Skip to main content

Advertisement

Log in

Disease-Modifying Antirheumatic Drugs

Potential Effects in Older Patients

  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Disease-modifying antirheumatic drugs (DMARDs) are frequently used in rheumatoid arthritis. A number of physiological changes occur in the elderly which may modify the use of these medications.

The most commonly used DMARDs are antimalarial drugs (particularly hydroxychloroquine), sulfasalazine and methotrexate. The principal mechanism of action of the antimalarials relates to the fact that they change intracellular pH, which downregulates numerous immune functions. Hydroxychloroquine is metabolised to 3 metabolites and has a very low clearance. It is moderately effective in dosages up to 6.4 mg/kg/day. While it is not the most effective of the DMARDs, it is the least toxic.

Sulfasalazine is a prodrug which is enzymatically split in the bowel to form sulfapyridine (the principal active metabolite) and 5-aminosalicylic acid. The metabolism of sulfasalazine is complex and, to some extent, genetically determined. The mechanism of action of the drug is not well understood, but involves decreased production of cytokines and decreased proliferative response of lymphocytes. It may slow the rate of bony damage associated with rheumatoid arthritis. Nearly 50% of the patients who are prescribed sulfasalazine continue to receive the drug for up to 4 years. Sulfasalazine is not as well tolerated as hydroxychloroquine. Gastrointestinal toxicity, in particular, seems to be a problem in elderly patients taking this medication.

Methotrexate is presently the most popular of the DMARDs for the treatment of rheumatoid arthritis. Methotrexate inhibits dihydrofolate reductase and adenosine release and has a secondary effect on cytokines and polymorphonuclear chemotaxis. It is highly metabolised within cells and remains there for prolonged periods. Up to 70% of patients who are prescribed methotrexate continue treatment for 5 years. Methotrexate treatment is associated with gastrointestinal, hepatic, cutaneous and, possibly, pulmonary adverse effects.

The use of azathioprine, penicillamine and gold compounds is briefly reviewed in this article. Elderly patients have an increased incidence of rashes when using penicillamine, relative to young patients. There are no age-related differences in the efficacy and tolerability of azathioprine or gold therapy.

The poor absorption and renal toxicity associated with cyclosporin, the new ‘salvage’ therapy in rheumatoid arthritis, make it generally unsuitable for use in the elderly, except under specialists’ supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell DM, Spitz PW, Young DY, et al. Survival, prognosis, and causes of death in rheumatoid arthritis. Arthritis Rheum 1986; 29: 706–14

    PubMed  CAS  Google Scholar 

  2. Wilske KR, Healey LA. Challenging the therapeutic pyramid: a new look at treatment strategies for rheumatoid arthritis. J Rheumatol 1990; 17 (Suppl. 25): 4–7

    Google Scholar 

  3. van Schaardenburg D, Breedveld FC. Elderly-onset rheumatoid arthritis. Semin Arthritis Rheum 1994; 23: 367–78

    PubMed  Google Scholar 

  4. O’Callaghan JW, Brooks PM. Disease-modifying agents and immunosuppressive drugs in the elderly. Clin Rheum Dis 1986; 12(1): 275–89

    PubMed  Google Scholar 

  5. Morgan J, Furst DE. Implications of drug therapy in the elderly. Clin Rheum Dis 1986; 12(1): 227–44

    PubMed  CAS  Google Scholar 

  6. Payne JF. A postgraduate lecture on lupus erythematosus. Clin J 1894; 4: 223–9

    Google Scholar 

  7. Fox RI. Mechanism of action of hydroxychloroquine as an anti-rheumatic drug. Semin Arthritis Rheum 1993; 23 (Suppl. 1): 82–91

    PubMed  CAS  Google Scholar 

  8. Sperber K, Quraishi H, Kalb TH, et al. Selective regulation of cytokine secretion by hydroxychloroquine: inhibition of interleukin 1 alpha (IL-1-a) and IL-6 in human monocytes and T cells. J Rheumatol 1993; 20: 803–8

    PubMed  CAS  Google Scholar 

  9. Tett SE, Cutler DJ, Day RO. Anti-malarials in rheumatic diseases. In: Brooks PM, editor. Bailliere’s clinical rheumatology. Slow acting antirheumatic drugs and immunosuppressives. Syndey: Bailliere Tindall, 1990: 467–89

