1998; 23(6): 403–16

    PubMed  CAS  Google Scholar 

  31. Williams D, Feely J. Pharmacokinetic-pharmacodynamic drug interactions with CoA reductase inhibitors. Clin Pharmacokinet 2002; 41(5): 343–70

    PubMed  CAS  Google Scholar 

  32. Paspatis GA, Manolaraki M, Xirouchakis G, et al. Synergistic sedation with midazolam and propofol versus midazolam and pethidine in colonoscopies: a prospective, randomized study. Am J Gastroenterol 2002 Aug; 97(8): 1963–7

    PubMed  CAS  Google Scholar 

  33. Reimann FM, Samson U, Derad I, et al. Synergistic sedation with low-dose midazolam and propofol for colonoscopies. Endoscopy 2000 Mar; 32(3): 239–44

    PubMed  CAS  Google Scholar 

  34. Nieuwenhuijs DJ, Olofsen E, Romberg RR, et al. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology 2003 Feb; 98(2): 312–22

    PubMed  CAS  Google Scholar 

  35. Reves JG, Glass PSA, Lubarsky DA. Nonbarbiturate intravenous anesthetics. In: Miller RD, editor. Anesthesia. 5th ed. Philadelphia: Churchill Livingstone, 2000: 228–72

    Google Scholar 

  36. van Hemelrijck J, White PF. Nonopioid intravenous anesthesia. In: Barash PG, Cullen BF, Stoelting RK, editors. Clinical anesthesia. 3rd ed. Philadelphia: Lippincott-Raven Publishers, 1996: 311–27

    Google Scholar 

  37. Fragen RJ. Infusions of intravenous anesthetics. In: Fragen RJ, editor. Drug infusions in anesthesiology. 2nd ed. Philadelphia: Lippincott-Raven Publishers, 1996

    Google Scholar 

  38. McCollum JS, Dundee JW. Comparison of induction characteristics of four intravenous anaesthetic agents. Anaesthesia 1986 Oct; 41(10): 995–1000

    PubMed  CAS  Google Scholar 

  39. Hudson RJ, Stanski DR, Burch PG. Pharmacokinetics of methohexital and thiopental in surgical patients. Anesthesiology 1983 Sep; 59(3): 215–9

    PubMed  CAS  Google Scholar 

  40. Avram MJ, Sanghvi R, Henthorn TK, et al. Determinants of thiopental induction dose requirements. Anesth Analg 1993 Jan; 76(1): 10–7

    PubMed  CAS  Google Scholar 

  41. Bischoff KB, Dedrick RL. Thiopental pharmacokinetics. J Pharm Sci 1968 Aug; 57(8): 1346–51

    PubMed  CAS  Google Scholar 

  42. White PF. Clinical pharmacology of intravenous induction drugs. Int Anesthesiol Clin 1988 Summer; 26(2): 98–104

    PubMed  CAS  Google Scholar 

  43. Olsen RW. Barbiturates. Int Anesthesiol Clin 1988 Winter; 26(4): 254–61

    PubMed  CAS  Google Scholar 

  44. Krintel JJ, Wegmann F. Aminophylline reduces the depth and duration of sedation with barbiturates. Acta Anaesthesiol Scand 1987 May; 31(4): 352–4

    PubMed  CAS  Google Scholar 

  45. Stibolt O, Wachowiak-Andersen G. Altered response to intravenous thiopental and succinylcholine in acute amphetamine abuse. Acta Anaesthesiol Scand 2002 May; 46(5): 609–10

    PubMed  CAS  Google Scholar 

  46. Kaukinen S, Eerola M, Ylitalo P. Prolongation of thiopentone anaesthesia by probenecid. Br J Anaesth 1980 Jun; 52(6): 603–7

    PubMed  CAS  Google Scholar 

  47. Wilder-Smith OH, Ravussin PA, Decosterd LA, et al. Midazolam premedication and thiopental induction of anaesthesia: interactions at multiple end-points. Br J Anaesth 1999 Oct; 83(4): 590–5

    PubMed  CAS  Google Scholar 

  48. Lim TA, Inbasegaran K. Midazolam premedication and thiopental induction of anaesthesia. Br J Anaesth 2000 Jul; 85(1): 175–6

    PubMed  CAS  Google Scholar 

  49. Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology 1985 Jun; 62(6): 714–24

    PubMed  CAS  Google Scholar 

  50. Stanski DR, Maitre PO. Population pharmacokinetics and pharmacodynamics of thiopental: the effect of age revisited. Anesthesiology 1990 Mar; 72(3): 412–22

