Skip to main content
Log in

Management of Acute Renal Failure in the Elderly

Treatment Options

  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Renal changes that occur with aging mainly consist of impairment in the ability to concentrate urine and to conserve sodium and water. These physiological changes increase the risk of volume depletion and the prerenal type of acute renal failure (ARF) in elderly people. Bladder outlet obstruction caused by benign prostatic hypertrophy is a common cause of ARF in elderly men.

Another frequent cause of ARF in the elderly is drug-induced nephropathy. Nonsteroidal anti-inflammatory drugs (NSAIDs) and antibiotics are most often implicated in the development of ARF in the elderly. However, considering the high usage of these drugs, the incidence of drug-induced nephropathy is relatively small. NSAIDs are more likely to cause ARF in patients with congestive heart failure, chronic renal disease (including diabetic nephropathy) or chronic liver disease than in otherwise healthy individuals.

NSAID-induced ARF is often of the prerenal type, but may be caused by acute interstitial nephritis (AIN). The presence of heavy proteinuria or nephrotic syndrome differentiates NSAID-induced AIN from AIN caused by other drugs. Antibiotics, especially semisynthetic penicillins, more commonly give rise to AIN associated with peripheral blood eosinophilia and eosinophiluria than NSAIDs. Ciprofloxacin is increasingly reported to cause AIN. Fever commonly accompanies AIN, especially when induced by antibiotics. Aminoglycosides produce ARF by inducing acute tubular necrosis (ATN), which results from the excessive accumulation of myeloid bodies in the tubules.

In all cases of ARF it is essential to obtain a good history, to perform a thorough physical examination, with particular attention to skin turgor, and to measure blood pressure, pulse rate (supine and upright), urinary electrolyte and creatinine levels. Fractional excretion of sodium and the urine: plasma creatinine ratio are reliable indices that distinguish prerenal ARF from ATN. A prompt response to fluid challenge, with an increase in urine output and urinary sodium excretion, and a rapid decrease in blood urea nitrogen, constitutes strong evidence for prerenal ARF. However, these indices are unreliable when prerenal ARF has progressed to ATN or when ARF has an obstructive pattern to begin with.

In all cases of ARF, especially in elderly men, urinary tract obstruction should be suspected unless the history is otherwise clear cut. Ultrasound of the kidneys and bladder is a simple, non-invasive and meaningful test that can be used to rule out obstructive causes of ARF. If obstruction is the cause of ARF, ultrasound will be positive; in contrast, urinary obstruction is very unlikely if ultrasound findings are normal in a patient who has been oliguric or anuric for 48 hours or more. Similarly, acute glomerulonephritis, including rapidly progressive glomerulonephritis, should be suspected when ARF is associated with heavy proteinuria. In such instances, percutaneous renal biopsy is essential to document the diagnosis.

It is of utmost importance to establish whether ARF is of prerenal or postrenal type, both of which are potentially fully reversible. In contrast, patients with ATN or rapidly progressive glomerulonephritis may not recover, or may only partially recover, their renal function. Haemodialysis and nutritional support are common measures for patients with severe ATN and a highly catabolic state. Corticosteroids and immunosuppressive therapy should be instituted for rapidly progressive glomerulonephritis, in addition to haemodialysis. Haemodiafiltration instead of haemodialysis is recommended for patients who are haemodynamically unstable [i.e. with a persistently low blood pressure (systolic ≤100mm Hg)]. Haemodiafiltration has been shown to improve acid-base balance and uraemia better than standard haemodialysis. However, despite dialysis, mortality in patients with ARF associated with ischaemic ATN remains high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McLachlan M, Wasserman P. Changes in size and distensibility of the aging kidney. Br J Radiol 1981; 54: 488–91

    Article  PubMed  CAS  Google Scholar 

  2. Dunhill MS, Halley W. Some observations on the quantitative anatomy of the kidney. J Pathol 1973 Jun; 110: 113–21

    Article  Google Scholar 

  3. Lindeman RD. Overview: renal physiology and pathophysiology of aging. Am J Kidney Dis 1990 Oct; 16: 275–82

    PubMed  CAS  Google Scholar 

  4. Lindeman RD, Goldman R. Anatomic and physiologic age changes in kidney. Exp Gerontol 1986; 21(4–5): 379–406

    Article  PubMed  CAS  Google Scholar 

  5. Davies DF, Shock NW. Age changes in glomerular filtration rate, effective plasma flow, and tubular excretory capacity in adult males. J Clin Invest 1950; 29: 496–507

    Article  PubMed  CAS  Google Scholar 

  6. Lindeman RD, Lee TD, Yiengst MJ, et al. Influence of age, renal disease, hypertension, diuretics and calcium on the antidiuretic responses to suboptimal infusions of vasopressin. J Lab Clin Med 1966 Aug; 68: 206–23

    PubMed  CAS  Google Scholar 

  7. Snyder NA, Feigal DW, Arieff AI. Hypernatremia in elderly patients. Ann Intern Med 1987 Sep; 107: 309–19

    PubMed  CAS  Google Scholar 

  8. Booker JA. Severe symptomatic hyponatremia in elderly out-patients: the role of thiazide therapy and stress. J Am Geriatr Soc 1984 Feb; 32: 108–13

    PubMed  CAS  Google Scholar 

  9. Kleinfeld J, Casimir M, Borra S. Hyponatremia as observed in a chronic disease facility. J Am Geriatr Soc 1979 Apr; 27: 156–61

    PubMed  CAS  Google Scholar 

  10. Davenport A, Jones SR, Goel S, et al. Differentiation of acute from chronic renal impairment by detection of carbamylated haemoglobin. Lancet 1993; 341(8861): 1614–7

    Article  PubMed  CAS  Google Scholar 

  11. Jha V, Malhotra HS, Sakhuja V, et al. Spectrum of hospital-acquired acute renal failure in the developing countries. Q J Med 1992 Jul; 84: 497–505

    Google Scholar 

  12. Mandal AK, Markert RJ, Saklayen MG, et al. Diuretics potentiate angiotensin converting enzyme inhibitor-induced acute renal failure. Clin Nephrol 1994 Sep; 42: 170–4

    PubMed  CAS  Google Scholar 

  13. Lyons H, Pinn VW, Cortell S, et al. Allergic interstitial nephritis causing reversible renal failure in four patients with idiopathic nephrotic syndrome. N Engl J Med 1973; 288: 124–8

    Article  PubMed  CAS  Google Scholar 

  14. Hoitsma AJ, Wetzels JF, Koene RA. Drug-induced nephrotoxicity: aetiology, clinical features and management. Drug Saf 1991 Mar/Apr; 6: 131–47

    Article  PubMed  CAS  Google Scholar 

  15. Schlondorff D. Renal complications of nonsteroidal anti-inflammatory drugs. Kidney Int 1993 Sep; 44: 643–53

    Article  PubMed  CAS  Google Scholar 

  16. Nair S, Ernstoff MS, Bahnson RR, et al. Interferon-induced reversible acute renal failure with nephrotic syndrome. Urology 1992 Feb; 39: 169–72

    Article  PubMed  CAS  Google Scholar 

  17. Zaltman JS, Pei Y, Maurer J, et al. Cyclosporine nephrotoxicity in lung transplant recipient. Transplantation 1992; 54: 875–8

    Article  Google Scholar 

  18. Cohen DJ, Appel GB. Cyclosporine: nephrotoxic effects and guidelines for safe use in patients with rheumatoid arthritis. Semin Arthritis Rheum 1992; 21: 43–8

    Article  PubMed  CAS  Google Scholar 

  19. Powles AV, Cook T, Hulme B, et al. Renal function and biopsy findings after 5 years’ treatment with low-dose cyclosporine for psoriasis. Br J Dermatol 1993; 128: 159–65

    Article  PubMed  CAS  Google Scholar 

  20. Luke RG. Mechanism of cyclosporine-induced hypertension. Am J Hypertens 1991; 4: 468–71

    PubMed  CAS  Google Scholar 

  21. Skorecki KL, Rutledge WP, Schrier RW. Acute cyclosporine nephrotoxicity-prototype for a renal membrane signalling disorder. Kidney Int 1992; 42: 1–10

    Article  PubMed  CAS  Google Scholar 

  22. Kluger Y, Altman GT, Deshmukh R, et al. Acute obstructive uropathy secondary to pelvic hematoma compressing the bladder: report of two cases. J Trauma 1993 Sep; 35: 477–8

    Article  PubMed  CAS  Google Scholar 

  23. Kumar A, Sharma SK, Vaidyanathan S. Results of surgical reconstruction in patients with renal failure owing to ureteropelvic junction obstruction. J Urol 1988 Sep; 140: 484–6

    PubMed  CAS  Google Scholar 

  24. Jones DA, George NJ. Interactive obstructive uropathy in man. Br J Urol 1992 Apr; 69: 337–45

    Article  PubMed  CAS  Google Scholar 

  25. Platt JF, Rubin JM, Ellis JH, et al. Duplex Doppler ultrasound of the kidney: differentiation of obstructive from nonobstructive dilatation. Radiology 1989; 171: 515–7

    PubMed  CAS  Google Scholar 

  26. Harris KP, Klahr S, Schreiner G. Obstructive nephropathy: from mechanical disturbance to immune activation. Exp Nephrol 1993 May/Jun; 1: 198–204

    PubMed  CAS  Google Scholar 

  27. Finn WF. Diagnosis and management of acute tubular necrosis. Med Clin North Am 1990 Jul; 74: 873–91

    PubMed  CAS  Google Scholar 

  28. Lange HW, Aepbli DM, Brown DC. Survival of patients with acute renal failure requiring dialysis after open heart surgery: early prognostic indicators. Am Heart J 1987 May; 113: 1138–43

    Article  PubMed  CAS  Google Scholar 

  29. Gornick Jr CC, Kjellstrand CM. Acute renal failure complicating aortic aneurysm surgery. Nephron 1983; 35(3): 145–57

    Article  PubMed  Google Scholar 

  30. Berisa F, Beaman M, Adu D, et al. Prognostic factors in acute renal failure following aortic aneurysm surgery. Q J Med 1990 Jul; 76: 689–98

    PubMed  CAS  Google Scholar 

  31. Mandal AK, Davis Jr JB, Bell RD. Myoglobinuria exacerbates ischemic renal damage in the dog. Nephron 1989; 53: 261–7

    Article  PubMed  CAS  Google Scholar 

  32. Pascual J, Liano F, Ortuno J. The elderly patient with acute renal failure. J Am Soc Nephrol 1995; 6: 144–53

    PubMed  CAS  Google Scholar 

  33. Paller M. Drug-induced nephropathies. Med Clin North Am 1990 Jul; 74: 909–17

    PubMed  CAS  Google Scholar 

  34. Mandal AK, Mize GN, Birnbaum DB. Transmission electron microscopy of urinary sediment in aminoglycoside nephrotoxicity. Ren Fail 1987; 10: 63–81

    Article  PubMed  CAS  Google Scholar 

  35. Mandal AK. Transmission electron microscopy of urinary sediment in renal disease. Semin Nephrol 1986 Dec; 6: 346–70

    PubMed  CAS  Google Scholar 

  36. Bennett WM, Porter GA. Nephrotoxicity of common drugs used by urologists. Urol Clin North Am 1990; 17: 145–56

    PubMed  CAS  Google Scholar 

  37. Fisher MA, Talbot GH, Maislin G. Risk factors for amphotericin B associated nephrotoxicity. Am J Med 1989; 87: 547–52

    Article  PubMed  CAS  Google Scholar 

  38. Branch RA. Prevention of amphotericin B-induced renal impairment: a review on the use of sodium supplementation. Arch Intern Med 1988; 148: 2389–94

    Article  PubMed  CAS  Google Scholar 

  39. Stein RS, Alexander JA. Sodium protects against nephrotoxicity in patients receiving amphotericin B. Am J Med Sci 1989; 298: 299–304

    Article  PubMed  CAS  Google Scholar 

  40. Jennette JC, Mandal AK. Drug and toxin-induced renal disease. In: Mandal AK, Jennette JC, editors. Diagnosis and management of renal disease and hypertension. 2nd ed. Durham (NC): Carolina Academic Press, 1994: 177–203

    Google Scholar 

  41. Kleinknecht D, Kanfer A, Morel-Maroger L. Immunologically mediated drug-induced acute renal failure. Contrib Nephrol 1978; 10: 42–52

    PubMed  CAS  Google Scholar 

  42. Lo WK, Rolston VI, Rubestein EB, et al. Ciprofloxacin-induced nephrotoxicity in patients with cancer. Arch Intern Med 1993 May; 15: 1258–62

    Article  Google Scholar 

  43. Avent CK, Krinsky D, Kirklin JK, et al. Synergic nephrotoxicity due to ciprofloxacin and cyclosporin. Am J Med 1988 Sep; 85: 452–3

    Article  PubMed  CAS  Google Scholar 

  44. Helmink R, Benediktsson H. Ciprofloxacin-induced allergic interstitial nephritis. Nephron 1990; 55(4): 432–3

    Article  PubMed  CAS  Google Scholar 

  45. Vance-Bryan K, Rotschafer JC, Gilliland SS, et al. A comparative assessment of vancomycin-associated nephrotoxicity in the young versus the elderly hospitalized patient. J Antimicrob Chemother 1994 Apr; 33: 811–21

    Article  PubMed  CAS  Google Scholar 

  46. Perile JL, Bakris GL, Garell S. Acute interstitial nephritis with glomerulopathy due to nonsteroidal anti-inflammatory agents: a review of its clinical spectrum and effects of steroid therapy. J Clin Pharmacol 1990; 30: 468–75

    Google Scholar 

  47. Perazella MA, Buller GK. NSAID nephrotoxicity revisited: acute renal failure due to parenteral ketorolac. South Med J 1993 Dec; 86: 1421–4

    Article  PubMed  CAS  Google Scholar 

  48. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both: a prospective controlled study. N Engl J Med 1989; 320: 143–8

    Article  PubMed  CAS  Google Scholar 

  49. Montoliu J, Darnell A, Torras A, et al. Acute and rapidly progressive forms of glomerulonephritis in the elderly. J Am Geriatr Soc 1981 Mar; 29: 108–16

    PubMed  CAS  Google Scholar 

  50. Hoye SJ, Tietelbaum S, Gore I, et al. Atheromatous emboliza-tion: a factor in peripheral gangrene. N Engl J Med 1959; 261: 128–31

    Article  PubMed  CAS  Google Scholar 

  51. Saklayen MG. Atheroembolic renal disease: preferential occurrence in whites only. Am J Nephrol 1989; 9: 87–8

    Article  PubMed  CAS  Google Scholar 

  52. Abreo K, Adlakha A, Kilpatrick S, et al. The milk-alkali syndrome: a reversible form of acute renal failure. Arch Intern Med 1993 Apr; 153: 1005–10

    Article  PubMed  CAS  Google Scholar 

  53. Naidich JB, Rackson ME, Mossey RT, et al. Nondilated obstructive uropathy: percutaneous nephrostomy performed to reverse renal failure. Radiology 1986 Sep; 160: 653–7

    PubMed  CAS  Google Scholar 

  54. Chen JH, Pu YS, Liu SP, et al. Renal hemodynamics in patients with obstructive uropathy evaluated by duplex doppler sonography. J Urol 1993 Jul; 150: 18–21

    PubMed  CAS  Google Scholar 

  55. Mandal AK, Sklar AH, Hudson JB. Transmission electron microscopy of urinary sediment in human acute renal failure. Kidney Int 1985 Jul; 28: 58–63

    Article  PubMed  CAS  Google Scholar 

  56. Mandal AK. Acute and chronic interstitial nephritis. In: Mandal AK, editor. Assessment of urinary sediment by electron microscopy. New York: Plenum Medical Book Company, 1987

    Chapter  Google Scholar 

  57. Miller TR, Anderson RJ, Linas SL, et al. Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 1978 Jul; 88: 47–50

    Google Scholar 

  58. Espinel CH. The FENa test: use in the differential diagnosis of acute renal failure. JAMA 1976 Aug 9; 235: 579–81

    Article  Google Scholar 

  59. Solomon R, Werner C, Mann D, et al. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radio-contrast agents. N Engl J Med 1994; 331: 1416–20

    Article  PubMed  CAS  Google Scholar 

  60. Pascual J, Woodhouse K. Terazosin for benign prostatic hypertrophy. Med Lett Drugs Ther 1994; 36: 15–6

    Google Scholar 

  61. Hall SJ, Lawrence SL, Lopoz H. New use for alpha-blockers: BPH. Am Fam Physician 1994; 49: 1885–8

    Google Scholar 

  62. Mandal AK, Saklayen MG, Hillman NM, et al. Predictive factors for high mortality in hypernatremic patients. Am J Emer Med. In press

  63. Mandal AK, Visweswaran RK, Kaldas N. Treatment considerations in acute renal failure. Drugs 1992 Oct; 44: 567–77

    Article  PubMed  CAS  Google Scholar 

  64. Martinez-Maldonado M, Kumjian DA. Acute renal failure due to urinary tract obstruction. Med Clin North Am 1990 Jul; 74: 919–32