    Google Scholar 

  10. McChesney EW. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med 1983; 75 (Suppl. 1A): 11–8

    PubMed  CAS  Google Scholar 

  11. McLachman AJ, Cutler DJ, Tett SE. Plasma protein binding of the enantiomers of hydroxychloroquine and metabolites. Eur J Clin Pharmacol 1993; 44: 481–4

    Google Scholar 

  12. Mackenzie AH. Pharmacologic actions of 4-aminoquinoline compounds. Am J Med 1983; 75 (Suppl. 1A): 5–10

    PubMed  CAS  Google Scholar 

  13. Cutler, DJ, MacIntyre AC, Tett SE. Pharmacokinetics and cellular uptake of 4-aminoquinoline anti-malarials. Agents Actions Suppl 1988; 24: 142–57

    PubMed  CAS  Google Scholar 

  14. Mackenzie AH. Antimalarial drug therapy. In: Roth SH, Calarbo JJ, Paulus HE, et al., editors. Rheumatic therapeutics. New York: McGraw-Hill Company, 1985: 353–66

    Google Scholar 

  15. Davis MJ, Dawes PT, Fowler PD, et al. Should disease-modifying agents be used in mild rheumatoid arthritis? Br J Rheumatol 1991; 30: 451–4

    PubMed  CAS  Google Scholar 

  16. Clark P, Casas E, Tugwell P, et al. Hydroxychloroquine compared with placebo in rheumatoid arthritis. Ann Intern Med 1993; 119: 1067–71

    PubMed  CAS  Google Scholar 

  17. Felson DT, Anderson JJ, Meenan RF. The comparative efficacy of and toxicity of second-line drugs in rheumatoid arthritis. Arthritis Rheum 1990; 33: 1449–61

    PubMed  CAS  Google Scholar 

  18. Felson DT, Anderson JJ, Meenan RF. Use of short-term efficacy/toxicity tradeoffs to select second-line drugs in rheumatoid arthritis. Arthritis Rheum 1992; 35: 1117–25

    PubMed  CAS  Google Scholar 

  19. Furst DE. Rational use of disease-modifying antirheumatic drugs. Drugs 1990; 39: 19–36

    PubMed  CAS  Google Scholar 

  20. Wolfe F, Hawley DJ, Cathey MA. Termination of slow acting antirheumatic therapy in rheumatoid arthritis: a 14-year prospective evaluation of 1017 consecutive starts. J Rheumatol 1990; 17: 994–1002

    PubMed  CAS  Google Scholar 

  21. Maksymowych W, Russell AS. Anti-malarials in rheumatology: efficacy and safety. Semin Arthritis Rheum 1987; 16: 206–21

    PubMed  CAS  Google Scholar 

  22. Singh G, Fries JF, Williams CA, et al. Toxicity profiles of disease modifying antirheumatic drugs in rheumatoid arthritis. J Rheumatol 1991; 18: 188–94

    PubMed  CAS  Google Scholar 

  23. Easterbrook M. Ocular effects and safety of antimalarial agents. Am J Med 1988; 85 (Suppl. 4A): 23–9

    PubMed  CAS  Google Scholar 

  24. Mackenzie AH. Dose refinements in long-term therapy of rheumatoid arthritis with anti-malarials. Am J Med 1983; 75 (Suppl. 1A): 40–5

    PubMed  CAS  Google Scholar 

  25. Pinals RS. Sulfasalazine in the rheumatic disease. Semin Arthritis Rheum 1988; 17: 246–59

    PubMed  CAS  Google Scholar 

  26. McConkey B. History of the development of sulphasalazine in rheumatology. Drugs 1986; 32 Suppl. 1: 12–7

    PubMed  Google Scholar 

  27. Tarrart AJ, Neuman VC, Hill J, et al. 5-Aminosalicylic acid or sulphapyridine: which is the active moiety of sulphasalazine in rheumatoid arthritis? Drugs 1986; 32 Suppl. 1: 27–34

    Google Scholar 

  28. Grindulis RA, McConkey B. Does sulphasalazine cause folate deficiency in rheumatoid arthritis? Scand J Rheumatol 1985; 19: 265–70

    Google Scholar 

  29. Bax DE, Greaves M, Senior S, et al. Does sulphasalazine (SASP) impair folic acid absorbtion (FAA) in patients with rheumatoid arthritis (RA)? Br J Rheumatol 1987; 26 (Suppl. 1): 7

