Skip to main content
Log in

Potential Applications of Gene Therapy in the Patient with Cancer

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

The elderly population has much to gain from the advances of molecular medicine, although at present genetic pharmacology remains mostly at the conceptual level. Cancer, in particular, is an increasing health burden and the majority (over 70%) of gene therapy trials are aimed at tackling this problem. Available strategies employ both viral and synthetic vectors with the selective delivery and expression of therapeutic genes a pivotal requirement. Clinical trials are now in progress with a view to modulating disease at many different levels, including the direct replacement of abnormal genes, suicide-gene formulations, and the delivery of ‘gain of function’ genes, which seek to alter the malignant phenotype by indirect means, such as, immunopotentiation and stromal reorganisation. Early data from these studies is tantalising and we must remain optimistic that gene therapy will benefit the patient with cancer by both reducing morbidity and extending life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans: immunotherapy of patients with advanced melanoma using tumor infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570–8

    PubMed  CAS  Google Scholar 

  2. Blaese RM, Culver KW, Miller AD, et al. T-lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 1995; 270: 475–80

    PubMed  CAS  Google Scholar 

  3. Eliasson MJL, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischaemia. Nat Med 1997; 3: 1089–95

    PubMed  CAS  Google Scholar 

  4. Stenbit AE, Tsu-Shuen T, Li J, et al. GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nat Med 1997; 3: 1096–101

    PubMed  CAS  Google Scholar 

  5. Carroll JL, Bell MC, Gameau LJ, et al. Analysis of a bystander effect in vivo following adenovirus-based p53 gene therapy [abstract]. Proc Am Assoc Cancer Res 1999; 40: 3280

    Google Scholar 

  6. Caruso M, Panis Y, Gagandeep S, et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci U S A 1993; 90: 7024–8

    PubMed  CAS  Google Scholar 

  7. Wei MX, Tamiya T, Rhee RJ, et al. Diffusible cytotoxic metabolites contribute to the in vitro bystander effect associated with the cyclophosphamide/cytochrome P450 2B1 cancer gene therapy paradigm. Clin Cancer Res 1995; 1: 1171–7

    PubMed  CAS  Google Scholar 

  8. Elshami AA, Saavendra A, Zhang H, et al. Gap junctions play a role in the ‘bystander effect’ of the herpes simplex virus thymidine kinase/ganciclovir system in vitro. GeneTher 1996; 3: 85–92

    CAS  Google Scholar 

  9. Vile RG, Castledon S, Marshall J, et al. Generation of an anti-tumour response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoral cytokine expression. Int J Cancer 1997; 71: 267–74

    PubMed  CAS  Google Scholar 

  10. Nishizaki M, Fujiwara T, Tanida T, et al. Recombinant adenovirus expressing wild-type p53 is antiangiogenic: a proposed mechanism for bystander effect. Clin Cancer Res 1999; 5: 1015–23

    PubMed  CAS  Google Scholar 

  11. Patel PI. Identification of disease genes and somatic gene therapy: an overview and prospects for the aged. J Gerontology 1993; 48: B80–5

    CAS  Google Scholar 

  12. Blaese M, Blankenstein T, Brenner M, et al. Vectors in cancer therapy: how will they deliver? Cancer Gene Ther 1995; 2: 291–7

    PubMed  CAS  Google Scholar 

  13. Nabel GJ. Development of optimized vectors for gene therapy. Proc Natl Acad Sci U S A 1999; 96: 324–6

    PubMed  CAS  Google Scholar 

  14. Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997; 89: 21–39

    PubMed  CAS  Google Scholar 

  15. Dranoff G. Cancer gene therapy: connecting basic research with clinical inquiry. J Clin Oncol 1998; 16: 2548–56

    PubMed  CAS  Google Scholar 

  16. Anderson WF. Human gene therapy. Nature 1998; 392 Suppl.: 25–30

    PubMed  CAS  Google Scholar 

  17. Patterson A, Harris AL. Molecular chemotherapy for breast cancer. Drugs Aging 1999; 14: 75–90

    PubMed  CAS  Google Scholar 

  18. Clayman GL, El-Naggar AK, Lippman SM, et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol 1998; 16: 2221–32

    PubMed  CAS  Google Scholar 

  19. Kirn D, Hermiston T, McCormick F. ONYX-015: clinical data are encouraging. Nat Med 1998; 4: 1341–2

    PubMed  CAS  Google Scholar 

  20. Fujiwara T, Grimm EA, Mukhopadhyay T, et al. Induction of chemosensitivity in human lung cancer cells in vivo by adenovirus-mediated transfer of the wild-type p53 gene. Cancer Res 1994; 54: 2287–91

