Advertisement

Drugs & Aging

, Volume 15, Supplement 1, pp 1–10 | Cite as

A Brief History of Pneumococcal Vaccines

  • Robert Austrian
Review Article

Abstract

Attempts to control pneumococcal infection by vaccination, undertaken initially in 1911, have gone through 3 phases during the subsequent 8 decades. Initially, vaccines of killed pneumococcal cells prepared in a variety of ways were used in epidemic settings with inconclusive results, although administered to approximately 1 million recipients. The discovery that adults injected with small amounts of purified capsular polysaccharide developed antibodies to the homologous capsular type led to the trial of a tetravalent vaccine that showed conclusively its ability to prevent infection by the types represented in it. With the advent of penicillin and other effective antipneumococcal drugs, interest in prophylaxis waned. Interest in vaccination was revived only after demonstration that some segments of the population remained at high risk of death if infected and after the emergence of multidrug-resistant pneumococci. Infants and young children, among whom the incidence of pneumococcal infection is high, respond poorly to purified bacterial polysaccharides but develop satisfactory responses to bacterial polysaccharides when these are linked chemically to a protein. The early results of trials with such polysaccharide protein conjugate vaccines give promise that control of a significant portion of pneumococcal infection in the paediatric population will soon be feasible.

Keywords

Adis International Limited Pneumococcal Vaccine Capsular Polysaccharide Pneumococcal Pneumonia Pneumococcal Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heffron R. Pneumonia with special reference to pneumococcus lobar pneumonia. New York: The Commonwealth Fund, 1939Google Scholar
  2. 2.
    Austrian R, Gold J. Pneumococcal bacteremia with especial reference to bacteremic pneumococcal pneumonia. Ann Intern Med 1964; 60: 759–76PubMedGoogle Scholar
  3. 3.
    Reichler MR, Allphin AA, Breiman RF, et al. The spread of multiply resistant Streptococcus pneumoniae at a daycare center in Ohio. J Infect Dis 1992; 166: 1346–53PubMedCrossRefGoogle Scholar
  4. 4.
    Sternberg GM. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. An experimental research. Natl Bd Health Bull 1881; 2: 781–3Google Scholar
  5. 5.
    Sternberg GM. Induced septicaemia in the rabbit. Am J Med Sci 1882; 84: 69–76CrossRefGoogle Scholar
  6. 6.
    Weichselbaum A. Ueber die Aetiologie der acuten Lungen-und Rippenfellentzundungen. Med Jahrbücher 1886; 1: 483–554Google Scholar
  7. 7.
    Austrian R. Of gold and pneumococci. A history of pneumococcal vaccines in South Africa. Trans Am Clin Climatol Assoc 1997; 89: 141–61Google Scholar
  8. 8.
    Wright AE, Parry Morgan W, Colebrook L, et al. Observations on prophylactic inoculation against pneumococcus infection and on the results which have been achieved by it. Lancet 1914; 1: 1–10, 87-95CrossRefGoogle Scholar
  9. 9.
    Maynard GD. An enquiry into the etiology, manifestations and prevention of pneumonia amongst natives on the Rand recruited from Tropical areas. Pub S Afr Inst Med Res 1913; 1: 1–101Google Scholar
  10. 10.
    Pasteur L. Note sur la maladie nouvelle proveqúee par la salive d’un enfant mort de la rage. Bull acad méd [Paris] 1881; 10, 2ser: 94–163Google Scholar