    Google Scholar 

  30. Danis VA, Franic GM, Rathjen DA, et al. Circulating cytokine levels in patients with rheumatoid arthritis: results of a double blind trial with sulphasalazine. Ann Rheum Dis 1992; 51: 945–50

    Google Scholar 

  31. Carlin G, Djursater R, Smedegard G. Sulfasalazine inhibition of human granulocyte activation by inhibition of second messenger compounds. Ann Rheum Dis 1992; 51: 1230–6

    PubMed  CAS  Google Scholar 

  32. Comer SS, Jasin HE. In vitro immunomodulatory effects of sulfasalazine and its metabolites. J Rheumatol 1988; 15: 580–6

    PubMed  CAS  Google Scholar 

  33. Farr M, Kitas GD, Tunn EJ, et al. Immunodeficiencies associated with sulphasalazine therapy in inflammatory arthritis. Br J Rheumatol 1991; 30: 413–7

    PubMed  CAS  Google Scholar 

  34. Madhok R, Wijelath E, Smith J, et al. Is the beneficial effect of sulfasalazine due to inhibition of synovial neovascularization? J Rheumatol 1991; 18: 199–202

    PubMed  CAS  Google Scholar 

  35. Pullar T, Hunter JA, Capell HA. Effect of acetylator phenotype on efficacy and toxicity of sulphasalazine in rheumatoid arthritis. Ann Rheum Dis 1985; 44: 831–7

    PubMed  CAS  Google Scholar 

  36. Kitas GD, Farr M, Waterhouse L, et al. Influence of acetylator status on sulfasalazine efficacy and toxicity in patients with rheumatoid arthritis. Scand J Rheumatol 1992; 21: 220–5

    PubMed  CAS  Google Scholar 

  37. Svartz N. The treatment of rheumatic polyarthritis with acid azo compounds. Rheumatism 1948; 4: 56–60

    Google Scholar 

  38. The Australian Multicentre Clinical Trial Group. Sulfasalazine in early rheumatoid arthritis. J Rheumatol 1992; 19: 1672–7

    Google Scholar 

  39. Hannonen P, Mottonen T, Hakola M, et al. Sulfasalazine in early rheumatoid arthritis: a 48 week double-blind, prospective, placebo-controlled study. Arthritis Rheum 1993; 36: 1501–9

    PubMed  CAS  Google Scholar 

  40. Porter D, Madhok R, Hunter JA, et al. Prospective trial comparing the use of sulphasalazine and auranofin as second line drugs in patients with rheumatoid arthritis. Ann Rheum Dis 1992; 51: 461–4

    PubMed  CAS  Google Scholar 

  41. Pullar T, Hunter JA, Capell HA. Effect of sulphasalazine on the radiological progression of rheumatoid arthritis. Ann Rheum Dis 1987; 46: 398–402

    PubMed  CAS  Google Scholar 

  42. van Riel PL, Gribnau FW, Nuver-Zwart IH, et al. Effects of hydroxychloroquine and sulphasalazine on progression of joint damage in rheumatoid arthritis. Lancet 1989; i: 1036–9

    Google Scholar 

  43. Jones E, Jones V, Woodbury JFL. Response to sulfasalazine in rheumatoid arthritis: life table analysis of a 5-year followup. J Rheumatol 1991; 18: 195–8

    PubMed  CAS  Google Scholar 

  44. Amos RS, Pullar T, Bax DE, et al. Sulphasalazine for rheumatoid arthritis: toxicity in 774 patients monitored for one to 11 years. BMJ 1986; 293: 420–3

    PubMed  CAS  Google Scholar 

  45. Kuipers EJ, Vellenga E, de Wolf JT. Sulfasalazine induced agranulocytosis treated with granulocyte-macrophage colony stimulating factor. J Rheumatol 1992; 19: 621–2

    PubMed  CAS  Google Scholar 

  46. Pullar T, Hunter JA, Capell HA. Toxicity of sulphasalazine in patients with rheumatoid arthritis [abstract]. Br J Rheumatol 1985; 24: 214

    Google Scholar 

  47. Wilkieson CA, Madhok R, Hunter JA, et al. Toleration, side-effects, and efficacy of sulfasalazine in rheumatoid arthritis patients of different ages. Q J Med 1993; 86: 501–5

    PubMed  CAS  Google Scholar 

  48. Grubner R, August S, Ginsberg V. The therapeutic suppression of tissue reactivity: II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci 1951; 22: 176–82

