Skip to main content
Log in

Functional Imaging of the Brain in the Evaluation of Drug Response and its Application to the Study of Aging

  • Review Article
  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Functional neuroimaging techniques including single photon emission computerised tomography (SPECT), positron emission tomography (PET) and functional magnetic resonance imaging (FMRI) can provide insight into the functional connectivity of the human brain in both health and disease, including the effects of aging and drugs on brain function.

Neuroimaging measurement techniques can either be direct, using radio-specific ligands, or indirect, using the neurophysiological consequences of pharmacological interventions. Both approaches can be combined with sensorimotor or cognitive activation to examine the interaction between the targeted receptor function and the sensorimotor or cognitive process implicit in the study design.

Using radionuclides, PET can provide absolute measurement of cerebral blood flow to regions of interest and can measure changes in cerebral metabolism using labelled fluorodeoxyglucose. PET offered the first opportunity to image brain activation caused by a variety of stimuli and hence to measure the effect of drugs on brain activation. PET also enables the study of drug disposition within the brain. SPECT has been used to study relative changes in cerebral blood flow associated with disease processes and also receptor occupancy.

FMRI, by contrast, does not involve ionising radiation and has better spatial and temporal resolution. It is still a relatively new technique and limited by its ability to only measure haemodynamic changes through the blood oxygen level-dependent (BOLD) signal.

The effects of aging on drug responsiveness and the effects of drug treatment of diseases associated with old age are relatively unexplored areas of functional neuroimaging research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friston KJ, Malizia AL, Wilson S, et al. Analysis of dynamic radioligand displacement or ‘activation’ studies. J Cereb Blood Flow Metab 1997; 17: 80–93

    PubMed  CAS  Google Scholar 

  2. Friston KJ, Grasby PM, Bench CJ, et al. Measuring the neuromodulatory effects of drugs in man with positron emission tomography. Neurosci Lett 1992; 141: 106–10

    PubMed  CAS  Google Scholar 

  3. Dolan RJ, Fletcher P, Frith CD, et al. Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 1995; 378: 180–2

    PubMed  CAS  Google Scholar 

  4. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2(15)O: I. theory and error analysis. J Nucl Med 1983; 24: 782–9

    PubMed  CAS  Google Scholar 

  5. Raichle ME, Martin WR, Herscovitch P, et al. Brain blood flow measured with intravenous H2(15)O: II. implementation and validation. J Nucl Med 1983; 24: 790–8

    PubMed  CAS  Google Scholar 

  6. Phelps ME, Huang SC, Hoffman EJ, et al. Tomographic measurement of local cerebral glucose metabolic rate in humans with (18F)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol 1979; 6: 371–88

    PubMed  CAS  Google Scholar 

  7. Volkow ND, Fowler JS, Wang GJ et al. Reproducibility of repeated measures of carbon-11-raclopride binding in the human brain [published erratum appears in J Nucl Med 1993; 34: 838]. J Nucl Med 1993; 34: 609–13

    PubMed  CAS  Google Scholar 

  8. Nyberg S, Farde L, Halldin C. Test-retest reliability of central [11C]raclopride binding at high D2 receptor occupancy: a PET study in haloperidol treated patients. Psychiatry Res 1996; 67: 163–71

    PubMed  CAS  Google Scholar 

  9. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of anti-schizophrenic drugs. Science 1976; 192: 481–3

    PubMed  CAS  Google Scholar 

  10. Farde L, Wiesel FA, Nordström AL, et al. D1-and D2dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl) 1989; 99 Suppl.: 28–31

    Google Scholar 

  11. Farde L, Ehrin E, Erikson L et al. Substituted benzamides as ligands for visualisation of dopamine receptor binding in the human brain using positron emission tomography. Proc Natl Acad Sci U S A 1985; 82: 3863–7

    PubMed  CAS  Google Scholar 

  12. Farde L, Wiesel FA, Halldin C, et al. Central D2-dopamine receptor occupancy in schizophrenic patients treated with anti-psychotic drugs. Arch Gen Psychiatry 1988; 45: 71–6

    PubMed  CAS  Google Scholar 

  13. Cortés R, Camps M, Gueye B, et al. Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology. Brain Res 1989; 483: 30–8

    PubMed  Google Scholar 

  14. Wong DF, Wagner HN, Dannals RF, et al. Effects of age on dopamine and serotonin receptors measured by positron emission tomography in the living human brain. Science 1984; 226: 1393–6