    PubMed  CAS  Google Scholar 

  51. Davis AW, Heavner JE. Polypharmacy, age, and scheduled surgery. J Clin Anesth 2002 Aug; 14(5): 329–34

    PubMed  Google Scholar 

  52. Sear JW, Higham H. Issues in the perioperative management of the elderly patient with cardiovascular disease. Drugs Aging 2002; 19(6): 429–51

    PubMed  Google Scholar 

  53. Cillo JE, Jr. Propofol anesthesia for outpatient oral and maxillofacial surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999; 87(5): 530–8

    PubMed  Google Scholar 

  54. Vargo JJ, Zuccaro Jr G, Dumot JA, et al. Gastroenterologistadministered propofol versus meperidine and midazolam for advanced upper endoscopy: a prospective, randomized trial. Gastroenterology 2002 Jul; 123(1): 8–16

    PubMed  CAS  Google Scholar 

  55. Wehrmann T, Kokabpick S, Lembcke B, et al. Efficacy and safety of intravenous propofol sedation during routine ERCP: a prospective, controlled study. Gastrointest Endosc 1999 Jun; 49(6): 677–83

    PubMed  CAS  Google Scholar 

  56. Miller LJ, Wiles-Pfeifler R. Propofol for the long-term sedation of a critically ill patient. Am J Crit Care 1998 Jan; 7(1): 73–6

    PubMed  CAS  Google Scholar 

  57. Marinella MA. Propofol for sedation in the intensive care unit: essentials for the clinician. Respir Med 1997 Oct; 91(9): 505–10

    PubMed  CAS  Google Scholar 

  58. Deegan RJ. Propofol: a review of the pharmacology and applications of an intravenous anesthetic agent. Am J Med Sci 1992 Jul; 304(1): 45–9

    PubMed  CAS  Google Scholar 

  59. Dundee JW, Clarke RS. Propofol. Eur J Anaesthesiol 1989 Jan; 6(1): 5–22

    PubMed  CAS  Google Scholar 

  60. Kanto JH. Propofol, the newest induction agent of anesthesia. Int J Clin Pharmacol Ther Toxicol 1988 Jan; 26(1): 41–57

    PubMed  CAS  Google Scholar 

  61. Skues MA, Prys-Roberts C. The pharmacology of propofol. J Clin Anesth 1989; 1(5): 387–400

    PubMed  CAS  Google Scholar 

  62. Trapani G, Altomare C, Liso G, et al. Propofol in anesthesia: mechanism of action, structure-activity relationships, and drug delivery. Curr Med Chem 2000 Feb; 7(2): 249–71

    PubMed  CAS  Google Scholar 

  63. Shafer SL. Advances in propofol pharmacokinetics and pharmacodynamics. J Clin Anesth 1993 Nov–Dec; 5 (6 Suppl. 1): 14S–21S

    PubMed  CAS  Google Scholar 

  64. Langley MS, Heel RC. Propofol: a review of its pharmacodynamic and pharmacokinetic properties and use as an intravenous anaesthetic. Drugs 1988 Apr; 35(4): 334–72

    PubMed  CAS  Google Scholar 

  65. Kirkpatrick T, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth 1988 Feb; 60(2): 146–50

    PubMed  CAS  Google Scholar 

  66. Shafer A, Doze VA, Shafer SL, et al. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 1988 Sep; 69(3): 348–56

    PubMed  CAS  Google Scholar 

  67. Schnider TW, Minto CF, Shafer SL, et al. The influence of age on propofol pharmacodynamics. Anesthesiology 1999 Jun; 90(6): 1502–16

    PubMed  CAS  Google Scholar 

  68. Carrasco G, Cabre L, Sobrepere G, et al. Synergistic sedation with propofol and midazolam in intensive care patients after coronary artery bypass grafting. Crit Care Med 1998 May; 26(5): 844–51

    PubMed  CAS  Google Scholar 

  69. Cressey DM, Claydon P, Bhaskaran NC, et al. Effect of midazolam pretreatment on induction dose requirements of propofol in combination with fentanyl in younger and older adults. Anaesthesia 2001 Feb; 56(2): 108–13

    PubMed  CAS  Google Scholar 

  70. Keita H, Peytavin G, Giraud O, et al. Aging prolongs recovery of psychomotor functions at emergence from propofol-alfentanil anaesthesia. Can J Anaesth 1998 Dec; 45(12): 1211–4

    PubMed  CAS  Google Scholar 

  71. Ropcke H, Konen-Bergmann M, Cuhls M, et al. Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth 2001 May; 13(3): 198–207