    Google Scholar 

  49. Hoffmeister RT. Methotrexate therapy in rheumatoid arthritis. Arthritis Rheum 1972; 15 Suppl.: S114

    Google Scholar 

  50. Shiroky JB, Neville C, Esdaile JM, et al. Low dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis: results of a multicenter randomized, double-blind placebo controlled trial. Arthritis Rheum 1993; 36: 795–803

    PubMed  CAS  Google Scholar 

  51. Calabrese LH, Taylor JV, Wilke WS, et al. Response of immunoregulatory lymphocyte subsets to methotrexate in rheumatoid arthritis. Cleve Clin J Med 1990; 57: 232–41

    PubMed  CAS  Google Scholar 

  52. Olsen NJ, Murray LM. Antiproliferative effects of methotrexate on peripheral blood mononuclear cells. Arthritis Rheum 1989; 32: 378–85

    PubMed  CAS  Google Scholar 

  53. Alarcon GS, Schrohenloher RE, Bartolucci AA, et al. Suppression of rheumatoid factor production by methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 1990; 33: 1156–61

    PubMed  CAS  Google Scholar 

  54. Sperling RI, Benincaso AI, Anderson RJ, et al. Acute and chronic suppression of leukotriene B4 synthesis ex vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum 1992; 35: 376–84

    PubMed  CAS  Google Scholar 

  55. Kremer J. The mechanism of action of methotrexate in rheumatoid arthritis: the search continues. J Rheumatol 1994; 21:1–4

    PubMed  CAS  Google Scholar 

  56. Segal R, Mozes E, Yaron M, et al. The effects of methotrexate on the production and activity of interleukin-1. Arthritis Rheum 1989; 32: 370–7

    PubMed  CAS  Google Scholar 

  57. Firestein GS, Paine MM, Boyle DL. Mechanisms of methotrexate action in rheumatoid arthritis: selective decrease in synovial collagenase gene expression. Arthritis Rheum 1994; 37: 193–200

    PubMed  CAS  Google Scholar 

  58. Cronstein BN. Molecular mechanisms of methotrexate action in inflammation. Inflammation 1992; 16: 411–23

    PubMed  CAS  Google Scholar 

  59. Furst DE, Kremer JM. Methotrexate in rheumatoid arthritis. Arthritis Rheum 1988; 31: 305–14

    PubMed  CAS  Google Scholar 

  60. Pinkerton CR, Glasgow JFT, Welshman SG, et al. Can food influence the absorption of methotrexate in children with acute lymphoblastic leukemia? Lancet 1980; ii: 944

    Google Scholar 

  61. Goldman ID. The characteristics of the membrane transport of amthopterin and the naturally occurring folates. Ann NY Acad Sci 1971; 186: 400–22

    PubMed  CAS  Google Scholar 

  62. Nuernberg B, Koehnke R, Solsky M, et al. Biliary elimination of low dose methotrexate in humans. Arthritis Rheum 1990; 33: 898–902

    PubMed  CAS  Google Scholar 

  63. Furst DE, Herman RA, Koehnke R, et al. The effect of aspirin and sulindac on methotrexate clearance. J Pharm Sci 1990; 79: 782–6

    PubMed  CAS  Google Scholar 

  64. Rooney TW, Furst DE, Koehnke R, et al. Aspirin is not associated with more toxicity than other NSAID in patients with rheumatoid arthritis treated with methotrexate. J Rheum 1993; 20: 1297–302

    PubMed  CAS  Google Scholar 

  65. Willkens RF, Watson MA, Paxson CS. Low dose pulse methotrexate therapy in rheumatoid arthritis. J Rheumatol 1980; 4: 501–5

    Google Scholar 

  66. Wilke WS, Calabrese LH, Scherbel AL. Methotrexate in the treatment of rheumatoid arthritis: a pilot study. Cleve Clin Q 1980; 47: 305–9

    PubMed  CAS  Google Scholar 

  67. Weinblatt ME, Coblyn JS, Fox DA, et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 1985; 312: 818–22

    PubMed  CAS  Google Scholar 

  68. Williams HJ, Willkens RF, Samuelson CO, et al. Comparison of low dose oral pulse methotrexate and placebo in the treatment of rheumatoid arthritis: a controlled clinical trial. Arthritis Rheum 1985; 28: 721–30