  11. 11.
    Klemperer G, Klemperer F. Versuche über Immunisierung und Heilung bei Pneumokokkeninfektion. Berliner klin Wchnschrift 1891; 28: 833–5, 869-75Google Scholar
  12. 12.
    Neufeld F. Ueber ein specifische bakteriolytische Wirkung der Galle. Z Hyg Infektionskr 1900; 34: 454–64CrossRefGoogle Scholar
  13. 13.
    Neufeld F. Ueber die Agglutination der Pneumokokken und über die Theorie der Agglutination. Z Hyg Infektionskr 1902; 40: 54–72CrossRefGoogle Scholar
  14. 14.
    Bezançon F, Griffon V. Pouvoir agglutinatif du serum dans les infections expérimentales et humaines à pneumocoques (deuxième partie). Comptes rendus hebdomadaires des sciences et mémoires de la société de biologie 1897; 49: 579–81Google Scholar
  15. 15.
    Neufeld F, Haendel L. Weitere Untersuchungen über Pneumokokken Heilsera. III Mitteilung. Über Vorkomnmen und Bedeutung atypischer Varietäten des Pneumokokkus. Arb a d kaiserlichen Gesundheitsamte 1910; 34: 293–304Google Scholar
  16. 16.
    Lister FS. Specific serological reactions with pneumococci from different sources. Pub S Afr Inst Med Res 1913; 2: 103–16Google Scholar
  17. 17.
    Lister FS. An experimental study of prophylatic inoculation against pneumococcal infection in the rabbit and in man. Pub S Afr Inst Med Res 1916; 8: 231–87Google Scholar
  18. 18.
    Dochez AR, Avery OT. Soluble substance of pneumococcus origin in the blood and urine during lobar pneumonia. Proc Soc Exp Biol Med 1917; 14: 126–7Google Scholar
  19. 19.
    Dochez AR, Avery OT. The elaboration of specific soluble substance by pneumococcus during growth. J Exp Med 1917; 26: 479–93CrossRefGoogle Scholar
  20. 20.
    Heidelberger M, Avery OT. The soluble specific substance of pneumococcus. J Exp Med 1923; 38: 73–9PubMedCrossRefGoogle Scholar
  21. 21.
    Heidelberger M, Avery OT. The soluble specific substance of pneumococcus. Second paper. J Exp Med 1924; 40: 301–16PubMedCrossRefGoogle Scholar
  22. 22.
    Schiemann O, Casper W. Sind die spezifisch präcipitabelen Substanzen der 3 Pneumokokkentypen Haptene? Z Hyg Infektionskr 1927; 108: 220–57CrossRefGoogle Scholar
  23. 23.
    Schiemann O. Weitere Untersuchungen mit dem Kohlenhydrat aus Typ — II - Pneumokokken. Z Hyg Infektionskr 1929; 110: 567–80CrossRefGoogle Scholar
  24. 24.
    Francis Jr T, Tillett WS. Cutaneous reactions in pneumonia. The development of antibodies following the intradermal injection of type-specific polysaccharide. J Exp Med 1930; 52: 853–65CrossRefGoogle Scholar
  25. 25.
    Finland M, Sutliff WD. Specific cutaneous reactions and circulating antibodies in the course of lobar pneumonia. I. Cases receiving no serum therapy. J Exp Med 1931; 54: 637–52PubMedCrossRefGoogle Scholar
  26. 26.
    Finland M, Brown JW. Reactions of human subjects to the injection of purified type specific pneumococcus polysaccharides. J Clin Invest 1938; 17: 479–88PubMedCrossRefGoogle Scholar
  27. 27.
    Ekwurzel GM, Simmons JS, Dublin LI, et al. Studies on immunizing substances in pneumococci. VIII. Report on field tests to determine the prophylactic value of a pneumococcus antigen. Public Health Rep 1938; 53: 1877–93CrossRefGoogle Scholar
  28. 28.
    MacLeod CM, Hodges R, Heidelberger M, et al. Prevention of pneumococcal pneumonia by immunization. J Exp Med 1945; 82: 445–65CrossRefGoogle Scholar
  29. 29.
