Skip to main content
Log in

Clinical Pharmacology of Dopamine Agonists in Parkinson’s Disease

  • Review Article
  • Clinical Pharmacology
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Oral levodopa is the most effective symptomatic treatment for Parkinson’s disease. Dopamine agonists are useful adjuvants to levodopa in the pharmacotherapy of parkinsonian patients. Monotherapy with dopamine agonists in early Parkinson’s disease has been advocated in order to delay the occurrence of complications associated with long term administration of levodopa. The use of dopamine agonists alone provides an adequate antiparkinsonian effect in only a minority of patients. In early stages of Parkinson’s disease, dopamine agonists can produce a clinical response comparable with levodopa but, thereafter, their efficacy wanes. Early initiation of combination therapy with levodopa and dopamine agonists appears to reduce the severity and delay the appearance of the complications associated with long term administration of levodopa.

Currently, dopamine agonists are most commonly used in combination with levodopa in patients in advanced stages of the disease who experience fluctuations of their motor symptoms. Despite their different pharmacodynamic and pharmacokinetic profiles, the ergot derivatives bromocriptine, lisuride and pergolide appear to be very similar in terms of their clinical efficacy. Continuous dopaminergic stimulation by parenteral infusion of water-soluble dopamine agonists such as apomorphine and lisuride can overcome motor fluctuations in advanced Parkinson’s disease. Other dopamine agonists such as cabergoline, pramipexole and ropinirole are currently being studied. Further studies with these compounds will be required to determine their efficacy and adverse effects in comparison with the currently available orally active ergot agonists. It has been suggested that oxidative stress resulting from dopamine metabolism may be reduced by the administration of dopamine agonists. These drugs may therefore slow the rate of progression of Parkinson’s disease. At present, however, there is no convincing clinical data to support a neuroprotective effect of dopamine agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkmayer W, Riederer P. Parkinson’s disease. New York: Springer, 1983

    Google Scholar 

  2. Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181–4

    Article  PubMed  CAS  Google Scholar 

  3. Marsden CD, Parkes JD. ‘On-off’ effects in patients with Parkinson’s disease on chronic levodopa therapy. Lancet 1976; I: 292–6

    Article  Google Scholar 

  4. Lesser RP, Fahn S, Snider SR, et al. Analysis of the clinical problems in parkinsonism and the complications of long-term levodopa therapy. Neurology 1979; 29: 1253–60

    Article  PubMed  CAS  Google Scholar 

  5. Wachtel H. Antiparkinsonian dopamine agonists: a review of the pharmacokinetics and neuropharmacology in animals and humans. J Neural Transm Park Dis Dement Sect 1991; 3: 151–201

    Article  PubMed  CAS  Google Scholar 

  6. Calne DB. Treatment of Parkinson’s disease. N Engl J Med 1993; 329: 1021–7

    Article  PubMed  CAS  Google Scholar 

  7. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature 1979; 277: 93–6

    Article  PubMed  CAS  Google Scholar 

  8. Strange PG. Dopamine receptors in the basal ganglia: relevance to Parkinson’s disease. Mov Disord 1994; 8: 263–70

    Article  Google Scholar 

  9. Schwartz R, Fuxe K, Agnati LF. Effect of bromocriptine on 3H spiroperidol binding sites in rat striatum: evidence for actions of dopamine receptors not linked to adenylate cyclase. Life Sci 1978; 23: 465–70

    Article  Google Scholar 

  10. Markstein R. Neurochemical effects of some ergot derivatives: a basis for their antiparkinsonian actions. J Neural Transm 1981; 51: 39–59

    Article  PubMed  CAS  Google Scholar 

  11. Goetz CG. Dopaminergic agonists in the treatment of Parkinson’s disease. Neurology 1990; 40Suppl. 1: 50–4

    PubMed  Google Scholar 

  12. Robertson GS, Robertson HA. Synergistic effects of D1 and D2 dopamine agonists on turning behaviour in rats. Brain Res 1986; 384: 387–90

    Article  PubMed  CAS  Google Scholar 

  13. Löschmann P-A, Smith LA, Lange KW, et al. Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology 1992; 109: 49–56

    Article  PubMed  Google Scholar 

  14. Grondin R, Bedard PJ, Britton DR, et al. Potential therapeutic use of the selective dopamine D1 receptor agonist, A-86929: an acute study in parkinsonian levodopa-primed monkeys. Neurology 1997; 49: 421–6

    Article  PubMed  CAS  Google Scholar 

  15. Montastruc JL, Rascol O, Rascol A. A randomized controlled study of bromocriptine versus levodopa in previously untreated parkinsonian patients: a three-year follow-up. J Neurol Neurosurg Psychiatry 1989; 52: 773–5

    Article  PubMed  CAS  Google Scholar 

  16. Rinne UK. Lisuride, a dopamine agonist in the treatment of early Parkinson’s disease. Neurology 1989; 39: 336–9

    Article  PubMed  CAS  Google Scholar 

  17. Horstink MWIM, Zijlmans JCM, Pasman JW, et al. Severity of Parkinson’s disease is a risk factor for peak-dose dyskinesia. J Neurol Neurosurg Psychiatry 1990; 53: 224–6

    Article  PubMed  CAS  Google Scholar 

  18. Horstink MWIM, Zijlmans JCM, Pasman JW, et al. Which risk factors predict the levodopa response in fluctuating Parkinson’s disease. Ann Neurol 1990; 27: 537–43

    Article  PubMed  CAS  Google Scholar 

  19. Roos RAC, Vredevoogd CB, Vandervelde EA. Response fluctuations in Parkinson’s disease. Neurology 1990; 40: 1344–6

    Article  PubMed  CAS  Google Scholar 

  20. Weiner WJ, Factor SA, Sanchez-Ramos JR, et al. Early combination therapy (bromocriptine and levodopa) does not prevent motor fluctuations in Parkinson’s disease. Neurology 1993; 43: 21–7

    Article  PubMed  CAS  Google Scholar 

  21. Jankovic J. Long-term use of dopamine agonists in Parkinson’s disease. Clin Neuropharmacol 1985; 8: 131–40

    Article  PubMed  CAS  Google Scholar 

  22. Riopelle RJ. Bromocriptine and the clinical spectrum of Parkinson’s disease. Can J Neurol Sci 1987; 14: 455–9

    PubMed  CAS  Google Scholar 

  23. Lees AJ, Stern GM. Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1981; 44: 1020–3

    Article  PubMed  CAS  Google Scholar 

  24. Grimes JD, Delgado MR. Bromocriptine: problems with low-dose Je novo therapy in Parkinson’s disease. Clin Neuropharmacol 1985; 8: 73–7

    Article  PubMed  CAS  Google Scholar 

  25. Rinne UK. Combined bromocriptine-levodopa therapy early in Parkinson’s disease. Neurology 1985; 35: 1196–8

    Article  PubMed  CAS  Google Scholar 

  26. Quinn N, Illas A, Lhermitte F, et al. Bromocriptine and domperidone in the treatment of Parkinson’s disease. Neurology 1981; 31: 662–7

    Article  PubMed  CAS  Google Scholar 

  27. Lieberman AN, Goldstein M, Leibowitz M, et al. Long-term treatment with pergolide: decreased efficacy with time. Neurology 1984; 34: 223–6

    Article  PubMed  CAS  Google Scholar 

  28. Goetz CG, Tanner CM, Glantz RH, et al. Chronic agonist therapy for Parkinson’s disease: a five-year study of bromocriptine and pergolide. Neurology 1985; 35: 749–51

    Article  PubMed  CAS  Google Scholar 

  29. Goetz CG, Shannon KM, Tanner CM, et al. Agonist substitution in advanced Parkinson’s disease. Neurology 1989; 39: 1121–2

    Article  PubMed  CAS  Google Scholar 

  30. Factor SA, Sanchez-Ramos JR, Weiner WJ. Parkinson’s disease: an open label trial of pergolide in patients failing bromocriptine therapy. J Neurol Neurosurg Psychiatry 1988: 51: 529–33

    Article  PubMed  CAS  Google Scholar 

  31. LeWitt PA, Ward CD, Larsen TA, et al. Comparison of pergolide and bromocriptine therapy in parkinsonism. Neurology 1983; 33: 1009–14

    Article  PubMed  CAS  Google Scholar 

  32. Hardie RJ, Lees AJ, Stern GM. On-off fluctuations in Parkinson’s disease: a clinical and neuropharmacological study. Brain 1984; 107: 487–506

    Article  PubMed  Google Scholar 

  33. Sage JI, Trooskin S, Sonsalla PK, et al. Long-term duodenal infusion of levodopa for motor fluctuations in parkinsonism. Ann Neurol 1988; 24: 87–9

    Article  PubMed  CAS  Google Scholar 

  34. Obeso JA, Luquin MR, Martinez-Lage JM. Lisuride infusion pump: a device for the treatment of motor fluctuations. Lancet 1986; I: 467–70

    Article  Google Scholar 

  35. Stibe CMH, Lees AJ, Stern GM. Subcutaneous infusion of apomorphine and lisuride in the treatment of parkinsonian on-off fluctuations [letter]. Lancet 1987; I: 871

    Article  Google Scholar 

  36. Frankel JP, Lees AJ, Kempster PA, et al. Subcutaneous apomorphine in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990; 53: 96–101

    Article  PubMed  CAS  Google Scholar 

  37. Coleman RJ, Lange KW, Quinn NP, et al. The antiparkinsonian actions and pharmacokinetics of transdermal (+)-4-propyl-9-hydroxynaphthoxazine (+PHNO): preliminary results. Mov Disord 1990; 4: 129–38

    Article  Google Scholar 

  38. Lange KW, Youdim MBH, Riederer P. Neurotoxicity and neuroprotection in Parkinson’s disease. J Neural Transm 1992; Suppl. 38: 27–44

    Google Scholar 

  39. Sofic E, Lange KW, Jellinger K, et al. Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 1992; 142: 128–30

    Article  PubMed  CAS  Google Scholar 

  40. Saggu H, Cooksey J, Dexter D, et al. A selective increase in particulate Superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 1989; 53: 692–7

    Article  PubMed  CAS  Google Scholar 

  41. Lange KW, Löschmann P-A, Sofic E, et al. The competitive NMDA antagonist CPP protects substantia nigra neurones from MPTP-induced degeneration in primates. Naunyn-Schmiedebergs Arch Pharmacol 1993; 348: 586–92

    Article  PubMed  CAS  Google Scholar 

  42. Lange KW, Riederer P. Glutamatergic drugs in Parkinson’s disease. Life Sci 1994; 54: 2067–75

    Article  Google Scholar 

  43. Lange KW, Rausch W-D, Gsell W, et al. Neuroprotection by dopamine agonists. J Neural Transm 1994; Suppl. 43: 183–201

    Google Scholar 

  44. Lange KW, Kornhuber J, Riederer P. Dopamine/glutamate interactions in Parkinson’s disease. Neurosci Biobehav Rev 1997; 21: 393–400

    Article  PubMed  CAS  Google Scholar 

  45. Felten DF, Felten SY, Fuller RW, et al. Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged Fischer-344 rats. Neurobiol Aging 1992; 13: 339–51

    Article  PubMed  CAS  Google Scholar 

  46. Clow A, Hussain T, Glover V, et al. Pergolide can induce soluble Superoxide dismutase in rat striata. J Neural Transm Gen Sect 1992; 90: 27–31

    Article  PubMed  CAS  Google Scholar 

  47. Ubeda A, Montesinos C, Paya M, et al. Iron-reducing and free-radical scavenging properties of apomorphine and some related benzylisoquinolines. Free Radic Biol Med 1993; 15: 159–67

    Article  PubMed  CAS  Google Scholar 

  48. Yoshikawa T, Minamiyama Y, Naito Y, et al. Antioxidant properties of bromocriptine, a dopamine agonist. J Neurochem 1994; 62: 1034–8

    Article  PubMed  CAS  Google Scholar 

  49. Runge I, Horowski R. Can we differentiate symptomatic and neuroprotective effects in Parkinsonism? The dopamine agonist lisuride delays the need for levodopa therapy to a similar extent as reported for deprenyl. J Neural Transm Park Dis Dem Sect 1991; 4: 273–83

    Google Scholar 

  50. Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–7

    Article  Google Scholar 

  51. Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38: 771–7

    Article  PubMed  CAS  Google Scholar 

  52. Lichter D, Kurlan R, Miller C, et al. Does pergolide slow the progression of Parkinson’s disease? A 7-year follow-up study [abstract]. Neurology 1988; 38Suppl. 1: 122

    Google Scholar 

  53. Zimmerman T, Sage JI. Comparison of combination pergolide and levodopa to levodopa alone after 63 months of treatment. Clin Neuropharmacol 1991; 14: 165–9

    Article  PubMed  CAS  Google Scholar 

  54. Lieberman AN, Neophytides AV, Leibowitz M, et al. Comparative efficacy of pergolide and bromocriptine in patients with advanced Parkinson’s disease. Adv Neurol 1983; 37: 95–108

    PubMed  CAS  Google Scholar 

  55. Mannen T, Mizuno Y, Iwata M, et al. A multi-center, double-blind study on slow-release bromocriptine in the treatment of Parkinson’s disease. Neurology 1991; 41: 1598–602

    Article  PubMed  CAS  Google Scholar 

  56. Horowski R, Wachtel H. Direct dopaminergic action of lisuride hydrogen maleate, an ergot derivative, in mice. Eur J Pharmacol 1976; 36: 373–83

    Article  PubMed  CAS  Google Scholar 

  57. Stocchi F, Bramante L, Monge A, et al. Apomorphine and lisuride infusion: a comparative chronic study. Adv Neurol 1993; 60: 653–5

    PubMed  CAS  Google Scholar 

  58. Vaamonde J, Luquin MR, Obeso JA. Subcutaneous lisuride infusion in Parkinson’s disease: response to chronic administration in 34 patients. Brain 1991; 114: 601–14

    Article  PubMed  Google Scholar 

  59. Neumeyer JL, Samarthji L, Balderassini RJ. Historical highlights of the chemistry, pharmacology and early clinical uses of apomorphine. In: Gesse GL, Corsini GU, editors. Apomorphine and other dopaminomimetics. Vol. 1. Pharmacology. New York: Raven Press, 1981

    Google Scholar 

  60. Stibe CM, Kempster PA, Lees AJ, et al. Subcutaneous apomorphine in parkinsonian on-off oscillations. Lancet 1988; I: 403–6

    Article  Google Scholar 

  61. Yahr MD, Clough CC, Bergmann KJ. Cholinergic and dopaminergic mechanisms in Parkinson’s disease after long-term levodopa administration. Lancet 1982; II: 709–10

    Article  Google Scholar 

  62. Gancher ST, Nutt JG, Woodward WR. Apomorphine infusional therapy in Parkinson’s disease: clinical utility and lack of tolerance. Mov Disord 1995; 10: 37–43

    Article  PubMed  CAS  Google Scholar 

  63. Kapoor R, Turjanski N, Frankel J, et al. Intranasal apomorphine: a new treatment in Parkinson’s disease [letter]. J Neurol Neurosurg Psychiatry 1990; 53: 1015

    Article  PubMed  CAS  Google Scholar 

  64. Lees AJ, Montastruc JL, Turjanski N, et al. Sublingual apomorphine and Parkinson’s disease [letter]. J Neurol Neurosurg Psychiatry 1989; 52: 1440

    Article  PubMed  CAS  Google Scholar 

  65. Hughes AJ, Bishop S, Lees AJ, et al. Rectal apomorphine in Parkinson’s disease [letter]. Lancet 1991; 337: 118

    Article  PubMed  CAS  Google Scholar 

  66. Gancher ST, Nutt JG, Woodward WR. Absorption of apomorphine by various routes in parkinsonism. Mov Disord 1991; 6: 212–6

    Article  PubMed  CAS  Google Scholar 

  67. Dewey Jr RB, Maraganore DM, Ahlskog JE, et al. Intranasal apomorphine rescue therapy for parkinsonian ‘off’ periods. Clin Neuropharmacol 1996; 19: 193–201

    Article  PubMed  CAS  Google Scholar 

  68. Van Laar T, Neef C, Danhof M, et al. A new sublingual formulation of apomorphine in the treatment of patients with Parkinson’s disease. Mov Disord 1996; 11: 633–8

    Article  PubMed  Google Scholar 

  69. Lera G, Vaamonde J, Muruzabal J, et al. Cabergoline: a long-acting dopamine agonist in Parkinson’s disease. Ann Neurol 1990; 28: 593–4

    Article  PubMed  CAS  Google Scholar 

  70. Lieberman A, Imke S, Muenter M, et al. Multicenter study of cabergoline, a long-acting dopamine agonist, in Parkinson’s disease patients with fluctuating responses to levodopa/carbidopa. Neurology 1993; 43: 1981–4

    Article  PubMed  CAS  Google Scholar 

  71. Hutton JT, Morris JL, Brewer MA, et al. Controlled study of the antiparkinsonian activity and tolerability of cabergoline. Neurology 1993; 43: 613–6

    Article  PubMed  CAS  Google Scholar 

  72. Hutton JT, Koller WC, Ahlskog JE, et al. Multicenter, placebo-controlled trial of cabergoline taken once daily in the treatment of Parkinson’s disease. Neurology 1996; 46: 1062–5

    Article  PubMed  CAS  Google Scholar 

  73. Lera G, Vaamonde J, Rodriguez M, et al. Cabergoline in Parkinson’s disease: long-term follow-up. Neurology 1993; 43: 2587–90

    Article  PubMed  CAS  Google Scholar 

  74. Hubble JP, Koller WC, Cutler NR, et al. Pramipexole in patients with early Parkinson’s disease. Clin Neuropharmacol 1995; 18: 338–47

    Article  PubMed  CAS  Google Scholar 

  75. Rascol O, Lees AJ, Senard JM, et al. Ropinirole in the treatment of levodopa-induced motor fluctuations in patients with Parkinson’s disease. Clin Neuropharmacol 1996; 19: 234–45

    Article  PubMed  CAS  Google Scholar 

  76. Wachtel H, Dorow R. Dual action on central dopamine function of transdihydrolisuride, a 9,10-dihydrogenated analogue of the ergot dopamine agonist lisuride. Life Sci 1983; 32: 421–32

    Article  PubMed  CAS  Google Scholar 

  77. Lange KW, Löschmann P-A, Wachtel H, et al. Terguride stimulates locomotor activity at 2 months but not 10 months following MPTP treatment of common marmosets. Eur J Pharmacol 1992; 212: 247–52

    Article  PubMed  CAS  Google Scholar 

  78. Corsini GU, Bonuccelli U, Rainer E, et al. Therapeutic efficacy of a partial dopamine agonist in drug-free parkinsonian patients. J Neural Transm 1985; 64: 105–11

    Article  PubMed  CAS  Google Scholar 

  79. Bröcke T, Danielczyk W, Simányi M, et al. Terguride: partial dopamine agonist in the treatment of Parkinson’s disease. Adv Neurol 1986; 45: 573–6

    Google Scholar 

  80. Critchley P, Parkes D. Transdihydrolisuride in parkinsonism. Clin Neuropharmacol 1987; 10: 57–64

    Article  PubMed  CAS  Google Scholar 

  81. Baronti F, Mouradian MM, Conant KE, et al. Partial dopamine agonist therapy of levodopa-induced dyskinesias. Neurology 1992; 42: 1241–3

    Article  PubMed  CAS  Google Scholar 

  82. Ruggieri S, Stocchi F, Baronti F, et al. Antagonist effect of terguride in Parkinson’s disease. Clin Neuropharmacol 1991; 14: 450–6

    Article  PubMed  CAS  Google Scholar 

  83. Dodel RC, Eggert KM, Singer MS, et al. Costs of drug treatment in Parkinson’s disease. Mov Disord 1998; 13: 249–54

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus W. Lange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, K.W. Clinical Pharmacology of Dopamine Agonists in Parkinson’s Disease. Drugs Aging 13, 381–389 (1998). https://doi.org/10.2165/00002512-199813050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199813050-00004

Keywords

Navigation