Skip to main content
Log in

New Directions in the Drug Treatment of Parkinson’s Disease

  • Review Article
  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Parkinson’s disease, a clinical syndrome with 4 cardinal features (bradykinesia, resting tremor, increased muscular rigidity and impaired postural balance), is mainly caused by the loss of dopaminergic neurons in the substantia nigra pars compacta. Although levodopa remains the ‘gold standard’ in the treatment of the disease, several emerging strategies are currently being developed. The first concerns new symptomatic drugs that either potentiate the effects of levodopa (e.g. slow-release preparations of levodopa, catechol-O-methyltransferase inhibitors and new dopamine agonists) or target clinical symptoms resistant to dopaminergic drugs (e.g. glutamate antagonists). The second strategy is to find drugs that are able to prevent or delay the neuronal death observed in Parkinson’s disease. Several neuroprotective drugs are now in development in experimental research, but clinical trials in this area are still lacking. The development of these new drugs also depends on the validation of new clinical methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agid Y, Javoy-Agid F, Ruberg M. Biochemistry of neurotransmitters in Parkinson’s disease. In: Marsden CD, Fahn S, editors. Movement disorders. Vol. 2. New York: Raven Press, 1987: 166–230

    Google Scholar 

  2. Hirsch EC. Biochemistry of Parkinson’s disease with special reference to the dopaminergic systems. Mol Neurobiol 1994; 9: 135–42

    Article  PubMed  CAS  Google Scholar 

  3. Agid Y, Cervera P, Hirsch E. Biochemistry of Parkinson’s disease 28 years later: a critical review. Mov Disord 1989; 4Suppl. 1: S126–44

    Article  PubMed  Google Scholar 

  4. Montastruc JL. Recent advances in the clinical pharmacology of Parkinson’s disease. Therapie 1991; 46: 293–303

    PubMed  CAS  Google Scholar 

  5. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12: 366–75

    Article  PubMed  CAS  Google Scholar 

  6. Gibb WRG, Lees A. The relevance of Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 1988; 51: 745–52

    Article  PubMed  CAS  Google Scholar 

  7. Jankovic J. The relationship between Parkinson’s disease and other movement disorders. In: Calne DB, editor. Drugs for the treatment of Parkinson’s disease. Hand Exp Pharmacol 1988; 88: 227–70

    Article  Google Scholar 

  8. Quinn N. Multiple system atrophy: the nature of the beast. J Neurol Neurosurg Psychiatry 1989; Suppl.: 78–89

    Google Scholar 

  9. Chase TN, Baronti F, Fabbrini G, et al. Rationale for continuous dopaminomimetic therapy of Parkinson’s disease. Neurology 1989; 39Suppl. 2: 7–10

    PubMed  CAS  Google Scholar 

  10. Nutt JG, Fellman JH. Pharmacokinetics of levodopa. Clin Neuropharmacol 1984; 7: 35–49

    Article  PubMed  CAS  Google Scholar 

  11. Riley D, Lang AE. Practical application of a low protein diet for Parkinson’s disease. Neurology 1988; 38: 1026–31

    Article  PubMed  CAS  Google Scholar 

  12. Kurlan R. Dietary therapy for motor fluctuations in Parkinson’s disease. Arch Neurol 1987; 44: 1119–21

    Article  PubMed  CAS  Google Scholar 

  13. Dempski RE, Scholtz EC, Oberholtzer ER, et al. Pharmaceutical design and development of a Sinemet controlled-release formulation. Neurology 1989; 39Suppl. 2: 20–4

    PubMed  CAS  Google Scholar 

  14. Erni W, Held K. The hydrodynamically balanced system: a novel principle of controlled drug release. Eur Neurol 1987; 27Suppl. 1: 21–7

    Article  PubMed  CAS  Google Scholar 

  15. Deleu D, Jacques M. Controlled-release carbidopa/levodopa (CR) in parkinsonian patients with response fluctuations on standard levodopa treatment: clinical and pharmacokinetic observations. Neurology 1989; 39Suppl. 2: 88–91