    PubMed  CAS  Google Scholar 

  21. Pirollo KF, Hao Z, Rait A, et al. p53-mediated sensitization of squamous cell carcinoma of the head and neck to radiotherapy. Oncogene 1997; 14: 1735–46

    PubMed  CAS  Google Scholar 

  22. Donahue RE, Kessler SW, Bodine D, et al. Helper virus induced T cell lymphoma in nonhuman primates after retroviral mediated gene transfer. J Exp Med 1992; 176: 1125–35

    PubMed  CAS  Google Scholar 

  23. Wang Q, Finer MH. Second-generation adenovirus vectors. Nat Med 1996; 2: 714–6

    PubMed  CAS  Google Scholar 

  24. Nevins JR. Mechanism of activation of early viral transcription by the adenovirus E1A gene product. Cell 1981; 26: 213–20

    PubMed  CAS  Google Scholar 

  25. Halbert DN, Cutt JR, Shenk T. Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff. J Virol 1985; 56: 250–7

    PubMed  CAS  Google Scholar 

  26. Gorziglia MI, Lapacevich C, Roy S, et al. Generation of an adenovirus vector lacking E1, e2a, E3, and all of E4 except open reading frame 3. J Virol 1999; 73: 6048–55

    PubMed  CAS  Google Scholar 

  27. Muruve DA, Barnes MJ, Stillman IE, et al. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999; 10: 965–76

    PubMed  CAS  Google Scholar 

  28. Dewey RA, Morrissey G, Cowsill CM, et al. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nature Med 1999; 5: 1256–63

    PubMed  CAS  Google Scholar 

  29. Gene therapy: a loss of innocence [editorial]. Nat Med 2000; 6: 1

    Google Scholar 

  30. Kim CJ, Cormier J, Roden M, et al. Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity. Ann Surg Oncol 1998; 5: 64–76

    PubMed  CAS  Google Scholar 

  31. Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates in p53-deficient human tumor cells. Science 1996; 274: 373–6

    PubMed  CAS  Google Scholar 

  32. Hall AR, Dix BR, O’Carroll SJ, et al. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 1998; 4: 1068–72

    PubMed  CAS  Google Scholar 

  33. Kirn D, Nemunaitis J, Ganly I, et al. A phase II trial with an EIB-deleted adenovirus, ONYX-015, in patients with recurrent refractory head and neck cancer [abstract]. Proc Am Soc Clin Oncol 1998; 17: 1509

    Google Scholar 

  34. Heise C, Sampson-Johannes A, Williams A, et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–45

    PubMed  CAS  Google Scholar 

  35. Freytag SO, Rogulski KR, Paielli DL, et al. A novel three-pronged approachto kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–33

    PubMed  CAS  Google Scholar 

  36. Rampling R, Cruickshank G, Papanastassiou V, et al. Toxicity evaluation of relication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 200; 7: 859–66

  37. Markert JM, Medlock MD, Rabkin SD. Conditinally relicating herpes simples virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 200; 7: 867–74

  38. Nalbantoglu J, Pari G, Karpati G, et al. Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum Gene Ther 1999; 10: 1009–19

    PubMed  CAS  Google Scholar 

  39. Li Y, Rey-Chen P, Bergelson JM, et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–30

    PubMed  CAS  Google Scholar 

  40. Gropp R, Michaela F, Wagner TOF, et al. Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum Gene Ther 1999; 10: 957–64

    PubMed  CAS  Google Scholar 

  41. Bosse R, Singhofer-Wowra M, Rosenthal F, et al. Good manufacturing practice production of human stem cells for somatic cell and gene therapy. Stem Cells 1997; 15 Suppl. 1: 275–80