    Artenstein MS, Gold R, Zimmerly JG, et al. Prevention of meningococcal disease by group C polysaccharide vaccine. N Engl J Med 1970; 282: 417–20PubMedCrossRefGoogle Scholar
  30. 30.
    Tillett WS, Cambier MJ, McCormack JE. The treatment of lobar pneumonia and pneumococcal empyema with penicillin. Bull NY Acad Med 1944; 20: 142–78Google Scholar
  31. 31.
    Austrian R, Douglas RM, Schiffman G, et al. Prevention of pneumococcal pneumonia by vaccination. Trans Assoc Am Phys 1976; 89: 184–94PubMedGoogle Scholar
  32. 32.
    Smit P, Oberholzer D, Hayden-Smith S, et al. Protective efficacy of pneumococcal polysaccharide vaccine. JAMA 1977; 238: 2613–6PubMedCrossRefGoogle Scholar
  33. 33.
    Clemens JD, Shapiro ED. Resolving the pneumococcal vaccine controversy: are there alternatives to randomized clinical trials? Rev Infect Dis 1984; 6: 589–600PubMedCrossRefGoogle Scholar
  34. 34.
    Shapiro ED, Clemens JD. A controlled evaluation of the protective efficacy of pneumococcal vaccine for patients at high risk of serious pneumococcal infections. Ann Intern Med 1984; 101: 325–30PubMedGoogle Scholar
  35. 35.
    Bolan G, Broome CV, Facklam RR, et al. Pneumococcal vaccine efficacy in selected populations in the United States. Ann Intern Med 1986; 104: 1–6PubMedGoogle Scholar
  36. 36.
    Sims RV, Steinmann WC, McConville JH, et al. The clinical effectiveness of pneumococcal vaccine in the elderly. Ann Intern Med 1988; 108: 653–9PubMedGoogle Scholar
  37. 37.
    Shapiro ED, Berg AT, Austrian R, et al. The protective efficacy of pneumococcal polysaccharide vaccine. N Engl J Med 1991; 325: 1453–60PubMedCrossRefGoogle Scholar
  38. 38.
    Heidelberger M, diLapi MM, Siegel M, et al. Persistence of antibodies in human subjects injected with pneumococcal polysaccharides. J Immunol 1950; 65: 535–41PubMedGoogle Scholar
  39. 39.
    Davidson M, Bulkow LR, Grabman J, et al. Immunogenicity of pneumococcal revaccination in patients with chronic disease. Arch Intern Med 1994; 154: 2209–14PubMedCrossRefGoogle Scholar
  40. 40.
    Rodriguez R, Dyer PD. Safety of pneumococcal revaccination. J Gen Intern Med 1995; 10: 511–2PubMedCrossRefGoogle Scholar
  41. 41.
    Miller RA. The aging immune system: primer and prospectus. Science 1996; 273: 70–4PubMedCrossRefGoogle Scholar
  42. 42.
    Sloyer JL, Ploussard JH, Howie VM. Efficacy of pneumococcal polysaccharide vaccine in preventing acute otitis media in infants in Huntsville, Alabama. Rev Infect Dis 1981; 3 Suppl.: S119–23PubMedCrossRefGoogle Scholar
  43. 43.
    Mäkelä PH, Leinonen M, Pukander J, et al. A study of the pneumococcal vaccine in prevention of clinically acute attacks of recurrent otitis media. Rev Infect Dis 1981; 3 Suppl.: S124–30PubMedCrossRefGoogle Scholar
  44. 44.
    Davies JAV. The response of infants to inoculation with type I pneumococcus carbohydrate. J Immunol 1937; 33: 1–7Google Scholar
  45. 45.
    Hodes HL, Ziegler JF, Zepp HD. Development of antibody following vaccination of infants and children against pneumococci. J Pediant 1944; 24: 641–9CrossRefGoogle Scholar
  46. 46.
    Stein KE. Thymus-independent and thymus-dependent responses to polysaccharide antigens. J Infect Dis 1992; 165Suppl. l: S49–52PubMedCrossRefGoogle Scholar
  47. 47.
    Avery OT, Morgan HJ. Immunological reactions of the isolated carbohydrate and protein of pneumococcus. J Exp Med 1925; 42: 347–53PubMedCrossRefGoogle Scholar