    PubMed  CAS  Google Scholar 

  16. Feldman RG, Mosbach PA, Kelly MR, et al. Double blind comparison of standard Sinemet and Sinemet CR in patients with mild-to-moderate Parkinson’s disease. Neurology 1989; 39Suppl. 2: 96–100

    PubMed  CAS  Google Scholar 

  17. Marion MH, Stocchi F, Malcolm SL, et al. Single-dose studies of a slow-release preparation of levodopa and benserazide (Madopar HBS) in Parkinson’s disease. Eur Neurol 1987; 27Suppl. 1: 28–35

    PubMed  Google Scholar 

  18. Rondot P, Ziegler M, Aymard N, et al. Clinical trial of Madopar HBS in parkinsonian patients with fluctuating drug response after long-term levodopa therapy. Eur Neurol 1987; 27Suppl. 1: 114–9

    Article  PubMed  Google Scholar 

  19. Rinne UK, Rinne JO. Treatment of early Parkinson’s disease with controlled-release levodopa preparations. Neurology 1989; 39Suppl. 2: 78–81

    PubMed  CAS  Google Scholar 

  20. Sage JI, Trooskin S, Sonsalla PK, et al. Experience with continuous enteral levodopa infusions in the treatment of 9 patients with advanced Parkinson’s disease. Neurology 1989; 39Suppl. 2: 60–2

    PubMed  CAS  Google Scholar 

  21. Sabel BA, Dominiak P, Hauser W. Levodopa delivery from controlled-release polymer matrix: delivery of more than 600 days in vitro and 225 days of elevated plasma levels after subcutaneous implantation in rats. J Pharmacol Exp Ther 1990; 255: 914–22

    PubMed  CAS  Google Scholar 

  22. Parkes JD, Tarsy D, Marsden CD. Amphetamines in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1975; 38: 232–37

    Article  PubMed  CAS  Google Scholar 

  23. Bailey EV, Stone TW. The mechanism of action of amantadine in parkinsonism: a review. Arch Int Pharmacodyn 1976; 216: 246–62

    Google Scholar 

  24. Starr MS, Starr BS. Locomotor effects of amantadine in the mouse are not those of a typical glutamate antagonist. J Neural Transm Park Dis Dement Sect 1995; 9: 31–43

    Article  PubMed  CAS  Google Scholar 

  25. Atre-Vaidya N, Jampala VC. Electroconvulsive therapy in parkinsonism with affective disorder. Br J Psychiatry 1988; 152: 55–8

    Article  PubMed  CAS  Google Scholar 

  26. Golbe LI, Langston JW, Shoulson I. Selegiline and Parkinson’s disease: protective and symptomatic considerations. Drugs 1990; 39: 646–51

    Article  PubMed  CAS  Google Scholar 

  27. Gerlach M, Riederer P, Youdim MBH. The molecular pharmacology of L-deprenyl. Eur J Pharmacol Mol Pharmacol 1992; 226: 97–108

    Article  CAS  Google Scholar 

  28. Lees AJ, Parkinson’s Disease Research Group of the United Kingdom. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. BMJ 1995; 311: 1602–7

    Article  PubMed  CAS  Google Scholar 

  29. Dubois B, Montastruc JL. Association levodopa + selegiline et augmentation du risque de mortalité dans le traitement de la maladie de Parkinson. Rev Neurol Paris 1996; 152: 103–5

    PubMed  CAS  Google Scholar 

  30. Montastruc JL, Chamontin B, Senard JM, et al. Pseudophaeochromocytoma in parkinsonian patient treated with fluoxetine plus selegiline. Lancet 1993; 341: 555

    Article  PubMed  CAS  Google Scholar 

  31. Fowler JS, Volkow ND, Logan J, et al. Monoamine oxidase B (MAO B) inhibitor therapy in Parkinson’s disease: the degree and reversibility of human brain MAO inhibition by RO 19 632. Neurology 1993; 43: 1984–92

    Article  PubMed  CAS  Google Scholar 

  32. Montastruc JL, Baldy-Moulinier M, Lees AJ, et al. MDL 72,974 A: a new selective inhibitor of MAO B in Parkinson’s disease [abstract]. New Trends Clin Neuropharmacol 1994; 8: 275