    Google Scholar 

  42. Linden RM, Woo SLC. Avant-garde gene therapy. Nat Med 1999; 5: 21–2

    PubMed  CAS  Google Scholar 

  43. Coffey MC, Strong JE, Forsyth PA, et al. Reovirus therapy of tumors with activated Ras pathway. Science 1998; 282: 1332–4

    PubMed  CAS  Google Scholar 

  44. Zufferey R, Dull T, Mandel RJ, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 1998; 72: 9873–80

    PubMed  CAS  Google Scholar 

  45. Poeschla EM, Wong-Staal F, Looney DJ. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998; 4: 354–7

    PubMed  CAS  Google Scholar 

  46. Langer R. Drug delivery and targeting. Nature 1998; 392 Suppl.: 5–10

    PubMed  CAS  Google Scholar 

  47. Tang WH, Xu L, Pirollo KF, et al. A ligand-directed, tumor-targeting systemic gene delivery system [abstract]. Proc Am Assoc Cancer Res 1999; 40: 4167

    Google Scholar 

  48. Murray JL, Yoo GH, Lopez-Berestein G, et al. Phase I trial of intratumoral liposomal-E1A gene therapy in patients with recurrent/refractory breast cancer (BC) and head and neck (H&N) cancer [abstract]. Proc Am Soc Clin Oncol 1998: 17; 1662

    Google Scholar 

  49. Nabel GJ, Gordon D, Bishop DK, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A 1996; 93: 15388–93

    PubMed  CAS  Google Scholar 

  50. Roth JA, Nguyen D, Lawrence DD, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2: 985–91

    PubMed  CAS  Google Scholar 

  51. Hang Y, Mukhopadhyay T, Donehower LA, et al. Retroviral vector-mediated transduction of K-ras antisense RNA into human lung cancer cells inhibits expression of the malignant phenotype. Hum Gene Ther 1993; 4: 451–60

    Google Scholar 

  52. Monia BP, Johnston JF, Geiger T, et al. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996; 2: 668–74

    PubMed  CAS  Google Scholar 

  53. Webb A, Cunningham D, Cotter F, et al. BCL-2 antisense therapy in patients with non-Hodgkin lymphoma. Lancet 1997; 349: 1137–41

    PubMed  CAS  Google Scholar 

  54. Ho PT, Parkinson DR. Antisense oligonucleotides as therapeutics for malignant diseases. Semin Oncol 1997; 24: 187–202

    PubMed  CAS  Google Scholar 

  55. Akhtar S, Agrawal S. In vivo studies with antisense oligonucleotides. Trends Pharmacol Sci 1997; 18: 12–8

    PubMed  CAS  Google Scholar 

  56. Tortora G, Caputo R, Pomatico G, et al. Cooperative inhibitory effect of novel mixed backbone oligonucleotide targeting protein kinase A in combination woth docetaxel and anti-epidermal growth factor-receptor antibody on human breast cancer cell growth. Clin Cancer Res 1999; 5: 875–81

    PubMed  CAS  Google Scholar 

  57. Yamamoto T, Yamamoto S, Kataoka T, et al. Ability of oligonucleotides with certain palindromes to induce interferon production and augment natural killer cell activity is associated with their base length. Antisense Res Dev 1994; 4: 119–22

    PubMed  CAS  Google Scholar 

  58. Roman M, Martin-Orozco E, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1 promoting adjuvants. Nat Med 1997; 3: 849–54

    PubMed  CAS  Google Scholar 

  59. Chong H, Vile R. Gene therapy for cancer. Drugs Future 1997; 22: 857–74

    CAS  Google Scholar 

  60. Perry MA, Todryk S, Dalgleish AG. The role of HSVtk in the treatment of solid tumours. Expert Opin Invest Drugs 1999; 8: 777–85

    CAS  Google Scholar 

  61. Hamel W, Magnelli L, Chirarugi V, et al. Herpes simplex virus thymidine kinase/ganciclovir-mediated apoptotic death of bystander cells. Cancer Res 1996; 56: 2697–302

    PubMed  CAS  Google Scholar 

  62. Craperi D, Vicat JM, Nissou MF, et al. Increased Bax expression is associated with cell death induced by ganciclovir in a herpes thymidine kinase gene-expressing glioma cell line. Hum Gene Ther 1999; 10: 679–88