  48. 48.
    Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate — protein. V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of Type III pneumococcus with foreign protein. J Exp Med 1931; 54: 437–47PubMedCrossRefGoogle Scholar
  49. 49.
    Goebel WF. Studies on antibacterial immunity induced by artificial antigens. I. Immunity to experimental pneumococcal infection with an antigen containing cellobiuronic acid. J Exp Med 1939; 69: 353–64PubMedCrossRefGoogle Scholar
  50. 50.
    Schneerson R, Barrera O, Sutton A, et al. Preparation, characterization, and immunogenicity of Haemophilus influenzae Type b polysaccharide-protein conjugates. J Exp Med 1980; 152: 361–76PubMedCrossRefGoogle Scholar
  51. 51.
    Robbins JB, Schneerson R, Anderson P, et al. Prevention of systemic infections, especially meningitis, caused by Haemophilus influenzae Type b. JAMA 1996; 276: 1181–5PubMedCrossRefGoogle Scholar
  52. 52.
    Dagan R, Fraser D, Roitman M, et al. Effectiveness of a nationwide infant immunization program against Haemophilus influenzae b. Vaccine 1999; 17: 134–41PubMedCrossRefGoogle Scholar
  53. 53.
    Pichichero ME, Shelly MA, Treanor JJ. Evaluation of a pentavalent conjugated pneumococcal vaccine in toddlers. Pediatr Infect Dis J 1997; 16: 72–4PubMedCrossRefGoogle Scholar
  54. 54.
    Dagan R, Melamed R, Zamir O, et al. Safety and immunogenicity of tetravalent pneumococcal vaccines containing 6B, 14, 19F and 23F polysaccharides conjugated to either tetanus toxoid or diphtheria toxoid in young infants and their boostability by native polysaccharide antigens. Pediatr Infect Dis J 1997; 16: 1053–9PubMedCrossRefGoogle Scholar
  55. 55.
    Michon F, Fusco PC, Minetti CASA, et al. Multivalent pneumococcal capsular polysaccharide conjugate vaccines employing genetically detoxified pneumolysin as a carrier protein. Vaccine 1998; 16: 1732–41PubMedCrossRefGoogle Scholar
  56. 56.
    Åhman H, Käyhty H, Lehtonen H, et al. Streptococcus pneumoniae capsular polysaccharide-diphtheria toxoid conjugate vaccine is immunogenic in early infancy and able to induce immunologic memory. Pediatr Infect Dis J 1998; 17: 211–6PubMedCrossRefGoogle Scholar
  57. 57.
    Black S, Shinefeld H, Ray P, et al. Efficacy of heptavalent conjugate pneumococcal vaccine (Wyeth Lederle) in 37,000 infants and children: results of the Northern California Kaiser Permanente Trial [abstract]. Pneumococcal Vaccines for the World 1998 Conference; 1998 October 12–14; Washington DC, USA: 18Google Scholar
  58. 58.
    Powers DC, Anderson EL, Lottenbach K, et al. Reactogenicity and immunogenicity of a protein-conjugated pneumococcal oligosaccharide vaccine in older adults. J Infect Dis 1996; 173: 1014–8PubMedCrossRefGoogle Scholar
  59. 59.
    Shelley MA, Jacoby H, Riley GJ, et al. Comparison of pneumococcal polysaccharide and CRM197-conjugated pneumococcal oligosaccharide vaccines in young and elderly adults. Infect Immun 1997; 65: 242–7Google Scholar
  60. 60.
    Paton C, Andrew PW, Boulnois GJ, et al. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Ann Rev Microbiol 1993; 47: 89–115CrossRefGoogle Scholar

Copyright information

© Adis International Limited 1999

Authors and Affiliations

  • Robert Austrian
    • 1
  1. 1.Department of Molecular and Cellular EngineeringThe University of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations