Skip to main content
Log in

Treatment of Multiple Myeloma in Elderly Patients

New Developments

  • Review Article
  • Disease Management
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

The median duration of survival among patients with multiple myeloma (MM) is about 30 months from the onset of treatment. Tumour burden and a range of other parameters, such as C-reactive protein levels, the plasma cell labelling index and β2-microglobulin levels, can be used to assign patients to favourable and unfavourable prognostic groups. Conventional chemotherapy consists of melphalan and prednisone, and is as effective as moderately intensive cytotoxic drug regimens. Although second-line chemotherapy is initially effective, all patients eventually die. Maintenance therapy with interferon-α prolongs the plateau phase of the disease, but its effects on overall survival are minimal.

One of the most promising developments in the treatment of MM has been the introduction of high dosage chemotherapy, which can now be safely administered when stem cells are used for haematological recovery. Autologous bone marrow transplantation has been shown to produce a significant improvement in survival compared with conventional therapy. Several studies are under way that are examining the effects of multiple courses of high dosage chemotherapy together with peripheral stem cell support. Purging of autologous stem cell harvests will be performed in the near future to minimise contamination with myeloma cells. It is now feasible to use high dosage chemotherapy, with the support of granulocyte colony-stimulating factor-stimulated whole blood, in selected elderly patients.

Besides the promising development of intensive therapy, a number of other treatment strategies have emerged, including treatment with monoclonal antibodies against interleukin-6 and multidrug resistance-modulating agents. Better supportive care can be provided for some patients by using epoetin (recombinant human erythropoietin), and the sequelae of lytic bone lesions can be ameliorated through the use of bisphosphonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boccadoro M, Pileri A. Plasma cell dyscrasias: classification, clinical and laboratory characteristics, and differential diagnosis. Baillieres Clin Haematol 1995; 8: 705–19

    PubMed  CAS  Google Scholar 

  2. Carick J. International time trends for multiple myeloma. Ann N Y Acad Sci 1990; 609: 205–13

    Google Scholar 

  3. Heinzmann EF, Olsen JH, Pottern LM, et al. Occupational risk factors for multiple myeloma among Danish men. Cancer Causes Control 1992; 3: 555–68

    Google Scholar 

  4. Bartl R, Frisch B. Bone marrow histology in multiple myeloma: prognostic relevance of histologic characteristics. Hematol Rev 1989; 3: 87–108

    Google Scholar 

  5. San Miguel JF, Garcia-Sanz R, Gonzalez M, et al. Immunophenotype and DNA cell content in multiple myeloma. Baillieres Clin Haematol 1995; 8: 735–59

    PubMed  CAS  Google Scholar 

  6. Moulopoulos LA, Dimopoulos MA, Smith TL, et al. Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol 1995; 13: 251–6

    PubMed  CAS  Google Scholar 

  7. Alexanian R, Dimopoulos MA. Management of multiple myeloma. Semin Hematol 1995; 32: 20–30

    PubMed  CAS  Google Scholar 

  8. Durie BGM, Salmon SE. A clinical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment and survival. Cancer 1975; 36: 842–54

    PubMed  CAS  Google Scholar 

  9. Durie BGM, Salmon SE, Moon TE. Pretreatment tumor mass, cell kinetics and prognosis in multiple myeloma. Blood 1982; 59: 43–51

    Google Scholar 

  10. Bataille R, Durie BGM, Grenier J, et al. Prognostic factors and staging in multiple myeloma. J Clin Oncol 1986; 4: 80–7

    PubMed  CAS  Google Scholar 

  11. Greipp PR, Lust JA, O’Fallon WM, et al. Plasma cell labeling index and beta 2-microglobulin predict survival independent of thymidine kinase and C-reactive protein in multiple myeloma. Blood 1993; 81: 3382–7

    PubMed  CAS  Google Scholar 

  12. Bataille R, Boccadoro M, Klein B, et al. C-reactive protein and beta 2-microglobulin produce a simple and powerful myeloma staging system. Blood 1992; 80: 733–7

    PubMed  CAS  Google Scholar 

  13. Dimopoulos MA, Barlogie B, Smith TL, et al. High serum lactate dehydrogenase level as a marker for drug resistance and short survival in multiple myeloma. Ann Intern Med 1991; 115: 931–5

    PubMed  CAS  Google Scholar 

  14. Corradini P, Ladetto M, Voena C, et al. Mutational activation of N- and K-RAS oncogenes in plasma cell dyscrasias. Blood 1993; 81: 2708–13

    PubMed  CAS  Google Scholar 

  15. Alexanian R, Haut A, Khan A, et al. Treatment for multiple myeloma: combination chemotherapy with different melphalan dose regimens. JAMA 1969; 208: 1680–5

    PubMed  CAS  Google Scholar 

  16. Bergsagel DE, Pruzanski W. Treatment of plasma cell myeloma with cytotoxic agents. Arch Intern Med 1975; 135: 172–6

    PubMed  CAS  Google Scholar 

  17. Case DC, Lee BJ, Clarkson BD. Improved survival times in multiple myeloma treated with melphalan, prednisone, cyclophosphamide, vincristine and BCNU: M-2 protocol. Am J Med 1977; 63: 897–903

    PubMed  Google Scholar 

  18. Palva IP, Ahrenberg P, Ala-Harja K, et al. Treatment of multiple myeloma with an intensive 5-drug combination or intermittent melphalan and prednisone: a randomised multicentre trial. Eur J Haematol 1987; 38: 50–4

    PubMed  CAS  Google Scholar 

  19. Alexanian R, Salmon SE, Bonnet J, et al. Combination chemotherapy for multiple myeloma. Cancer 1977; 40: 2765–71

    PubMed  CAS  Google Scholar 

  20. MacLennan ICM, Chapman C, Dunn J, et al. Combined chemotherapy with ABCM versus melphalan for treatment of myelomatosis. Lancet 1992; 339: 200–5

    PubMed  CAS  Google Scholar 

  21. Oken MM, Tsiatis A, Abramson N, et al. Comparison of standard (MP) with intensive (VBMCP) therapy for the treatment of multiple myeloma [abstract]. Proc Am Soc Clin Oncol 1984; 3: 270

    Google Scholar 

  22. Salmon SE, Haut A, Bonnett JD, et al. Alternating combination chemotherapy improves survival in multiple myeloma: a Southwest Oncology Group study. J Clin Oncol 1983; 1: 453–61

    PubMed  CAS  Google Scholar 

  23. Cavagnaro F, Lein JM, Pavlovsky S, et al. Comparison of two combination chemotherapy regimens for multiple myeloma: methyl-CCNU, cyclophosphamide, and prednisone versus melphalan and prednisone. Cancer Treat Rep 1980; 64: 73–9

    PubMed  CAS  Google Scholar 

  24. Abramson N, Lurie P, Mietlowski W, et al. Phase III study of intermittent carmustine (BCNU), cyclophosphamide and prednisone versus melphalan and prednisone in multiple myeloma. Cancer Treat Rep 1982; 66: 1273–7

    PubMed  CAS  Google Scholar 

  25. Cohen HJ, Siberman HR, Tornyos K, et al. Comparison of two long-term chemotherapy regimens, with or without agents to modify skeletal repair, in multiple myeloma. Blood 1984; 63: 639–48

    PubMed  CAS  Google Scholar 

  26. Hansen OP, Clausen NT, Drivsholm A, et al. Phase II study of intermittent 5-drug regimen (VBCMP) versus intermittent 3-drug regimen (VMP) versus intermittent melphalan and prednisone (MP) in myelomatosis. Scand J Haematol 1985; 35: 518–24

    PubMed  CAS  Google Scholar 

  27. Tribalto M, Amadori S, Cantonetti M, et al. Treatment of multiple myeloma: a randomized study of three different regimens. Leuk Res 1985; 9: 1043–9

    PubMed  CAS  Google Scholar 

  28. Kildahl-Andersen O, Bjark P, Bondevick A, et al. Multiple myeloma in central Norway 1981–1982: a randomized clinical trial of 5-drug combination therapy versus standard therapy. Scand J Haematol 1986; 37: 243–8

    PubMed  CAS  Google Scholar 

  29. Cooper MR, Mclntyre OR, Propert KJ, et al. Single, sequential, and multiple alkylating agent therapy for multiple myeloma: a CALGB study. J Clin Oncol 1986; 4: 1331–9

    PubMed  CAS  Google Scholar 

  30. Pavlovsky S, Corrado C, Santarelli MT, et al. An update of two randomized trials in previously untreated multiple myeloma comparing melphalan and prednisone versus three- and five-drug combinations: an Argentine Group for the Treatment of Acute Leukemia Study. J Clin Oncol 1988; 6: 769–75

    PubMed  CAS  Google Scholar 

  31. Peest D, Deicher H, Coldewey R, et al. Induction and maintenance therapy in multiple myeloma: a multicenter trial of MP versus VCMP. Eur J Cancer Clin Oncol 1988; 24: 1061–7

    PubMed  CAS  Google Scholar 

  32. Österborg A, Ahre A, Bjorkholm M, et al. Alternating combination chemotherapy (VMCP/VBAP) is not superior to melphalan/prednisone in the treatment of multiple myeloma patients stage III — a randomized study from MGCS. Eur J Haematol 1989; 43: 54–62

    PubMed  Google Scholar 

  33. Boccadoro M, Marmont F, Tribalto M, et al. Multiple myeloma: VMCP/VBAP alternating combination chemotherapy is not superior to melphalan and prednisone even in high-risk patients. J Clin Oncol 1991; 9: 444–8

    PubMed  CAS  Google Scholar 

  34. Gregory WM, Richards MA, Malpas JS. Combination chemotherapy versus melphalan and prednisolone in the treatment of multiple myeloma: an overview of published trials. J Clin Oncol 1992; 10: 334–42

    PubMed  CAS  Google Scholar 

  35. Alexanian R, Dimopoulos M. The treatment of multiple myeloma. N Engl J Med 1994; 330: 484–9

    PubMed  CAS  Google Scholar 

  36. Barlogie B, Smith L, Alexanian R. Effective treatment of advanced multiple myeloma refractory to alkylating agents. N Engl J Med 1984; 310: 1353–6

    PubMed  CAS  Google Scholar 

  37. Browman GP, Belch A, Skillings J. Modified adriamycin-vincristine-dexamethasone (m-VAD) in primary refractory and relapsed plasma cell myeloma: an NCI (Canada) pilot study. Br J Haematol 1992; 82: 555–9

    PubMed  CAS  Google Scholar 

  38. Anderson H, Scarffe JH, Ranson M, et al. VAD chemotherapy as remission induction for multiple myeloma. Br J Cancer 1995; 71: 326–30

    PubMed  CAS  Google Scholar 

  39. Cook G, Sharp RA, Tansey P, et al. A phase I/II trial of Z-Dex (oral idarubicin and dexamethasone), an oral equivalent of VAD, as initial therapy at diagnosis or progression in multiple myeloma. Br J Haematol 1996; 93: 931–4

    PubMed  CAS  Google Scholar 

  40. Alexanian R, Barlogie B, Tucker S. VAD-based regimens as primary treatment for multiple myeloma. Am J Hematol 1990; 33: 86–9

    PubMed  CAS  Google Scholar 

  41. Lokhorst HM, Meuwissen OJ, Bast EJ, et al. VAD chemotherapy for refractory multiple myeloma. Br J Haematol 1989; 71: 25–30

    PubMed  CAS  Google Scholar 

  42. Forgeson GV, Selby P, Lakhani S. Infused vincristine and adriamycin with high dose methylprednisolone (VAMP) in advanced previously treated multiple myeloma patients. Br J Cancer 1988; 58: 469–73

    PubMed  CAS  Google Scholar 

  43. Alexanian R, Barlogie D, Dixon D. High-dose glucocorticoid treatment of resistant multiple myeloma. Ann Intern Med 1986; 105: 8–11

    PubMed  CAS  Google Scholar 

  44. Alexanian R, Dimopoulos MA, De la Salle K, et al. Primary dexamethasone treatment of multiple myeloma. Blood 1992; 80: 887–90

    PubMed  CAS  Google Scholar 

  45. McElwain TD, Powles RL. High dose intravenous melphalan for plasma-cell leukemia and myeloma. Lancet 1982; II: 822–4

    Google Scholar 

  46. Lokhorst HM, Meuwissen OJ, Verdonck LF, et al. High-risk multiple myeloma treated with high-dose melphalan. J Clin Oncol 1992; 10: 47–51

    PubMed  CAS  Google Scholar 

  47. Ossenkoppele GJ, Jonkhoff AR, Huijgens PC, et al. Peripheral blood progenitors mobilised by G-CSF (filgrastim) and reinfused as unprocessed autologous whole blood shorten the pancytopenic period following high-dose melphalan in multiple myeloma. Bone Marrow Transplant 1994; 13: 37–41

    PubMed  CAS  Google Scholar 

  48. Raina V, Sharma A, Kumar R, et al. Whole blood harvested after granulocyte-colony stimulating factor (Neupogen) mobilization, and reinfused unprocessed after high-dose melphalan treatment, accelerates hematopoietic recovery in patients with multiple myeloma. Cancer 1996; 77: 1073–8

    PubMed  CAS  Google Scholar 

  49. Ossenkoppele GJ, Schuurhuis GJ, Jonkhoff AR, et al. High dose melphalan with reinfusion of unprocessed G-CSF whole blood is effective and non-toxic therapy in multiple myeloma. Eur J Cancer 1996; 32A: 2058–63

    PubMed  CAS  Google Scholar 

  50. Barlogie B, Hall R, Zander A, et al. High-dose melphalan with autologous bone marrow transplantation for multiple myeloma. Blood 1986; 67: 1298–301

    PubMed  CAS  Google Scholar 

  51. Fermand JP, Levy Y, Gerota J, et al. Treatment of aggressive multiple myeloma by high-dose chemotherapy and total body irradiation followed by blood stem cell autologous graft. Blood 1989; 73: 20–3

    PubMed  CAS  Google Scholar 

  52. Harousseau JL, Attal M, Divine M, et al. Autologous stem cell transplantation after first remission induction treatment in multiple myeloma: a report of the French registry on autologous transplantation in multiple myeloma. Blood 1995; 85: 3077–85

    PubMed  CAS  Google Scholar 

  53. Reece DE, Barnett MJ, Connors JM, et al. Treatment of multiple myeloma with intensive chemotherapy followed by autologous BMT using marrow purged with 4-hydroperoxycyclo-phosphamide. Bone Marrow Transplant 1993; 11: 139–46

    PubMed  CAS  Google Scholar 

  54. Attal M, Harousseau J, Stoppa A, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91–7

    PubMed  CAS  Google Scholar 

  55. Jaganath S, Vegole D, Tricot G, et al. Total therapy. Autologous Bone Marrow Transplant Registry Newslett 1995 Jul; 10: 9–13

    Google Scholar 

  56. Gahrton G, Tura S, Ljungman P, et al. Allogeneic bone marrow transplantation in multiple myeloma. N Engl J Med 1991; 325: 1267–73

    PubMed  CAS  Google Scholar 

  57. Bensinger WI, Buckner CD, Anasetti C, et al. Allogeneic marrow transplantation for multiple myeloma: an analysis of risk factors on outcome. Blood 1996 Oct 1; 88(7): 2787–93

    PubMed  CAS  Google Scholar 

  58. Bjorkstrand B, Ljungman P, Svennson H, et al. Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma: a retrospective case-matched study from the European group for Blood and Marrow Transplantation. Blood 1996; 88: 4711–6

    PubMed  CAS  Google Scholar 

  59. Vesole DH, Barlogie B, Jagannath S, et al. High dose therapy for refractory multiple myeloma: improved prognosis with better supportive care and double transplants. Blood 1994; 84: 950–6

    PubMed  CAS  Google Scholar 

  60. Mellstedt H, Ahre A, Björkholm M, et al. Interferon therapy in myelomatosis. Lancet 1979; I: 245–7

    Google Scholar 

  61. Brenning G. The in vitro effect of leukocyte alpha-interferon on human myeloma cells in a semisolid agar culture system. Scand J Haematol 1985; 35: 178–85

    PubMed  CAS  Google Scholar 

  62. Edwards BS, Hawkins MJ, Borden EC. Comparative in vivo and in vitro action of human NK cells by two recombinant α-interferons differing in antiviral activity. Cancer Res 1984; 44: 3135–9

    PubMed  CAS  Google Scholar 

  63. Gutterman JU, Blumenschein GR, Alexanian R, et al. Leukocyte interferon-induced tumor regression in human metastatic breast cancer, multiple myeloma, and malignant lymphoma. Ann Intern Med 1980; 93: 399–406

    PubMed  CAS  Google Scholar 

  64. Alexanian R, Gutterman J, Levy H. Interferon treatment for multiple myeloma. Clin Hematol 1982; 11: 211–20

    CAS  Google Scholar 

  65. Cox EB, Laszlo J, Krown S, et al. Phase II study of human lymphoblastoid interferon in patients with multiple myeloma. J Biol Response Mod 1988; 7: 318–25

    PubMed  CAS  Google Scholar 

  66. Österborg A, Björkholm M, Björeman M, et al. Natural interferon-alpha in combination with melphalan/prednisone versus melphalan/prednisone in the treatment of multiple myeloma stages II and III: a randomized study from the Myeloma Group of Central Sweden. Blood 1993; 81: 1428–34

    PubMed  Google Scholar 

  67. Cooper MR, Dear K, Mclntyre OR. A randomized clinical trial comparing melphalan/prednisone with or without interferon alpha-2b in newly diagnosed patients with multiple myeloma: a Cancer and Leukemia Group B study. J Clin Oncol 1993; 11: 155–60

    PubMed  CAS  Google Scholar 

  68. Casassus P, Mahé B, Sadoun A. Alpha interferon is not able to improve VMCP/VBAP chemotherapy response rate in induction phase of untreated multiple myeloma: results in the first 201 patients included in a prospective randomized study. In: Harousseau JL, Attal M. Multiple myeloma: from biology to therapy: current concepts. Mulhouse (France): 1994 Oct: 24–6

    Google Scholar 

  69. Ludwig H, Cohen AM, Polliack A. Interferon-alpha for induction and maintenance in multiple myeloma: results of two multicenter randomized trials and summary of other studies. Ann Oncol 1995; 6: 467–76

    PubMed  CAS  Google Scholar 

  70. The Nordic Myeloma Study Group. Interferon-α2b added to melphalan-prednisone for initial and maintenance therapy in multiple myeloma: a Nordic randomized, controlled trial. Ann Intern Med 1996; 124: 212–22

    Google Scholar 

  71. Wisløff F, Hjorth M, Kaasa S. Effect of interferon on the health-related quality of life of multiple myeloma patients: results of a Nordic randomized trial comparing melphalan-prednisone to melphalan-prednisone and α-interferon. Br J Haematol 1996; 94: 324–32

    PubMed  Google Scholar 

  72. Mandelli F, Avvisati G, Amadori S. Maintenance treatment with recombinant interferon alfa-2b in patients with multiple myeloma responding to conventional induction chemotherapy. N Engl J Med 1990; 322: 1430–4

    PubMed  CAS  Google Scholar 

  73. Salmon SE, Crowled JJ, Grogan TM. Combination chemotherapy, glucocorticoids, and interferon alfa in the treatment of multiple myeloma: a Southwest Oncology Group study. J Clin Oncol 1994; 12: 2405–14

    PubMed  CAS  Google Scholar 

  74. Peest D, Deicher H, Coldewey R, et al. A comparison of poly-chemotherapy and melphalan/prednisone for primary remission induction, and interferon-alpha for maintenance treatment, in multiple myeloma: a prospective trial of the German Myeloma Treatment Group. Eur J Cancer 1995; 31A: 146–51

    PubMed  CAS  Google Scholar 

  75. Westin J, Rödjer S, Turesson T, et al. Interferon alpha-2b versus no maintenance therapy during the plateau phase in multiple myeloma: a randomized study. Br J Haematol 1995; 89: 561–8

    PubMed  CAS  Google Scholar 

  76. Browman GP, Bergsagel D, Sicheri D, et al. Randomized trial of interferon maintenance in multiple myeloma: a study of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1995; 13: 2354–60

    PubMed  CAS  Google Scholar 

  77. Abrahamson GM, Bird JM, Newland AC, et al. A randomized study of VAD therapy with either concurrent or maintenance interferon in patients with newly diagnosed multiple myeloma. Br J Haematol 1996; 94: 659–64

    PubMed  CAS  Google Scholar 

  78. Harousseau JL, Attal M, Devine M, et al. Autologous stem cell transplantation after first remission induction treatment in multiple myeloma: a report of the French registry on autologous transplantation in multiple myeloma. Blood 1995; 85: 3077–85

    PubMed  CAS  Google Scholar 

  79. Cunningham D, Powles R, Malpas JS. A randomised trial of maintenance therapy with INTRON-A following high dose melphalan and ABMT in myeloma [abstract]. Proc Am Soc Clin Oncol 1993; 12: 364

    Google Scholar 

  80. Österborg A, Boogaerts MA, Cimino R. Recombinant human erythropoietin in transfusion-dependent anemic patients with multiple myeloma and non-Hodgkin’s lymphoma — a randomized multicenter study. Blood 1996; 87: 2675–82

    PubMed  Google Scholar 

  81. Klein B, Zhang XG, Lu ZY, et al. Interleukin-6 in human multiple myeloma. Blood 1995; 85: 863–72

    PubMed  CAS  Google Scholar 

  82. Kawano M, Hirano T, Matsuda T. Autocrine generation and essential requirement of BSF-2/IL-6 for human multiple myeloma. Nature 1988; 332: 83–5

    PubMed  CAS  Google Scholar 

  83. Bataille R, Jourdan M, Zhang XG, et al. Serum levels of interleukin-6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest 1989; 84: 2008–11

    PubMed  CAS  Google Scholar 

  84. Bataille R, Barlogie B, Lu ZY, et al. Biologic effects of antiinterleukin-6 murine monoclonal antibody in advanced multiple myeloma. Blood 1995; 86: 685–91

    PubMed  CAS  Google Scholar 

  85. Montero-Julian FA, Klein B, Gautherot E, et al. Pharmacokinetic study of anti-interleukin-6 (IL-6) therapy with monoclonal antibodies: enhancement of IL-6 clearance by cocktails of anti-IL-6 antibodies. Blood 1995; 85: 917–24

    PubMed  CAS  Google Scholar 

  86. Vora AJ, Toh CH, Peel J, et al. Use of granulocyte colony-stimulating factor (G-CSF) for mobilizing peripheral blood stem cells: risk of mobilizing clonal myeloma cells in patients with bone marrow infiltration. Br J Haematol 1994; 86: 180–2

    PubMed  CAS  Google Scholar 

  87. Alberts DS, Chang FY, Chen HSG, et al. Oral melphalan kinetics. Clin Pharm Ther. 1979; 6: 737–45

    Google Scholar 

  88. Meister A. Glutathione metabolism and its selective modification. J Biol Chem 1988; 263: 17205–8

    PubMed  CAS  Google Scholar 

  89. Bradley G, Guranka PF, Ling V. Mechanisms of multidrug resistance. Biochem Biophys Acta 1988; 948: 87–128

    PubMed  CAS  Google Scholar 

  90. Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983; 221: 1285–8

    PubMed  CAS  Google Scholar 

  91. Kartner N, Evernden-Porelle D, Bradley G, et al. Detection of P-glycoprotein in multi drug-resistant cell lines by monoclonal antibodies. Nature 1985; 316: 820–3

    PubMed  CAS  Google Scholar 

  92. Chen CJ, Clark D, Ueda K, et al. Genomic organization of the human multidrug resistance (MDR1) gene and origin of P-glycoproteins. J Biol Chem 1990; 265: 506–14

    PubMed  CAS  Google Scholar 

  93. Broxterman HJ, Schuurhuis GJ, Feller N, et al. Quality control of multidrug resistance assays in adult acute leukemia: correlation between assays for P-glycoprotein expression and activity. Blood 1996; 87: 4809–16

    PubMed  CAS  Google Scholar 

  94. Epstein J, Xiao HQ, Oba BK. P-glycoprotein expression in plasma-cell myeloma is associated with resistance to VAD. Blood 1989; 74: 913–7