    PubMed  CAS  Google Scholar 

  63. Barba D, Hardin J, Sadelain M, et al. Development of antitumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci U S A 1994; 91: 4348–52

    PubMed  CAS  Google Scholar 

  64. Izquierdo ML. An overview of gene therapy approaches to neurological malignancies. BioDrugs 1998; 9: 337–49

    PubMed  CAS  Google Scholar 

  65. Ram Z, Culver KW, Oshiro ME, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producer cells. Nat Med 1997; 3: 1354–61

    PubMed  CAS  Google Scholar 

  66. Klatzmann D, Cherin P, Bensimon G, et al. Aphase I/II dose-escalation study of herpes simplex virus type 1 thymidine kinase ‘suicide’ gene therapy for metastatic melanoma. Study Group on Gene Therapy of Metastatic Melanoma. Hum Gene Ther 1998; 9: 2585–94

    PubMed  CAS  Google Scholar 

  67. Ido A, Nakata K, Kato Y, et al. Gene therapy for hepatoma cells using a retrovirus vector carrying herpes simplex virus thymidine kinase gene under the control of human alpha-fetoprotein gene promoter. Cancer Res 1995; 55: 3105–9

    PubMed  CAS  Google Scholar 

  68. Chen L, Chen D, Manome Y, et al. Breast cancer selective gene expression and therapy mediated by recombinant adenoviruses containing the DF3/MUC1 promoter. J Clin Invest 1995; 96: 2775–82

    PubMed  CAS  Google Scholar 

  69. Vandier D, Rixe O, Brenner M, et al. Selective killing of glioma cell lines using an astrocyte-specific expression of the herpes sinplex virus-thymidine kinase gene. Cancer Res 1998; 58: 4577–80

    PubMed  CAS  Google Scholar 

  70. Mullen C, Kilstrup M, Blaese R. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A 1992; 89: 33–7

    PubMed  CAS  Google Scholar 

  71. Mullen CA, Coale MM, Lowe R, et al. Tumors expressing the cytosine deaminase suicide gene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild-type tumor. Cancer Res 1994; 54: 1503–6

    PubMed  CAS  Google Scholar 

  72. Huber BE, Austin EA, Richards CA, et al. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci U S A 1994; 91: 8302–6

    PubMed  CAS  Google Scholar 

  73. Cao G, Kuriyama S, Gao J, et al. Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther 1999; 6: 83–90

    PubMed  CAS  Google Scholar 

  74. Bordignon C, Bonini C, Verzeletti S, et al. Transfer of the HSV-tk gene into donor peripheral blood lymphocytes for in vivo modulation of donor anti-tumor immunity after allogeneic bone marrow transplantation. Hum Gene Ther 1995; 6: 813–9

    PubMed  CAS  Google Scholar 

  75. Bonini C, Ferrari G, Verzeletti S, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science 1997; 276: 1719–24

    PubMed  CAS  Google Scholar 

  76. Verzeletti S, Bonini C, Marktel S, et al. Herpes simplex virus thymidine kinase gene transfer for controlled graft-versus-host disease and graft-versus-leukemia: clinical follow-up and improved new vectors. Hum Gene Ther 1998; 9: 2243–51

    PubMed  CAS  Google Scholar 

  77. Dalgleish AG, Browning MJ, editors. Tumour immunology: immunotherapy and cancer vaccines. Cambridge: Cambridge University Press, 1996

    Google Scholar 

  78. Human gene marker/therapy clinical protocols. Hum Gene Ther 1999; 10: 1043–92

    Google Scholar 

  79. Asher AL, Mule JJ, Kasid A, et al. Murine tumor cells transduced with the gene for tumor necrosis factor-alpha: evidence for paracrine immune effects of tumour necrosis factor-alpha against tumors. J Immunol 1991; 146: 3227–34

    PubMed  CAS  Google Scholar 

  80. Fearon ER, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397–403

    PubMed  CAS  Google Scholar 

  81. Gansbacher B, Zier K, Daniels B, et al. Interleukin-2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990; 172: 1217–24

    PubMed  CAS  Google Scholar 

  82. Hock H, Dorsch M, Diamantstein, et al. Interleukin 7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 1991; 174: 1291–8