    Google Scholar 

  33. Mannisto PT, Kaakkola S. Rationale for selective COMT inhibitors as adjuncts in the drug treatment of Parkinson’s disease. Pharmacol Toxicol 1990; 66: 317–23

    Article  PubMed  CAS  Google Scholar 

  34. Mannisto PK. Clinical potential of catechol-O-methyltransferase (COMT) inhibitors as adjuvants in Parkinson’s disease. CNS Drugs 1994; 1: 172–9

    Article  Google Scholar 

  35. Merello M, Lees AJ, Webster R, et al. Effect of entacapone, a peripherally acting catechol-O-methyltransferase inhibitor, on the motor response to acute treatment with levodopa in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1994; 57: 186–9

    Article  PubMed  CAS  Google Scholar 

  36. Limousin P, Pollak P, Pfefen JP, et al. Acute administration of levodopa-benserazide and tolcapone, a COMT inhibitor, in Parkinson’s disease. Clin Neuropharmacol 1995; 18: 258–65

    Article  PubMed  CAS  Google Scholar 

  37. Blanchet PJ, Gomez-Mancilla B, Di Paolo T, et al. Is striatal dopaminergic receptor imbalance responsible for levodopa-induced dyskinesia? Fundam Clin Pharmacol 1995; 9: 434–42

    Article  PubMed  CAS  Google Scholar 

  38. Montastruc JL, Rascol O, Senard JM. Current status of dopamine agonists in Parkinson’s disease management. Drugs 1993; 46: 384–93

    Article  PubMed  CAS  Google Scholar 

  39. Jenner P. The rationale for the use of dopamine agonists in Parkinson’s disease. Neurology 1995; 45Suppl. 3: S6–12

    Article  PubMed  CAS  Google Scholar 

  40. Montastruc JL, Rascol O, Rascol A. A randomized controlled study of bromocriptine versus levodopa in previously untreated parkinsonian patients: a 3 year follow-up. J Neurol Neurosurg Psychiatry 1989; 52: 773–5

    Article  PubMed  CAS  Google Scholar 

  41. Rinne UK. Early combination of bromocriptine and levodopa in the treatment of Parkinson’s disease: a 5-year follow up. Neurology 1987; 37: 826–8

    Article  PubMed  CAS  Google Scholar 

  42. Montastruc JL, Rascol O, Senard JM, et al. A randomized controlled study comparing bromocriptine to which levodopa was later added with levodopa alone in previously untreated patients with Parkinson’s disease: a five year follow-up. J Neurol Neurosurg Psychiatry 1994; 57: 1034–8

    Article  PubMed  CAS  Google Scholar 

  43. Lees AJ. Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam Clin Pharmacol 1993; 7: 121–8

    Article  PubMed  CAS  Google Scholar 

  44. Piccoli F, Riuggeri RM. Dopaminergic agonists in the treatment of Parkinson’s disease: a review. J Neural Transm 1995; 45 Suppl.: 187–95

    CAS  Google Scholar 

  45. Rabey JM. Second generation of dopamine agonists: pros and cons. J Neural Transm 1995; 45 Suppl.: 213–24

    CAS  Google Scholar 

  46. Rascol O, Lees AJ, Senard JM, et al. A placebo-controlled study of ropinirole, a new D2 agonist, in the treatment of motor fluctuations of 1-dopa-treated parkinsonian patients. Adv Neurol 1996; 69: 531–4

    PubMed  CAS  Google Scholar 

  47. Sokoloff P, Martres MP, Schwartz JC. La famille des récepteurs de la dopamine. Med Sci 1993; 9: 12–20

    Google Scholar 

  48. Bedard PJ, Gomez-Mancilla B, Blanchet P, et al. Dopamine-receptor families and the treatment of Parkinson’s disease. Clin Neuropharmacol 1995; 18Suppl. 1: S178–87

    Article  Google Scholar 

  49. Emre M, Rinne UK, Rascol A, et al. Effects of a selective partial D1 agonist CY 208–243, in de novo patients with Parkinson’s disease. Mov Disord 1992; 7: 239–43