    PubMed  CAS  Google Scholar 

  15. Volkow ND, Wang GJ, Fowler JS, et al. Measuring age-related changes in dopamine D2 receptors with 11C-raclopride and 18F-N-methylspiroperidol. Psychiatry Res 1996; 67: 11–6

    PubMed  CAS  Google Scholar 

  16. Martinot JL, Paillère Martinot ML, Loc’h C, et al. The estimated density of D2 striatal receptors in schizophrenia; a study with positron emission tomography and 76Br-bromolisuride. Br J Psychiatry 1991; 158: 346–50

    PubMed  CAS  Google Scholar 

  17. Mozley PD, Kim HJ, Gur RC, et al. Iodine-123-IPT SPECT imaging of CNS dopamine transporters: nonlinear effects of normal ageing on striatal uptake values. J Nucl Med 1996; 37: 1965–70

    PubMed  CAS  Google Scholar 

  18. Schröder J, Bubeck B, Silvestri S, et al. Gender differences in D2 dopamine receptor binding in drug-naive patients with schizophrenia: an [123I]iodobenzamide single photon emission computed tomography study. Psychiatry Res 1997; 75: 115–23

    PubMed  Google Scholar 

  19. Farde L, Wiesel FA, Halldin C, et al. D2-dopamine receptors in neuroleptic-naive patients with schizophrenia: a positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 1990; 47: 213–9

    PubMed  CAS  Google Scholar 

  20. Hietala J, Syvalahti E, Vuorio K, et al. Striatal D2 dopamine receptor characteristics in neuroleptic naive schizophrenic patients studied with positron emission tomography. Arch Gen Psychiatry 1994; 51: 116–23

    PubMed  CAS  Google Scholar 

  21. Wong DF, Wagner Jr HN, Tune LE, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics [published erratum appears in Science 1987; 235: 623]. Science 1986; 234: 1558–63

    PubMed  CAS  Google Scholar 

  22. Farde L, Nordström AL, Wiesel FA, et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine: relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49: 538–44

    PubMed  CAS  Google Scholar 

  23. Nordström AL, Farde L, Nyberg S, et al. D1, D2 and 5-HT2 receptor occupancy in relation clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 1995; 152: 1444–9

    PubMed  Google Scholar 

  24. Nordström AL, Farde L, Wiesal FA, et al. Central D2 dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993; 33: 227–35

    PubMed  Google Scholar 

  25. Nyberg S, Nordström AL, Halldin C, et al. Positron emission tomography studies on D2 dopamine receptor occupancy and plasma antipsychotic drug levels in man. Int Clin Psychopharmacol 1995; 10Suppl. 3: 81–5

    PubMed  Google Scholar 

  26. Brücke T, Tsai YF, McLellan C, et al. In vitro binding properties and autoradiographic imaging of 3-iodobenzamide ([123I]-IZBM): a potential imaging ligand for D-2 dopamine receptors in SPECT. Life Sci 1988; 42: 2097–104

    PubMed  Google Scholar 

  27. Brücke T, Podreka I, Angelberger P, et al. Dopamine D2 receptor imaging with SPECT: studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab 1991; 11: 220–8

    PubMed  Google Scholar 

  28. Klemm E, Grünwald F, Kasper S, et al. [123I]IBZM SPECT for imaging of striatal D2 dopamine receptors in 56 schizophrenic patients taking various neuroleptics. Am J Psychiatry 1996; 153: 183–90

    PubMed  CAS  Google Scholar 

  29. Pickar D, Su TP, Weinberger DR, et al. Individual variation in D2 dopamine receptor occupancy in clozapine-treated patients. Am J Psychiatry 1996; 153: 1571–8

    PubMed  CAS  Google Scholar 

  30. Meltzer HY. The mechanism of action of novel antipsychotic drugs. Schizophr Bull 1991; 17: 263–87

    PubMed  CAS  Google Scholar 

  31. Coward DM, Imperato A, Urwyler S, et al. Biochemical and behavioural properties of clozapine. Psychopharmacology (Berl) 1989; 99 Suppl.: 6–12

    Google Scholar 

  32. Van Tol HH, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350: 610–4

    PubMed  Google Scholar 

  33. Sunahara RK, Guan HC, O’Dowd BF, et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 1991; 350: 614–9

    PubMed  CAS  Google Scholar 

  34. Pilowsky LS, Mulligan RS, Acton PD, et al. Limbic selectivity of clozapine. Lancet 1997; 350: 490–1

    PubMed  CAS  Google Scholar 

  35. McEvoy JP, Hogarty GE, Steingard S. Optimal dose of neuroleptic in acute schizophrenia: a controlled study of neuroleptic threshold and higher haloperidol dose. Arch Gen Psychiatry 1991; 48: 739–45

    PubMed  CAS  Google Scholar 

  36. Stone CK, Garver DL, Griffith J, et al. Further evidence for a dose-response threshold for haloperidol in psychosis. Am J Psychiatry 1995; 152: 1210–2

    PubMed  CAS  Google Scholar 

  37. Kapur S, Zipursky R, Roy P, et al. The relationship between D2 receptor occupancy and plasma levels on low dose haloperidol: a PET study. Psychopharmacology (Berl) 1997; 131: 148–52

    CAS  Google Scholar 

  38. Nyberg S, Farde L, Halldin C, et al. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 1995; 152: 173–8

    PubMed  CAS  Google Scholar 

  39. Mazziotta JC, Frackowiak RSJ, Phelps ME. The use of positron emission tomography in the clinical assessment of dementia. Semin Nucl Med 1992; 22: 233–46

    PubMed  CAS  Google Scholar 

  40. Pappata S, Tavitian B, Traykov L, et al. In vivo imaging of human cerebral acetylcholinesterase. J Neurochem 1996; 67: 876–9

    PubMed  CAS  Google Scholar 

  41. Iyo M, Namba H, Fukushi K, et al. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 1997; 349: 1805–9

    PubMed  CAS  Google Scholar 

  42. Weinberger DR, Gibson R, Coppola R, et al. The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia: a controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 1991; 48: 169–76

    PubMed  CAS  Google Scholar 

  43. Nordberg A, Lundqvist H, Hartvig P, et al. Kinetic analysis of regional (S) (™) 11C-nicotine binding in normal and Alzheimer brains — an in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 1995; 9: 21–7

    PubMed  CAS  Google Scholar 

  44. Perry EK, Tomlinson BE, Blessed G, et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. BMJ 1978; 2: 1457–9

    PubMed  CAS  Google Scholar 

  45. Farlow M, Gracon SI, Hershey LA, et al. A controlled trial of tacrine in Alzheimer’s disease. JAMA 1992; 268: 2523–9

    PubMed  CAS  Google Scholar 

  46. Knapp MJ, Knopman DS, Soloman PR, et al. A 30-week randomised controlled trial of high-dose tacrine in patients with Alzheimer’s disease. JAMA 1994; 271: 985–91

    PubMed  CAS  Google Scholar 

  47. Roger SL, Friedhoff LT, Donepezil Sudy Group. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-blind, placebo-controlled trial. Dementia 1996; 7: 293–303

    Google Scholar 

  48. Neirinckx RD, Canning LR, Piper IM, et al. Technetium-99m d,l-HM-PAO: a new radiopharmaceutical for SPECT imaging of regional cerebral blood perfusion. J Nucl Med 1987; 28: 191–202

    PubMed  CAS  Google Scholar 

  49. Hunter R, Wyper DJ, Patterson J, et al. Cerebral pharmacodynamics of physostigmine in Alzheimer’s disease investigated using single-photon computerised tomography. Br J Psychiatry 1991; 158: 351–7

    PubMed  CAS  Google Scholar 

  50. Geaney DP, Soper N, Shepstone BJ, et al. Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease. Lancet 1990; 335: 1484–7

    PubMed  CAS  Google Scholar 

  51. Tune L, Brandt J, Frost JJ, et al. Physostigmine in Alzheimer’s disease: effects on cognitive functioning, cerebral glucose metabolism analysed by positron emission tomography and cerebral blood flow analysed by single photon emission tomography. Acta Psychiatra Scand 1991; Suppl. 366: 61–5

    Google Scholar 

  52. Prentice N, Van Beck M, Dougall NJ, et al. A double-blind, placebo-controlled study of tacrine in patients with Alzheimer’s disease using SPET. J Psychopharmacol 1996; 10: 175–81

    PubMed  CAS  Google Scholar 

  53. Frackowiak RS, Pozzilli C, Legg NJ, et al. Regional cerebral oxygen supply and utilization in dementia: a clinical and psychological study with oxygen-15 and positron tomography. Brain 1981; 104: 753–8

    PubMed  CAS  Google Scholar 

  54. Fox FT, Raichle ME, Mintun MA, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science 1988; 241: 462–4

    PubMed  CAS  Google Scholar 

  55. Ivanoiu BJ, Bol A, De Volder A, et al. A study on blood flow and glucose consumption for the mapping of the brain cholinergic system in Alzheimer’s disease [abstract]. Neuroimage 1996; 3: S571

    Google Scholar 

  56. Eagger S, Levy R. Serum levels of tacrine in relation to clinical response in Alzheimer’s disease. Int J Geriatr Psychiatry 1992; 7: 115–9

    Google Scholar 

  57. Pomara N, Deptula D, Singh R. Pretreatment postural blood pressure drop as a possible predictor of response to the cholinesterase inhibitor velnacrine (HP 029) in Alzheimer’s Disease. Psychopharmacol Bull 1991; 27: 301–7

    PubMed  CAS  Google Scholar 

  58. Schneider LS, Lyness SA, Pawluczyk S, et al. Do blood pressure and age predict response to tacrine (THA) in Alzheimer’s disease? A preliminary report. Psychopharmacol Bull 1991; 27: 309–14

    PubMed  CAS  Google Scholar 

  59. Alhainen K, Partanen J, Reinikainen K, et al. Discrimination of the tetrahydroaminoacridine responders by a single dose pharmaco-EEG in patients with Alzheimer’s disease. Neurosci Lett 1991; 127: 113–6

    PubMed  CAS  Google Scholar 

  60. Amar K, Wilcock GK, Scot M, et al. The presence of leukoaraiosis in patients with Alzheimer’s disease predicts poor response to tacrine but does not discriminate responders from non-responders. Age Ageing 1997; 26: 25–9

    PubMed  CAS  Google Scholar 

  61. Levy R, Eagger S, Griffiths M, et al. Lewy bodies and response to tacrine in Alzheimer’s disease [letter]. Lancet 1994; 343: 176

    PubMed  CAS  Google Scholar 

  62. Gur RC, Erwin RJ, Gur RE. Neurobehavioral probes for physiologic neuroimaging studies. Arch Gen Psychiatry 1992; 49: 409–14

    PubMed  CAS  Google Scholar 

  63. Grady CL, McIntosh AR, Horwitz B, et al. Age-related reductions in human recognition memory due to impaired encoding. Science 1995; 269: 218–21

    PubMed  CAS  Google Scholar 

  64. Cabeza R, Grady CL, Nyberg L, et al. Age-related differences in neural activity during memory encoding and retrieval: a positron emission tomography study. J Neurosci 1997; 17: 391–400

    PubMed  CAS  Google Scholar 

  65. Villringer K, Hock CH, Minoshima S, et al. Regional cerebral blood flow changes in patients with Alzheimer’s disease during performance of a Stroop task [abstract]. Neuroimage 1996; 3: S520

    Google Scholar 

  66. Johannsen P, Jakobsen J, Bruhn P, et al. Sustained and divided attention sites in Alzheimer’s disease [abstract]. Neuroimage 1997; 5: S345

    Google Scholar 

  67. Levy A, Brandeis R, Treves TA, et al. Transdermal physostigmine in the treatment of Alzheimer’s disease. Alzheimer Dis Assoc Disord 1994; 8: 15–21

    PubMed  CAS  Google Scholar 

  68. Sano M, Bell K, Marder K, et al. Safety and efficacy of oral physostigmine in the treatment of Alzheimer disease. Clin Neuropharmacol 1993; 16: 61–9

    PubMed  CAS  Google Scholar 

  69. Courtney SM, Ungerleider LG, Keil K, et al. Transient and sustained activity in a distributed neural system for human working memory. Nature 1997; 386: 608–11

    PubMed  CAS  Google Scholar 

  70. Furey ML, Pietrini P, Haxby JV, et al. Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc Natl Acad Sci U S A 1997; 94: 6512–6

    PubMed  CAS  Google Scholar 

  71. Callaway E, Halliday R, Naylor H. Cholinergic activity and constraints on information processing. Biol Psychol 1992; 33: 1–22

    PubMed  CAS  Google Scholar 

  72. Chao LL, Knight RT. Prefrontal deficits in attention and inhibitory control with aging. Cereb Cortex 1997; 7: 63–9

    PubMed  CAS  Google Scholar 

  73. Bench CJ, Price GW, Lammertsma AA, et al. Measurement of human cerebral monamine oxidase type B (MAO-B) activity with positron emission tomography (PET): a dose ranging study with the reversible inhibitor RO 19-6327. Eur J Clin Pharmacol 1991; 40: 169–73

    PubMed  CAS  Google Scholar 

  74. Fowler JS, Volkow ND, Logan J, et al. Monamine oxidase B (MAO B) inhibitor therapy in Parkinson’s disease: the degree and reversibility of human brain Mao B inhibition by Ro 19 6327. Neurology 1993; 43: 1984–92

    PubMed  CAS  Google Scholar 

  75. Torstenson R, Hartvig P, Långström B, et al. Differential effects of levodopa on dopaminergic function in early and advanced Parkinson’s disease. Ann Neurol 1997; 41: 334–40

    PubMed  CAS  Google Scholar 

  76. Tedroff J, Pedersen M, Aquilonius SM, et al. Levodopa-induced changes in synaptic dopamine in patients with Parkinson’s disease as measured by [11C]raclopride displacement and PET. Neurology 1996; 46: 1430–6

    PubMed  CAS  Google Scholar 

  77. Papa SM, Engber TM, Kask AM, et al. Motor fluctuations in levodopa treated parkinsonian rats: relation to lesion extent and treatment duration. Brain Res 1994; 662: 69–74

    PubMed  CAS  Google Scholar 

  78. Jenkins IH, Fernandez W, Playford ED, et al. Impaired activation of the supplementary motor area in Parkinson’s disease is reversed when akinesia is treated with apomorphine. Ann Neurol 1992; 32: 749–57

    PubMed  CAS  Google Scholar 

  79. Brooks DJ. PET studies on the early and differential diagnosis of Parkinson’s disease. Neurology 1993; 43Suppl. 6: 6–16

    Google Scholar 

  80. Morrish PK, Sawle GV, Brooks DJ. An [18F]dopa-PET and clinical study of the rate of progression in Parkinson’s diease. Brain 1996; 119: 585–91

    PubMed  Google Scholar 

  81. Vermeulen RJ, Wolters EC, Tissingh G, et al. Evaluation of [123I] beta-CIT binding with SPECT in controls, early and late Parkinson’s disease. Nucl Med Biol 1995; 22: 985–91

    PubMed  CAS  Google Scholar 

  82. Henry TR. Functional imaging with positron emission tomography. Epilepsia 1996; 37: 1141–54

    PubMed  CAS  Google Scholar 

  83. Duncan JS. Imaging and epilepsy. Brain 1997; 120: 339–77

    PubMed  Google Scholar 

  84. Savic I, Persson A, Roland P, et al. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; II: 863–6

    Google Scholar 

  85. Leiderman DB, Balish M, Bromfield EB, et al. Effect of valproate on human cerebral metabolism. Epilepsia 1991; 32: 417–22

    PubMed  CAS  Google Scholar 

  86. Gaillard WD, Zeffiro T, Fazilat S, et al. Effect of valproate on cerebral metabolism and blood flow: an 18F-2-deoxyglucose and 15O water positron emission tomography study. Epilepsia 1996; 37: 515–21

    PubMed  CAS  Google Scholar 

  87. Weiller C, Leonhardt G, Rijntjes M, et al. Early sensory reorganization predicts recovery of lost motor function after stroke: a clinical PET-study [abstract]. Neuroimage 1997; 5: S28

    Google Scholar 

  88. Meyer M, Koeppe RA, Frey KA, et al. Positron emission tomography measures of benzodiazepine binding in Alzheimer’s disease. Arch Neurol 1995; 52: 314–7

    PubMed  CAS  Google Scholar 

  89. Gilman S, Koeppe RA, Junck L, et al. Benzodiazepine receptor binding in cerebellar degenerations studied with positron emission tomography. Ann Neurol 1995; 38: 176–85

    PubMed  CAS  Google Scholar 

  90. Spelle L, Delforge J, Bottlaender M, et al. [11C]flumazenil as a marker of cortical neuronal loss in neurodegenerative diseases [abstract]. Neuroimage 1997; 5: A39

    Google Scholar 

  91. Malizia AL, Gunn RN, Wilson SJ, et al. Benzodiazepine site pharmacokinetic/pharmacodynamic quantification in man: direct measurement of drug occupancy and effects on the human brain in vivo. Neuropharmacology 1996; 35: 1483–91

    PubMed  CAS  Google Scholar 

  92. Adler LJ, Gyulai FE, Diehl DJ, et al. Regional brain activity changes associated with fentanyl analgesia elucidated by positron emission tomgraphy. Anesth Analg 1997; 84: 120–6