    PubMed  CAS  Google Scholar 

  83. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993; 90: 3539–43

    PubMed  CAS  Google Scholar 

  84. Lim M, Simons JW. Emerging concepts in GM-CSF gene-transduced tumor vaccines for human prostate cancer. Curr Opin Mol Ther 1999; 1: 64–71

    PubMed  CAS  Google Scholar 

  85. Dilloo D, Bacon K, Holden W, et al. Combined chemokine and cytokine gene transfer enhances antitumor immunity. Nat Med 1996; 2: 1090–5

    PubMed  CAS  Google Scholar 

  86. Paillard F. Cytokine and chemokine: a stimulating couple. Hum Gene Ther 1999; 10: 695–6

    PubMed  CAS  Google Scholar 

  87. Wallich R, Bulbuc N, Hammerling GH, et al. Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature 1985; 315: 301–5

    PubMed  CAS  Google Scholar 

  88. Plaskin D, Gelber C, Feldman M, et al. Reversal of the metastatic phenotype in Lewis lung carcinoma cells after transfection with syngeneic H-2Kb gene. Proc Natl Acad Sci U S A 1988; 85: 4463–7

    Google Scholar 

  89. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 1993; 259: 368–70

    PubMed  CAS  Google Scholar 

  90. Putzer BM, Hitt M, Mueller Wl, et al. Interleukin-12 and B7-I costimulatory molecule expressed by an adenoviral vector act synergistically to facilitate tumor regression. Proc Natl Acad Sci U S A 1997; 94: 10889–94

    PubMed  CAS  Google Scholar 

  91. Dalgleish AG. The case for therapeutic vaccines. Melanoma Res 1996; 6: 5–10

    PubMed  CAS  Google Scholar 

  92. Dalgleish AG. The development of therapeutic vaccines of the management of malignant melanoma. Cancer Surv 1996; 26: 289–319

    PubMed  CAS  Google Scholar 

  93. Hrouda D, Dalgleish AG. Gene therapy for prostate cancer. Gene Ther 1996; 3: 845–52

    PubMed  CAS  Google Scholar 

  94. Todryk SM, Chong H, Vile RG, et al. Can immunotherapy by gene transfer tip the balance against colorectal cancer? Gut 1998; 43: 445–9

    PubMed  CAS  Google Scholar 

  95. Abdel-Wahab Z, Weltz C, Hester D, et al. A phase I clinical trial of immunotherapy with interferon-γ gene-modified autologous melanoma cells. Cancer 1997; 80: 401–12

    PubMed  CAS  Google Scholar 

  96. Schreiber S, Kämpgen E, Wagner E, et al. Immunotherapy of metastatic malignant melanoma by a vaccine consisting of autologous interleukin 2-transfected cancer cells: outcome of a phase 1 study. Hum Gene Ther 1999; 10: 983–93

    PubMed  CAS  Google Scholar 

  97. Soiffer R, Lynch T, Mihm M, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A 1998; 95: 13141–6

    PubMed  CAS  Google Scholar 

  98. Hennemann B, Andreesen R. Monocyte/macrophage activation by immunostimulators. Clin Immunother 1996; 5: 294–308

    Google Scholar 

  99. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–51

    PubMed  CAS  Google Scholar 

  100. Gilboa E, Nair SK, Lyerly HK. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 1998; 46: 82–7

    PubMed  CAS  Google Scholar 

  101. Zhong L, Granelli-Piperno A, Choi Y, et al. Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells. Eur J Immunol 1999; 29: 964–72

    PubMed  CAS  Google Scholar 

  102. Diebold S, Lehrmann H, Kursa M, et al. Efficient gene delivery into human dendritic cells by adenovirus polyethylenimine and mannose polyethylenimine transfection. Hum Gene Ther 1999; 10: 775–86

    PubMed  CAS  Google Scholar 

  103. Condon C, Watkins SC, Celluzzi CM, et al. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med 1996; 2: 1122–8

    PubMed  CAS  Google Scholar 

  104. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumour lysate-pulsed dendritic cells. Nat Med 1998; 4: 328–32

    PubMed  CAS  Google Scholar 

  105. Okada H, Tahara H, Shurin MR, et al. Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. Int J Cancer 1998; 78: 196–201