    PubMed  CAS  Google Scholar 

  69. Andersen PA, West SG, O’Dell JR, et al. Weekly pulse methotrexate in rheumatoid arthritis: clinical and immunologic effects in a randomized, double-blind study. Ann Intern Med 1985; 103: 489–96

    PubMed  CAS  Google Scholar 

  70. Furst DE, Koehnke R, Burmeister LF, et al. Increasing methotrexate effect with increasing dose in the treatment of resistant rheumatoid arthritis. J Rheumatol 1989; 16: 313–20

    PubMed  CAS  Google Scholar 

  71. Weinblatt ME, Weissman BN, Holdworth DE, et al. Long-term prospective study of methotrexate in the treatment of rheumatoid arthritis: 84-month update. Arthritis Rheum 1992; 35: 129–37

    PubMed  CAS  Google Scholar 

  72. Tishler M, Caspi D, Rosenbach TO, et al. Methotrexate in rheumatoid arthritis: a prospective study in Israeli patients with immunogenic correlation. Ann Rheum Dis 1988; 47: 654–9

    PubMed  CAS  Google Scholar 

  73. Weinstein A, Marlowe S, Korn J, et al. Low-dose methotrexate treatment of rheumatoid arthritis: long-term observations. Am J Med 1985; 79: 331–7

    PubMed  CAS  Google Scholar 

  74. Buchbinder R, Hall S, Sambrook PN, et al. Methotrexate therapy in rheumatoid arthritis: a life table review of 587 patients treated in community practice. J Rheumatol 1993; 20: 639–44

    PubMed  CAS  Google Scholar 

  75. Kremer JM, Phelps CT. Long-term prospective study of the use of methotrexate in rheumatoid arthritis: update after a mean of 90 months. Arthritis Rheum 1992; 35: 138–45

    PubMed  CAS  Google Scholar 

  76. Weinblatt ME, Kaplan H, Germain BF, et al. Methotrexate in rheumatoid arthritis: a five-year multicenter study. Arthritis Rheum 1994; 37: 1492–8

    PubMed  CAS  Google Scholar 

  77. Sany J, Kaliski S, Couret M, et al. Radiologic progression during intramuscular methotrexate treatment of rheumatoid arthritis. J Rheumatol 1990; 17: 1636–41

    PubMed  CAS  Google Scholar 

  78. Lopez-Mendez A, Daniel WW, Reading JC, et al. Radiographic assessment of disease progression in rheumatoid arthritis: patients enrolled in the cooperative systematic studies of the rheumatic diseases program randomized clinical trial of methotrexate, auranofin, or a combination of the two. Arthritis Rheum 1993; 36: 1364–9

    PubMed  CAS  Google Scholar 

  79. Alarcon GS, Lopez-Mendez A, Walter J, et al. Radiographic evidence of disease progression in methotrexate treated and nonmethotrexate disease modifying antirheumatic drug treated rheumatoid arthritis patients: a meta-analysis. J Rheum 1992; 19: 1868–73

    PubMed  CAS  Google Scholar 

  80. Schnabel A, Gross WL. Low-dose methotrexate in the rheumatic diseases: efficacy, side effects, and risk factors of side effects. Semin Arthritis Rheum 1994; 23: 310–27

    PubMed  CAS  Google Scholar 

  81. Wolfe F, Cathey MA. The effect of age on methotrexate efficacy and toxicity. J Rheumatol 1991; 18: 973–37

    PubMed  CAS  Google Scholar 

  82. Scully CJ, Anderson CJ, Cannon GW. Long-term methotrexate therapy for rheumatoid arthritis. Semin Arthritis Rheum 1991; 20: 317–31

    PubMed  CAS  Google Scholar 

  83. Rau R, Karger T, Herborn G, et al. Liver biopsy findings in patients with rheumatoid arthritis undergoing longterm treatment with methotrexate. J Rheumatol 1989; 16: 489–93

    PubMed  CAS  Google Scholar 

  84. Brick JE, Moreland LW, Al-Kawas F, et al. Prospective analysis of liver biopsies before and after methotrexate therapy in rheumatoid arthritis. Semin Arthritis Rheum 1989; 19: 31–44

    PubMed  CAS  Google Scholar 

  85. Kremer JM, Alarcon GS, Lightfoot Jr RW, et al. Methotrexate for rheumatoid arthritis. Arthritis Rheum 1994; 37: 316–28