    PubMed  CAS  Google Scholar 

  95. Solary E, Bidan JM, Calvo F, et al. P-glycoprotein expression and in vitro reversion of doxorubicin resistance by verapamil in clinical specimens from acute leukemia and myeloma. Leukemia 1991; 5: 592–7

    PubMed  CAS  Google Scholar 

  96. Grogan TM, Spier CM, Salmon SE, et al. P-glycoprotein expression in human plasma cell myeloma: correlation with prior chemotherapy. Blood 1993; 81: 490–5

    PubMed  CAS  Google Scholar 

  97. Sonneveld P, Durie GBM, Lokhorst HM, et al. Analysis of multidrug-resistance (MDR-1) glycoprotein and CD56 expression to separate monoclonal gammopathy from multiple myeloma. Br J Haematol 1993; 83: 63–7

    PubMed  CAS  Google Scholar 

  98. Dalton WS, Salmon SE. Drug resistance in myeloma: mechanisms and approaches to circumvention. Hematol Oncol Clin North Am 1992; 6: 383–93

    PubMed  CAS  Google Scholar 

  99. Boesch D, Gaveriaux C, Jachez B, et al. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res 1991; 51: 4226–33

    PubMed  CAS  Google Scholar 

  100. Gore ME, Selby PJ, Milaar B, et al. The use of verapamil to overcome drug resistance in myeloma [abstract]. Proc Am Soc Clin Oncol 1988; 7: 228

    Google Scholar 

  101. Salmon SE, Dalton WS, Grogan TM, et al. Multidrug-resistant myeloma: laboratory and clinical effects of verapamil as a chemosensitizer. Blood 1991; 78: 44–50

    PubMed  CAS  Google Scholar 

  102. Sonneveld P, Durie GBM, Lokhorst HM, et al. Modulation of multidrug resistance by cyclosporin. Lancet 1992; 340: 255–9

    PubMed  CAS  Google Scholar 

  103. Bataille R, Chappard D, Klein B. Mechanism of bone lesions in multiple myeloma. Hematol Oncol Clin North Am 1992; 6: 285–95

    PubMed  CAS  Google Scholar 

  104. Fleisch H, Russell RGG, Francis MD. Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 1969; 165: 1262–4

    PubMed  CAS  Google Scholar 

  105. Francis MD, Martodam RR. Chemical, biochemical and medicinal properties of the diphosphonates. In: Hilderbrand R, editor. The role of phosphonates in living systems. Boca Raton (FL): CRC Press, 1983: 55–96

    Google Scholar 

  106. Urwin GH, Yates AJ, Gray RE, et al. Treatment of the hypercalcaemia of malignancy with intravenous clodronate. Bone 1987; 8Suppl. 1: S43–51

    PubMed  Google Scholar 

  107. Berenson JR, Lichtenstein AL, Porter L, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. N Engl J Med 1996; 334: 488–93

    PubMed  CAS  Google Scholar 

  108. Lahtinen R, Laakso M, Palva I, et al. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Lancet 1992; 340: 1049–52

    PubMed  CAS  Google Scholar 

  109. O’Rourke N, McCloskey E, Houghton F. Double-blind, placebo-controlled, dose-response trial of oral clodronate in patients with bone metastases. J Clin Oncol 1995 Apr; 13: 929–34

    PubMed  Google Scholar 

  110. Plosker GL, Goa KL. Clodronate: a review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 1994; 47(6): 945–82

    PubMed  CAS  Google Scholar 

  111. Dilber MS, Abedi MR, Bjorkstrand B, et al. Suicide therapy for plasma cell tumors. Blood 1996; 88: 2192–200

    PubMed  CAS  Google Scholar 

  112. Kwak L, Taub DD, Duffey PL, et al. Transfer of myeloma idiotype-specific immunity from an actively immunised marrow donor. Lancet 1995; 345: 1016–20

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert J. Ossenkoppele.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ossenkoppele, G.J. Treatment of Multiple Myeloma in Elderly Patients. Drugs & Aging 11, 152–164 (1997). https://doi.org/10.2165/00002512-199711020-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199711020-00007

Keywords

Navigation