    PubMed  CAS  Google Scholar 

  106. Reeves M, Royal R, Lam J, et al. Retroviral transduction of human dendritic cells with a tumor-associated antigen gene. Cancer Res 1996; 56: 5672–7

    PubMed  CAS  Google Scholar 

  107. Pérez-Díez A, Butterfield LH, Li L, et al. Generation of CD8+ and CD4+ T-cell response to dendritic cells genetically engineered to express the MART-1/Melan-A gene. Cancer Res 1998; 58: 5305–9

    PubMed  Google Scholar 

  108. Uyttenhove C, Maryanski J, Boon T. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med 1983; 157: 1040–52

    PubMed  CAS  Google Scholar 

  109. Topalian SL, Kasid A, Rosenberg SA. Immunoselection of a human melanoma resistant to specific lysis by autologous tumor-infiltrating lymphocytes. J Immunol 1990; 144: 4487–95

    PubMed  CAS  Google Scholar 

  110. Jäger E, Ringhoffer M, Altmannsberger M, et al. Immunoselection in vivo: independent loss of MHC class I and melanocyte differentiation antigen expression in metastatic melanoma. Int J Can 1997; 71: 142–7

    Google Scholar 

  111. Miller PW, Sharma, S, Stolina M, et al. Intratumoral administration of cytokine gene-modified dendritic cells augments antigen presentation and processing in non-small cell lung cancer [abstract]. Proc Am Assoc Cancer Res 1999; 40: 572

    Google Scholar 

  112. Cao X, Zhang W, He L, et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J Immunol 1998; 161: 6238–44

    PubMed  CAS  Google Scholar 

  113. Hwu P, Yang JC, Cowherd R, et al. In vivo antitumor activity of T cells redirected with chimeric antibody/T cell receptor genes. Cancer Res 1995; 55: 3369–73

    PubMed  CAS  Google Scholar 

  114. Wang G, Chopra RK, Royal RE, et al. A T cell-independent antitumor response in mice with bone marrow cells retrovirally transduced with an antibody/Fc-gamma chain gene recognising a human ovarian cancer antigen. Nature Med 1998; 4: 168–72

    PubMed  CAS  Google Scholar 

  115. Altenschmidt U, Moritz D, Croner B. Specific cytotoxic T lymphocytes in gene therapy. J Mol Med 1997; 75: 259–66

    PubMed  CAS  Google Scholar 

  116. Paillard F. Immunotherapy with T cells bearing chimeric antitumor receptors. Hum Gene Ther 1999; 10: 151–3

    PubMed  CAS  Google Scholar 

  117. Shiraki K, Tsuji N, Shioda T, et al. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci U S A 1996; 94: 6420–5

    Google Scholar 

  118. McGuiness RP, Ge Y, Patel SD, et al. Anti-tumor activity of human T cells expressing the CC49-zeta chimeric immune receptor. Hum Gene Ther 1999; 10: 165–73

    Google Scholar 

  119. Tahara H, Zeh Hl, Storkus WJ, et al. Fibroblasts genetically engineered to secrete interleukin-12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res 1994; 54: 182–9

    PubMed  CAS  Google Scholar 

  120. Syrengelas AD, Chen TT, Levy R. DNA immunization induces protective immunity against B-cell lymphoma. Nat Med 1996; 2: 1038–41

    PubMed  CAS  Google Scholar 

  121. Horton HM, Anderson D, Hernandez P, et al. A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon α. Proc Natl Acad Sci U S A 1999; 96: 1553–8

    PubMed  CAS  Google Scholar 

  122. Kong HL, Crystal RG. Gene therapy strategies for tumor anti-angiogenesis. J Natl Cancer Inst 1998; 90: 273–86

    PubMed  CAS  Google Scholar 

  123. Tanaka T, Manome Y, Wen P, et al. Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angio-genesis and tumor growth. Nat Med 1997; 3: 437–42

    PubMed  CAS  Google Scholar 

  124. Valente P, Fassina G, Melchiori A, et al. TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis. Int J Cancer 1998; 75: 246–53

    PubMed  CAS  Google Scholar 

  125. Baker AH, George SJ, Zaltsman AB, et al. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer 1999; 79: 1347–55

    PubMed  CAS  Google Scholar 

  126. Rigg AS, Waxman J, Lemoine NR. Gene therapy with TIMP1 or TIMP2 prolongs the survival and reduces the burden of disease for mice harboring intraperitoneal human pancreatic carcinomas [abstract]. Proc Am Assoc Cancer Res 1999; 40: 4169