    PubMed  CAS  Google Scholar 

  86. Sostman HD, Matthay RA, Putman CE, et al. Methotrexate-induced pneumonitis. Medicine 1976; 55: 371–88

    PubMed  CAS  Google Scholar 

  87. Barrera P, Laan RFJM, van Riel PLCM, et al. Methotrexate-related pulmonary complications in rheumatoid arthritis. Ann Rheum Dis 1994; 53: 434–9

    PubMed  CAS  Google Scholar 

  88. Antonelli MAS, Moreland LW, Brick JE. Herpes zoster in patients with rheumatoid arthritis treated with weekly low-dose methotrexate. Am J Med 1991; 90: 295–8

    PubMed  CAS  Google Scholar 

  89. Dahl SL, Samuelson CO, Williams HJ, et al. Second-line antirheumatic drugs in the elderly with rheumatoid arthritis: a post-hoc analysis of three controlled trials. Pharmacotherapy 1990; 10: 79–84

    PubMed  CAS  Google Scholar 

  90. McKendry RJ. Purine analogs. In: Dixon JS, Furst DE, editors. Second line agents in the treatment of rheumatic diseases. New York: Marcel Dekker, 1992: 223–43

    Google Scholar 

  91. Elion GB, Hitchings GH. Azathioprine. In: handbook of experimental pharmacology. New York: Springer-Verlag, 1975; 38: 404–25

    Google Scholar 

  92. Yu DT, Clements PJ, Peter JB, et al. Lymphocyte characteristics in rheumatic patients and the effect of azathioprine therapy. Arthritis Rheum 1974; 17: 37–45

    Google Scholar 

  93. Levy J, Barnett EV, MacDonald NS, et al. Effects of azathioprine on gammaglobulin synthesis in man. J Clin Invest 1972; 51: 223–8

    Google Scholar 

  94. Dixon JS, Bird HA, Sutton NG, et al. Serum biochemistry in relation to the action of azathioprine in rheumatoid arthritis. Agents Actions 1983; 13: 373–9

    PubMed  CAS  Google Scholar 

  95. Bacon PA, Salmon M. Modes of action of second-line agents. Scand J Rheumatol Suppl 1987; 64: 17–24

    PubMed  CAS  Google Scholar 

  96. Furst DE, Clements PJ. SAARDS (DMARDS) II in rheumatology. Klippel JH, Dieppe PA, editors. Rheumatology. St. Louis: Mosby, 1994: Sect 8, 13.1–8

    Google Scholar 

  97. Whisnant JK, Pelky J. Rheumatoid arthritis: treatment with azathioprine (Imuran). Clinical side effects and laboratory abnormalities. Ann Rheum Dis 1982; 41 Suppl.: 44–7

    PubMed  Google Scholar 

  98. Singh G, Fries JF, Spitz P, et al. Toxic effects of azathioprine in rheumatoid arthritis. A national post-marketing perspective. Arthritis Rheum 1989; 32: 837–43

    PubMed  CAS  Google Scholar 

  99. Rosenthal E. Azathioprine shock. Postgrad Med J 1986; 62: 677–8

    PubMed  CAS  Google Scholar 

  100. Saway PA, Heck LW, Bonner JR, et al. Azathioprine hypersensitivity. A case report and review of the literature. Am J Med 1988; 104: 1117–24

    Google Scholar 

  101. Lennard L, Van Loom JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to the thiopurine methyltransferase genetic polymorphism. Clin Pharmacol Ther 1989; 46: 149–54

    PubMed  CAS  Google Scholar 

  102. Lennard L, Rees CA, Lilleyman JS, et al. Childhood leukemia: a relationship between intracellular 6-mercaptopurine metabolites and neutropenia. Br J Clin Pharmacol 1983, 16: 359–63

    PubMed  CAS  Google Scholar 

  103. Van der Korst JK, Muijsers AO. Penicillamine. In: Dixon JS, Furst DE, editors. Second line agents in the treatment of rheumatic diseases. New York: Marcel-Dekker, 1992: 203–21

    Google Scholar 

  104. Levins EG, Clancy RL, Cripps AW, et al. D-penicillamine induced suppression of B-cell function: in vivo effect of D-penicillamine. J Rheum 1985; 12: 685–91

    Google Scholar 

  105. Lipsky PE. Immunosuppression by D-penicillamine in vitro: inhibition of T lymphocyte proliferation by copper or ceruloplasmin-dependent generation of hydrogen peroxide and protection by monocytes. J Clin Invest 1984; 73: 53–65