    PubMed  CAS  Google Scholar 

  93. Hartvig P, Valtysson J, Lindner K, et al. Central nervous system effects of subdissociative doses of (S)-ketamine are related to plasma and brain concentrations measured with positron emission tomography in healthy volunteers. Clin Pharmacol Ther 1995; 58: 165–73

    PubMed  CAS  Google Scholar 

  94. Ogawa S, Lee TM, Nayak AS, et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990; 14: 68–78

    PubMed  CAS  Google Scholar 

  95. Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 1992; 89: 5675–9

    PubMed  CAS  Google Scholar 

  96. Friston KJ. Imaging cognitive neuroanatomy. Trends Cog Neurosci 1997; 1: 21–7

    Google Scholar 

  97. Frith CD, Friston KJ, Herold S, et al. Regional brain activity in chronic schizophrenic patients during the performance of a verbal fluency task. Br J Psychiatry 1995; 167: 343–9

    PubMed  CAS  Google Scholar 

  98. Kawasaki Y, Maeda Y, Suzuki M, et al. SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophr Res 1993; 10: 109–6

    PubMed  CAS  Google Scholar 

  99. Rosen AC, Rao SM, Haaland KY, et al. Brain systems for generating heterogenous finger movement sequences [abstract]. Neuroimage 1996; 3: S369

    Google Scholar 

  100. Braver TS, Cohen JD, Nystrom L, et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 1997; 5: 49–62

    PubMed  CAS  Google Scholar 

  101. Ross MH, Yurgelun Todd DA Renshaw PF, et al. Age-related reduction in functional MRI response to photic stimulation. Neurology 1997; 48: 173–6

    PubMed  CAS  Google Scholar 

  102. Hock C, Müller-Spahn F, Schuh-Hofer S, et al. Age dependency of changes in cerebral hemoglobin oxygenation during brain activation: a near-infrared spectroscopy study. J Cereb Blood Flow Metab 1995; 15: 1103–8

    PubMed  CAS  Google Scholar 

  103. McIntyre MC, Sweetland C, Wowk B, et al. Functional imaging of stroke recovery mechanisms [abstract]. Neuroimage 1997; 5: S321

    Google Scholar 

  104. Braus DF, Krier A, Sartorius A, et al. Effects of haloperidol and lorazepam on FMRI data in healthy subjects [abstract]. Neuroimage 1997; 5: S367

    Google Scholar 

  105. Kleinschmidt A, Krüger G, Merboldt KD, et al. Magnetic resonance neuroimaging of psychotropic drug action: effects of sedation, stimulation, and placebo on cerbral blood oxygenation [abstract]. Neuroimage 1997; 5: S366

    Google Scholar 

  106. Howard R, Ellis C, Bullmore ET, et al. Functional echoplanar imaging correlates of amphetamine administration to normal subjects and subjects with the narcoleptic syndrome. Magn Reson Imaging 1996; 14: 1013–6

    PubMed  CAS  Google Scholar 

  107. Scheffler K, Bilecen D, Hänggi D, et al. Drug influence on the auditive system detected by BOLD fMRI [abstract]. Neuroimage 1996; 3: S317

    Google Scholar 

  108. Harris GJ, Streeter C, Ciraulo DA, et al. The neurophysiological basis of social disinhibition? Lateralization of acute alprazolam induced rCBV decreases [abstract]. Neuroimage 1996; 3: S223

    Google Scholar 

  109. Stein EA, Bloom AS, Pankiewicz J, et al. Analysis of pharmacologically-induced slow wave signals [abstract]. Neuroimage 1996; 3: S97

    Google Scholar 

  110. Aronen HJ, Cohen MS, Belliveau JW, et al. Ultrafast imaging of brain tumours. Top Magn Reson Imaging 1993; 5: 14–24

    PubMed  CAS  Google Scholar 

  111. Belliveau JW, Kennedy DN, McKinstry RC, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science 1991; 254: 716–9

    PubMed  CAS  Google Scholar 

  112. Rempp KA, Brix G, Wenz F, et al. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637–41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Bryant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryant, C.A., Jackson, S.H.D. Functional Imaging of the Brain in the Evaluation of Drug Response and its Application to the Study of Aging. Drugs Aging 13, 211–222 (1998). https://doi.org/10.2165/00002512-199813030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199813030-00004

Keywords

Navigation