    Google Scholar 

  127. Oku T, Tjuvajec JG, Miyagawa T, et al. Tumor growth modulation by sense and antisense vascular endothelial growth factor gene expression: effects on angiogenesis, vascular permeability, blood volume, blood flow, fluorodeoxyglucose uptake, and proliferation of human melanoma intracerebral xenografts. Cancer Res 1998; 58: 4185–92

    PubMed  CAS  Google Scholar 

  128. Im SA, Gomez-Manzano C, Fueyo J, et al. Antiangiogenesis treatment for gliomas: transfer of antisense-vascular endothelial growth factor inhibits tumor growth in vivo. Cancer Res 1999; 59: 895–900

    PubMed  CAS  Google Scholar 

  129. Goldman CK, Kendall RL, Cabrera G, et al. Paracrine expression of a native soluble vascular endothelial growth factor recptor inhibits tumor growth, metastasis, and mortality rate. Proc Natl Acad Sci U S A 1998; 95: 8795–800

    PubMed  CAS  Google Scholar 

  130. Machein MR, Risau W, Plate KH. Antiangiogenic gene therapy in a rat glioma model using a dominant-negative vascular endothelial growth factor receptor 2. Hum Gene Ther 1999; 10: 1117–28

    PubMed  CAS  Google Scholar 

  131. Gabrilovich DI, Ishida T, Nadaf S, et al. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 1999; 5: 2963–70

    PubMed  CAS  Google Scholar 

  132. Cao Y, O’Reilly MS, Marshall B, et al. Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. J Clin Invest 1998; 101: 1055–63

    PubMed  CAS  Google Scholar 

  133. Tanaka T, Cao Y, Folkman J, et al. Viral vector-targeted anti-angiogenic gene therapy utilizing an angiostatin complementary DNA. Cancer Res 1998; 58: 3362–9

    PubMed  CAS  Google Scholar 

  134. Chen QR, Kumar D, Stass SA, et al. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res 1999; 59: 3308–12

    PubMed  CAS  Google Scholar 

  135. Liu Y, Thor A, Shtivelman E, et al. Systemic gene delivery expands the repertoire of effective antiangiogenic agents. J Biol Chem 1999; 274: 13338–44

    PubMed  CAS  Google Scholar 

  136. Gottesman M. How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 1993; 53: 747–54

    PubMed  CAS  Google Scholar 

  137. Podda S, Ward M, Himelstein A, et al. Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci U S A 1992; 89: 9676–80

    PubMed  CAS  Google Scholar 

  138. Sorrentino BP, Brandt SJ, Bodine D, et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992; 257: 99–103

    PubMed  CAS  Google Scholar 

  139. Rafferty JA, Hickson I, Chinnasamy N, et al. Chemoprotection of normal tissues by transfer of drug resistance genes. Cancer Metastasis Rev 1996; 15: 365–83

    PubMed  CAS  Google Scholar 

  140. Hesdorffer C, Ayello J, Ward M, et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 1998; 16: 165–72

    PubMed  CAS  Google Scholar 

  141. Merrouche Y, Negrier S, Bain C, et al. Clinical application of retroviral gene transfer in oncology: results of a French study with tumor-infiltrating lymphocytes transduced with the gene of resistance to neomycin. J Clin Oncol 1995; 13: 410–8

    PubMed  CAS  Google Scholar 

  142. Brenner MK, Rill DR, Moen RC, et al. Gene marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 1993; 341: 85–6

    PubMed  CAS  Google Scholar 

  143. Deisseroth AB, Zu Z, Claxton D, et al. Genetic marking shows that Ph+ cells present in autologous transplants of chronic myelogenous leukaemia (CML) contribute to relapse after autologous bone marrow transplantation in CML. Blood 1994; 83: 3068–76

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Todryk for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr W. Szlosarek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szlosarek, P.W., Dalgleish, A.G. Potential Applications of Gene Therapy in the Patient with Cancer. Drugs & Aging 17, 121–132 (2000). https://doi.org/10.2165/00002512-200017020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200017020-00004

Keywords

Navigation