    PubMed  CAS  Google Scholar 

  106. Cuperus RA, Hoogland H, Wever R, et al. The effect of D-penicillamine on myeloperoxidase: formation of compound III and inhibition of chlorinating activity. Biochem Biophys Acta 1987; 912: 124–31

    PubMed  CAS  Google Scholar 

  107. Perrett D. The metabolism and pharmacology of D-penicillamine in man. J Rheum 1981; 8 (Suppl. 7): 41–50

    Google Scholar 

  108. Kukovetz WR, Barbler E, Kreuzig F, et al. Bioavailability and pharmacokinetics of D-penicillamine. J Rheum 1983; 10: 90–4

    PubMed  CAS  Google Scholar 

  109. Muijsers AO, Van de Stadt RJ, Heinrichs AMA, et al. D-penicillamine in patients with rheumatoid arthritis: serum levels, pharmacokinetic aspects and correlation with clinical course and side effects. Arthritis Rheum 1984; 27: 1362–9

    PubMed  CAS  Google Scholar 

  110. Seidman P, Lindstrom B. Pharmacokinetic interactions of penicillamine in rheumatoid arthritis. J Rheum 1989; 16: 473–4

    Google Scholar 

  111. Hill HFH. Penicillamine in rheumatoid arthritis: adverse effects. Scand J Rheumatol Suppl 1979; 28: 94–9

    PubMed  Google Scholar 

  112. Stein HB, Schroeder ML, Dillon AM. Penicillamine-induced proteinuria: risk factors. Semin Arthritis Rheum 1986; 72: 423–6

    Google Scholar 

  113. Cooperative Systemic Studies of Rheumatic Disease Group. Toxicity of long-term low dose D-penicillamine therapy in rheumatoid arthritis. J Rheum 1987; 14: 67–72

    Google Scholar 

  114. Kean WF, Anastassiades TP, Dwosh IL, et al. Efficacy and toxicity of D-penicillamine for rheumatoid disease in the elderly. J Am Geriatr Soc 1982; 30: 94–100

    PubMed  CAS  Google Scholar 

  115. Champion CD, Graham GC, Ziegler JB. The gold complexes. Baillieres Clin Rheumatol 1990; 4: 491–534

    PubMed  CAS  Google Scholar 

  116. Palmer DG, Dunckley JV. Gold levels in serum during the treatment of RA with gold sodium thiomalate. Aust NZ J Med 1973; 3: 461–6

    CAS  Google Scholar 

  117. Gerber RC, Panlus HE, Jennrich RI, et al. Gold kinetics following aurothiomalate therapy: use of a whole-body radiation counter. J Lab Clin Med 1974; 85: 778–89

    Google Scholar 

  118. Ghadially FN. Ultrastructural localization and in situ analysis of iron bismuth and gold inclusions. CRC Crit Rev Toxicol 1979; 6: 303–50

    PubMed  CAS  Google Scholar 

  119. Blocka K. Auranofin versus injectable gold. Comparison of pharmacokinetic properties. Am J Med 1983; 75(6A): 112–114

    Google Scholar 

  120. Blocka K, Furst DE, Ladan E. Single dose pharmacokinetics of auranofin in rheumatoid arthritis. J Rheum 1982; 9 Suppl. 8: 110–9

    Google Scholar 

  121. Walz DT, Griswald DE, Dimartino MJ, et al. Distribution of gold in blood following administration of auranofin (SKF D-39162). J Rheum 1979; 6 Suppl. 5; 56–60

    Google Scholar 

  122. Empire Rheumatism Council Research Sub-Committee. Gold therapy in rheumatoid arthritis, report of a multi-center, controlled, trial. Ann Rheum Dis 1960; 19: 95–119

    Google Scholar 

  123. American Rheumatism Association. The Cooperating Clinics Committee. A controlled trial of gold salt therapy in rheumatoid arthritis. Arthritis Rheum 1973; 16: 353–8

    Google Scholar 

  124. Sigler JW, Bluhim GB, Duncan H, et al. Gold salts in the treatment of rheumatoid arthritis: a double-blind study. Ann Intern Med 1974; 80: 21–6

    PubMed  CAS  Google Scholar 

  125. Ward JR, Williams HJ, Egger MJ, et al. Comparison of conventional and low dose sodium aurothiomalate treatment in rheumatoid arthritis. Br J Rheum 1983; 22: 82–8