    Article  PubMed  CAS  Google Scholar 

  50. Montastruc JL, Fabre N, Blin O, et al. Does fluoxetine aggravate Parkinson’s disease? A pilot prospective study [letter]. Mov Disord 1995; 10: 355–7

    Article  PubMed  CAS  Google Scholar 

  51. Bartholini G, Scatton B, Zivkovic B, et al. Gaba receptor agonists and extrapyramidal motor function: therapeutic implication for Parkinson’s disease. Adv Neurol 1986; 45: 79–83

    Google Scholar 

  52. Rascol O, Fabre N, Blin O, et al. Naltrexone, an opiate antagonist, fails to modify motor symptoms in patients with Parkinson’s disease. Mov Disord 1994; 9: 437–40

    Article  PubMed  CAS  Google Scholar 

  53. Narabayashi H, Kondo T, Yokichi F, et al. Clinical effects of L-threo-3,4-dihydroxyphenylserine in parkinsonism and pure akinesia. Adv Neurol 1986; 45: 593–602

    Google Scholar 

  54. Kaufman H, Oribe E, Yahr MD. Treatment of orthostatic hypotension with l-threo-3,4-dihydrophenylserine. In: Narabayashi H, Mizuno Y, editors. Norepinephrine deficiency and its treatment with l-threo-dops in Parkinson’s disease and related disorders. London: Parthenon Publishing Group, 1993: 97–104

    Google Scholar 

  55. Colpaert FC. Noradrenergic mechanisms in Parkinson’s disease: a theory. In: Briley M, Marien M, editors. Noradrenergic mechanism in Parkinson’s disease. Boca Raton (FL): CRC Press, 1994: 225

    Google Scholar 

  56. Mavridis M, Degryse AD, Lategan AJ, et al. Effect of locus coeruleus lesion on parkinsonian signs, striatal dopamine and substantia nigra cell loss after l-methyl-4 phenyl-1,2,3,6 tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson’s disease. Neuroscience 1991; 41: 507–23

    Article  PubMed  CAS  Google Scholar 

  57. Trendelenburg AU, Starke K, Limberger N. Presynaptic alpha 2A-adrenoceptors inhibit the release of endogenous dopamine in rabbit caudate nucleus slices. Naunyn Schmiedebergs Arch Pharmacol 1994; 350: 473–81

    Article  PubMed  CAS  Google Scholar 

  58. Peyro-Saint-Paul H, Rascol O, Blin O, et al. A pilot study of idazoxan, an alpha2-antagonist in Parkinson’s disease [abstract]. Therapie 1995; 50 Suppl.: S171

    Google Scholar 

  59. Greenamyre JT, O’Brien F. N-Methyl-D-aspartate antagonists in the treatment of Parkinson’s disease. Arch Neurol 1991; 48: 977–81

    Article  PubMed  CAS  Google Scholar 

  60. Montastruc JL, Rascol O, Senard JM, et al. A pilot study of N-methyl-D-aspartate (NMDA) antagonists in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1992; 55: 630–1

    Article  PubMed  CAS  Google Scholar 

  61. Montastruc JL, Fabre N, Rascol O, et al. N-Methyl-D-aspartate (NMDA) antagonists and Parkinson’s disease: a pilot study with dextromethorphan. Mov Disord 1994; 9: 242

    Article  PubMed  CAS  Google Scholar 

  62. Diederich N, Keipes M, Graas M, et al. La clozapine dans le traitement des manifestations psychiatriques de la maladie de Parkinson. Rev Neurol 1995; 151: 251–7

    PubMed  CAS  Google Scholar 

  63. Rabey JM, Treves TA, Neufeld MY, et al. Low-dose clozapine in the treatment of levodopa-induced mental disturbances in Parkinson’s disease. Neurology 1995; 45: 432–4

    Article  PubMed  CAS  Google Scholar 

  64. Tranchant C, Wees C, Warter JM. Maladie de Parkinson idiopathique et fonctions mitochondriales. Rev Neurol (Paris) 1995; 151: 157–60

    CAS  Google Scholar 

  65. Shoulson I. Neuroprotective clinical strategies for Parkinson’s disease. Ann Neurol 1992; 32: S143–5

    Article  PubMed  Google Scholar 

  66. Birkmayer W, Knoll J, Riederer P, et al. Increased life expectancy resulting from addition of L-deprenyl to Madopar treatment in Parkinson’s disease: a long term study. J Neurol Transm 1985; 7: 113–27

    Article  Google Scholar 

  67. Tetrud JW, Langston B. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–22

    Article  PubMed  CAS  Google Scholar 

  68. Parkinson’s Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328: 178–83

    Google Scholar 

  69. Jankovic J. Neuroprotection: a reachable therapeutic goal? In: Stern BM, editor. Beyond the decade of the brain. Tunbridge Wells: Wells Medical Ltd, 1994: 109–27

    Google Scholar 

  70. Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa in the progression of Parkinson’s disease. Ann Neurol 1995; 38: 771–7

    Article  PubMed  CAS  Google Scholar 

  71. Myllylä VV, Heinonen EH, Vuorinen JA, et al. Long-term effects of deprenyl in Parkinson’s disease [abstract]. Mov Disord 1994; 9Suppl. 1: 4

    Google Scholar 

  72. Brannan T, Yahr MD. Comparative study of selegiline plus L-dopa-carbidopa versus L-dopa-carbidopa alone in the treatment of Parkinson’s disease. Ann Neurol 1995; 37: 95–8

    Article  PubMed  CAS  Google Scholar 

  73. Clow A, Hussain T, Glover V, et al. Pergolide can induce soluble superoxide dismutase in rat striata. J Neural Transm 1992; 90: 27–31

    Article  CAS  Google Scholar 

  74. Feiten DL, Feiten SY, Fuller RW, et al. Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged-Fisher-344 rats. Neurobiol Aging 1992; 13: 339–51

    Article  Google Scholar 

  75. Asanuda M, Ogawa N, Nishibayashi S, et al. Protective effects of pergolide on dopamine levels in the 6-hydroxydopamine-lesioned mouse brain. Arch Int Pharmacodyn Ther 1995; 329: 221–30

    Google Scholar 

  76. Ogawa N, Tanaka K, Asanuma M, et al. Bromocriptine protects mice against 6-hydroxydopamine and scavenges hydroxyl free radicals in vitro. Brain Res 1994; 657: 207–13

    Article  PubMed  CAS  Google Scholar 

  77. Jenner P. Oxidative damage in neurodegenerative disease. Lancet 1994; 344: 796–8

    Article  PubMed  CAS  Google Scholar 

  78. Mizuno Y, Mori H, Kondo T. Potential of neuroprotective therapy in Parkinson’s disease. CNS Drugs 1994; 1: 45–56

    Article  Google Scholar 

  79. Takayama H, Ray J, Raymon HK, et al. Basic fibroblast growth factor increases dopaminergic graft survival and function in a rat model of Parkinson’s disease. Nature Med 1995; 1: 53–8

    Article  PubMed  CAS  Google Scholar 

  80. Montastruc JL, Llau ME, Rascol O, et al. Drug-induced parkinsonism: a review. Fundam Clin Pharmacol 1994; 8: 293–306

    Article  PubMed  CAS  Google Scholar 

  81. Oertel WH. Parkinson’s disease: epidemiology, (differential) diagnosis, therapy, relation to dementia. Arzneimittel Forschung 1995; 45: 386–9

    PubMed  CAS  Google Scholar 

  82. Calne DB. Early detection of idiopathic parkinsonism. In: Sern MBMB, editor. Beyond the decade of the brain. Vol. 1. Tunbridge Wells: Wells Medical Ltd, 1994: 89–94

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montastruc, JL., Rascol, O. & Senard, JM. New Directions in the Drug Treatment of Parkinson’s Disease. Drugs & Aging 9, 169–184 (1996). https://doi.org/10.2165/00002512-199609030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199609030-00003

Keywords

Navigation