    PubMed  CAS  Google Scholar 

  72. Seifert H, Schmitt TH, Gultekin T, et al. Sedation with propofol plus midazolam versus propofol alone for interventional endoscopic procedures: a prospective, randomized study. Aliment Pharmacol Ther 2000 Sep; 14(9): 1207–14

    PubMed  CAS  Google Scholar 

  73. Taylor E, Ghouri AF, White PF. Midazolam in combination with propofol for sedation during local anesthesia. J Clin Anesth 1992 May–Jun; 4(3): 213–6

    PubMed  CAS  Google Scholar 

  74. Walder B, Borgeat A, Suter PM, et al. Propofol and midazolam versus propofol alone for sedation following coronary artery bypass grafting: a randomized, placebo-controlled trial. Anaesth Intensive Care 2002 Apr; 30(2): 171–8

    PubMed  CAS  Google Scholar 

  75. Giese JL, Stanley TH. Etomidate: a new intravenous anesthetic induction agent. Pharmacotherapy 1983 Sep–Oct; 3(5): 251–8

    PubMed  CAS  Google Scholar 

  76. Preziosi P, Vacca M. Adrenocortical suppression and other endocrine effects of etomidate. Life Sci 1988; 42(5): 477–89

    PubMed  CAS  Google Scholar 

  77. Arden JR, Holley FO, Stanski DR. Increased sensitivity to etomidate in the elderly: initial distribution versus altered brain response. Anesthesiology 1986 Jul; 65(1): 19–27

    PubMed  CAS  Google Scholar 

  78. Irifune M, Shimizu T, Nomoto M, et al. Ketamine-induced anesthesia involves the N-methyl-D-aspartate receptor-channel complex in mice. Brain Res 1992 Nov 20; 596(1–2): 1–9

    PubMed  CAS  Google Scholar 

  79. Klepstad P, Maurset A, Moberg ER, et al. Evidence of a role for NMDA receptors in pain perception. Eur J Pharmacol 1990 Oct 23; 187(3): 513–8

    PubMed  CAS  Google Scholar 

  80. Oye I. Ketamine analgesia, NMDA receptors and the gates of perception. Acta Anaesthesiol Scand 1998 Aug; 42(7): 747–9

    PubMed  CAS  Google Scholar 

  81. Chang T, Glazko AJ. Biotransformation and disposition of ketamine. Int Anesthesiol Clin 1974 Summer; 12(2): 157–77

    PubMed  CAS  Google Scholar 

  82. White PF, Johnston RR, Pudwill CR. Interaction of ketamine and halothane in rats. Anesthesiology 1975 Feb; 42(2): 179–86

    PubMed  CAS  Google Scholar 

  83. Clements JA, Nimmo WS. Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth 1981 Jan; 53(1): 27–30

    PubMed  CAS  Google Scholar 

  84. Grant IS, Nimmo WS, Clements JA. Pharmacokinetics and analgesic effects of i.m. and oral ketamine. Br J Anaesth 1981 Aug; 53(8): 805–10

    PubMed  CAS  Google Scholar 

  85. White PF, Way WL, Trevor AJ. Ketamine: its pharmacology and therapeutic uses. Anesthesiology 1982 Feb; 56(2): 119–36

    PubMed  CAS  Google Scholar 

  86. Soliman MG, Brindle GF, Kuster G. Response to hypercapnia under ketamine anaesthesia. Can Anaesth Soc J 1975 Jul; 22(4): 486–94

    PubMed  CAS  Google Scholar 

  87. Dundee JW, Bovill JG, Clarke RS, et al. Problems with ketamine in adults [abstract]. Anaesthesia 1971 Jan; 26(1): 86

    PubMed  CAS  Google Scholar 

  88. Garfield JM, Garfield FB, Stone JG, et al. A comparison of psychologic responses to ketamine and thiopental: nitrous oxide: halothane anesthesia. Anesthesiology 1972 Apr; 36(4): 329–38

    PubMed  CAS  Google Scholar 

  89. Kawaguchi M, Sakamoto T, Inoue S, et al. Low dose propofol as a supplement to ketamine-based anesthesia during intraoperative monitoring of motor-evoked potentials. Spine 2000 Apr 15; 25(8): 974–9

    PubMed  CAS  Google Scholar 

  90. Bell RF. Low-dose subcutaneous ketamine infusion and morphine tolerance. Pain 1999; 83(1): 101–3

    PubMed  CAS  Google Scholar 

  91. Eilers H, Philip LA, Bickler PE, et al. The reversal of fentanyl-induced tolerance by administration of “small-dose” ketamine. Anesth Analg 2001 Jul; 93(1): 213–4

    PubMed  CAS  Google Scholar 

  92. Greenblatt DJ. Pharmacology of benzodiazepine hypnotics. J Clin Psychiatry 1992 Jun; 53 Suppl.: 7–13

    PubMed  Google Scholar 

  93. Paterniti S, Dufouil C, Alperovitch A. Long-term benzodiazepine use and cognitive decline in the elderly: the Epidemiology of Vascular Aging Study. J Clin Psychopharmacol 2002 Jun; 22(3): 285–93

    PubMed  CAS  Google Scholar 

  94. Bell GD, Spickett GP, Reeve PA, et al. Intravenous midazolam for upper gastrointestinal endoscopy: a study of 800 consecutive cases relating dose to age and sex of patient. Br J Clin Pharmacol 1987; 23(2): 241–3

    PubMed  CAS  Google Scholar 

  95. Gray SL, Lai KV, Larson EB. Drug-induced cognition disorders in the elderly: incidence, prevention and management. Drug Saf 1999; 21(2): 101–22

    PubMed  CAS  Google Scholar 

  96. Closser MH. Benzodiazepines and the elderly: a review of potential problems. J Subst Abuse Treat 1991; 8(1–2): 35–41

    PubMed  CAS  Google Scholar 

  97. Greenblatt DJ. Benzodiazepine hypnotics: sorting the pharmacokinetic facts. J Clin Psychiatry 1991 Sep; 52 Suppl.: 4–10

    PubMed  Google Scholar 

  98. Greenblatt DJ, Harmatz JS, Shader RI. Clinical pharmacokinetics of anxiolytics and hypnotics in the elderly: therapeutic considerations (Part I). Clin Pharmacokinet 1991 Sep; 21(3): 165–77

    PubMed  CAS  Google Scholar 

  99. Lechin F, van der Dijs B, Benaim M. Benzodiazepines: tolerability in elderly patients. Psychother Psychosom 1996; 65(4): 171–82

    PubMed  CAS  Google Scholar 

  100. Reves JG, Fragen RJ, Vinik HR, et al. Midazolam: pharmacology and uses. Anesthesiology 1985 Mar; 62(3): 310–24

    PubMed  CAS  Google Scholar 

  101. Shorr RI, Robin DW. Rational use of benzodiazepines in the elderly. Drugs Aging 1994 Jan; 4(1): 9–20

    PubMed  CAS  Google Scholar 

  102. Amrein R, Hetzel W. Pharmacology of Dormicum (midazolam) and Anexate (flumazenil). Acta Anaesthesiol Scand Suppl 1990; 92: 6–15

    PubMed  CAS  Google Scholar 

  103. Mohler H, Richards JG. The benzodiazepine receptor: a pharmacological control element of brain function. Eur J Anaesthesiol Suppl 1988; 2: 15–24

    PubMed  CAS  Google Scholar 

  104. Mohler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. Eur J Anaesthesiol Suppl 2002 Jan; 300(1): 2–8

    CAS  Google Scholar 

  105. Forster A, Gardaz JP, Suter PM, et al. Respiratory depression by midazolam and diazepam. Anesthesiology 1980 Dec; 53(6): 494–7

    PubMed  CAS  Google Scholar 

  106. Alexander CM, Gross JB. Sedative doses of midazolam depress hypoxic ventilatory responses in humans. Anesth Analg 1988 Apr; 67(4): 377–82

    PubMed  CAS  Google Scholar 

  107. Alexander CM, Teller LE, Gross JB. Slow injection does not prevent midazolam-induced ventilatory depression. Anesth Analg 1992 Feb; 74(2): 260–4

    PubMed  CAS  Google Scholar 

  108. Bailey PL, Pace NL, Ashburn MA, et al. Frequent hypoxemia and apnea after sedation with midazolam and fentanyl. Anesthesiology 1990 Nov; 73(5): 826–30

    PubMed  CAS  Google Scholar 

  109. Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993 Mar; 53(3): 298–305

    PubMed  CAS  Google Scholar 

  110. Palkama VJ, Isohanni MH, Neuvonen PJ, et al. The effect of intravenous and oral fluconazole on the pharmacokinetics and pharmacodynamics of intravenous alfentanil. Anesth Analg 1998; 87(1): 190–4

    PubMed  CAS  Google Scholar 

  111. Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999 Jul; 66(1): 33–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Eilers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eilers, H., Niemann, C.U. Clinically Important Drug Interactions with Intravenous Anaesthetics in Older Patients. Drugs Aging 20, 969–980 (2003). https://doi.org/10.2165/00002512-200320130-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200320130-00002

Keywords

Navigation