    Google Scholar 

  126. Griffen AJ, Gibson T, Huston G. A comparison of conventional and low dose sodium aurothiomalate treatment in rheumatoid arthritis. Br J Rheum 1983; 22: 82–8

    Google Scholar 

  127. Furst DE, Levine S, Srinivasan R, et al. A double-blind trial of high versus conventional doses of gold salts for rheumatoid arthritis. Arthritis Rheum 1977; 20: 1473–80

    PubMed  CAS  Google Scholar 

  128. Sambrook PN, Browne CD, Champion GD, et al. Terminations of treatment with gold sodium thiomalate in rheumatoid arthritis. J Rheum 1982; 9: 932–4

    PubMed  CAS  Google Scholar 

  129. Lockie LM, Smith DM. Forth-seven years experience with gold therapy in 1019 rheumatoid arthritis patients. Semin Arthritis Rheum 1985; 14: 238–46

    PubMed  CAS  Google Scholar 

  130. Larsen A, Horton J, Howland C. The effects of auranofin and parenteral gold in the treatment of rheumatoid arthritis: an x-ray analysis. Clin Rheum 1984; 3 (Suppl. 1): 97–104

    Google Scholar 

  131. Freyberg RH, Ziff M, Baum J. Gold therapy for rheumatoid arthritis. In: Hollander JI, McCarty DJ, editors. Arthritis and allied conditions. 8th ed. Philadelphia: Lea & Febiger, 1972: 455–82

    Google Scholar 

  132. Gumpel M. Deaths associated with gold treatment: a reassessment. BMJ 1978; 1: 215–6

    PubMed  CAS  Google Scholar 

  133. Heuer MA, Pietrusko RG, Morris RW, et al. An analysis of worldwide safety experience with auranofin. J Rheum 1985; 12: 695–9

    PubMed  CAS  Google Scholar 

  134. Faulds D, Goa KL, Benfield P. Cyclosporin: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in immunoregulatory disorders. Drugs 1993; 45: 953–1040

    PubMed  CAS  Google Scholar 

  135. Van Rijthoven AWAM, Dijkmans BAC. Cyclosporin treatment for rheumatoid arthritis: a placebo controlled, double-blind, multicentre study. Ann Rheum Dis 1986; 45: 726–31

    PubMed  Google Scholar 

  136. Tugwell P. Low dose cyclosporin versus placebo in patients with rheumatoid arthritis. Lancet 1990; 335: 1051–5

    PubMed  CAS  Google Scholar 

  137. Van Rijthoven AWAM. Comparison of cyclosporin and D-penicillamine for rheumatoid arthritis. J Rheum 1991; 18: 815–20

    PubMed  Google Scholar 

  138. Sandimmun International Kidney Biopsy Registry in Autoimmune Diseases. Renal morphology after cyclosporin A therapy in rheumatoid arthritis patients. Br J Rheumatol 1993; 32 (Suppl. 1): 65–71

    Google Scholar 

  139. Landeve RBM, Gocithe HS, van Rijthoven AWAM, et al. Cyclosporine in common clinical practice: an estimation of the benefit/risk ratio in patients with rheumatoid arthritis. J Rheum 1994; 21: 1631–6

    Google Scholar 

  140. Torley H, Yocum D. Effects of dose and treatment duration on adverse experiences with cyclosporine in RA: analysis of North American Trials [abstract]. Arthritis Rheum 1994; 37 Suppl.: 334

    Google Scholar 

  141. Felson DT, Anderson JJ, Meenan RF. The efficacy and toxicity of combination therapy in rheumatoid arthritis: a meta-analysis. Arthritis Rheum 1994; 37: 1487–91

    PubMed  CAS  Google Scholar 

  142. Tugwell P, Pincus T, Yocum D, et al. A multi-centre, double-blind, randomized trial of low-dose cyclosporin and placebo therapy in combination with methotrexate in patients with severe rheumatoid arthritis. Arthritis Rheum 1994; 37 Suppl.: S361

    Google Scholar 

  143. Trentham DE, Dynesius-Trentham RA, Orav EJ, et al. Effects of oral administration of type II collagen on rheumatoid arthritis. Science 1993; 261: 1727–9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, G., Furst, D.E. Disease-Modifying Antirheumatic Drugs. Drugs & Aging 7, 420–437 (1995). https://doi.org/10.2165/00002512-199507060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199507060-00003

Keywords

Navigation