    PubMed  CAS  Google Scholar 

  65. Andersen RJ, Linas SL, Berns AS, et al. Nonoliguric acute renal failure. N Engl J Med 1977 May; 296: 1134–8

    Article  Google Scholar 

  66. Levinsky NG, Bernard DB. Mannitol and loop diuretics in acute renal failure. In: Brenner BM, Lazarus JM, editors. Acute renal failure. 2nd ed. New York: Churchill-Livingstone, 1988: 841–56

    Google Scholar 

  67. Hays SR. Southwestern internal medicine conference: ischemic acute renal failure. Am J Med Sci 1992 Aug; 304: 93–108

    Article  PubMed  CAS  Google Scholar 

  68. Lindner A, Sherrad DJ, Shen F, et al. Dopamine and furosemide in acute renal failure. In: Eliahon HE, editor. Acute renal failure. London: John Libbey, 1982: 174–5

    Google Scholar 

  69. Mandal AK, Treat RC. Diagnosis and management of acute renal failure. J Assoc Physicians India 1984 Feb; 32: 203–8

    PubMed  CAS  Google Scholar 

  70. Bellomo R, Ronco C. Acute renal failure in the intensive care unit: adequacy of dialysis and the case for continuous therapies. Nephrol Dial Transplant 1996 Mar; 11: 424–8

    Article  PubMed  CAS  Google Scholar 

  71. Hakim RM, Wingard RL, Parker RA. Effect of the dialysis membrane in the treatment of patients with acute renal failure. N Engl J Med 1994 Nov 17; 331: 1338–42

    Article  PubMed  CAS  Google Scholar 

  72. Schiff LH, Lang SM, Konig A, et al. Biocompatible membranes in acute renal failure: prospective case-controlled study. Lancet 1994; 344: 570–2

    Article  Google Scholar 

  73. Golper TA. Continuous arteriovenous hemofiltration in acute renal failure. Am J Kidney Dis 1985; 6(6): 373–86

    PubMed  CAS  Google Scholar 

  74. Nahman NS, Middendorf DF. Continuous arteriovenous hemofiltration. Med Clin North Am 1990 Jul; 74: 975–84

    PubMed  Google Scholar 

  75. Howdieshell TR, Blalock WE, Bowen PA, et al. Management of post-traumatic acute renal failure with peritoneal dialysis. Am Surg 1992; 58: 378–82

    PubMed  CAS  Google Scholar 

  76. Rahman SN, Kim GE, Mathew AS, et al. Effects of atrial natriuretic peptide in clinical acute renal failure. Kidney Int 1994 Jun; 45: 1731–8

    Article  PubMed  CAS  Google Scholar 

  77. Cameron JS. Acute renal failure: the continuing challenge. Q J Med 1986; 59: 337–43

    PubMed  CAS  Google Scholar 

  78. Bellomo R, Farmer M, Boyce N. A prospective study of continuous hemodiafiltration in the management of severe acute renal failure in critically ill surgical patients. Ren Fail 1994 Nov; 16: 759–66

    Article  PubMed  CAS  Google Scholar 

  79. Baldyga AP, Paganini EP, Chaff C, et al. Acute dialytic support of the octogenarian: is it worth it?. ASAIO J 1993 Jul–Sep; 39: M805–8

    Article  PubMed  CAS  Google Scholar 

  80. Tran DD, Groeneveld AB, Van der Meulen J, et al. Age, chronic disease, sepsis, organ system failure and mortality in a medical intensive care unit. Crit Care Med 1990 May; 18: 474–9

    Article  PubMed  CAS  Google Scholar 

  81. Liano F. Severity of acute renal failure: the need of measurement. Nephrol Dial Transplant 1994; 9 Suppl. 4: 229–38

    PubMed  Google Scholar 

  82. Humes HD, Cieslinski DA, Coimbra TM, et al. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in post ischemic acute renal failure. J Clin Invest 1989 Dec; 84: 1757–61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, A.K., Baig, M. & Koutoubi, Z. Management of Acute Renal Failure in the Elderly. Drugs & Aging 9, 226–250 (1996). https://doi.org/10.2165/00002512-199609040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199609040-00002

Keywords

Navigation