Skip to main content

Advertisement

Log in

Presymptomatic Testing for Genetic Diseases of Later Life

Pharmacoepidemiological Considerations

  • Review Article
  • Epidemiology
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

As the Human Genome Project gathers speed, new disease genes are rapidly being found. Important as these discoveries are, they are only the beginning of the process of characterising, diagnosing and treating genetic diseases. We now have the potential to predict the onset of many disorders before the appearance of clinical symptoms, even though treatment is not always available. In this review we have used a number of examples to illustrate various aspects of the presymptomatic diagnosis of genetic disease and, where possible, late-onset disorders have been chosen as examples.

When treatment is available, the diagnosis of a disease before appearance of symptoms can greatly improve the prognosis. When treatment is not available, reasons to undergo presymptomatic testing may not be so obvious. However, appropriate lifestyle changes or medical surveillance can sometimes delay onset or decrease severity of a disorder. Even if no treatment is available, genetic testing and counselling for the patient and family members can provide useful information for future planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caskey CT. Presymptomatic diagnosis: a first step toward genetic health care. Science 1993; 262: 48–9

    PubMed  CAS  Google Scholar 

  2. Grompe M. The rapid detection of unknown mutations in nucleic acids. Nature Genet 1993; 5: 111–7

    PubMed  CAS  Google Scholar 

  3. Fox S, Bloch M, Fahy M. et al. Predictive testing for Huntington disease: I. Description of a pilot project in British Columbia. Am J Med Genet 1989; 32: 211–6

    PubMed  CAS  Google Scholar 

  4. Bloch M, Fahy M, Fox S, et al. Predictive testing for Huntington disease: II. Demographic characteristics, life-style patterns, attitudes, and psychosocial assessments of the first fifty-one test candidates. Am J Med Genet 1989; 32: 217–24

    PubMed  CAS  Google Scholar 

  5. Brown SR, Marshall K. Advances in genetic information: a guide for state policy makers. Lexington: The Council of State Governments, 1992

    Google Scholar 

  6. Scriver CR, Kaufman S, Woo SLC. The hyperphenyl-alaninemias. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 495–546

    Google Scholar 

  7. Guthrie R. Blood screening for phenylketonuria. JAMA 1961; 178: 863

    Google Scholar 

  8. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 1963; 32: 338–43

    PubMed  CAS  Google Scholar 

  9. O’Flynn ME. Newborn screening for phenylketonuria: thirty years of progress. Curr Probl Pediatr 1992; 22: 159–65

    PubMed  Google Scholar 

  10. Azen CG, Koch R, Friedman EG, et al. Intellectual development in 12-year-old children treated for phenylketonuria. Am J Dis Child 1991; 145: 35–9

    PubMed  CAS  Google Scholar 

  11. Lenke RR, Levy HL. Maternal phenylketonuria and hyper-phenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med 1980; 303: 1202–8

    PubMed  CAS  Google Scholar 

  12. Irons M. Screening for metabolic disorders. How are we doing? Pediatr Clin North Am 1993; 40: 1073–85

    PubMed  CAS  Google Scholar 

  13. Kirkman HN. Projections of a rebound in frequency of mental retardation from phenylketonuria. Appl Res Ment Retard 1982; 3: 319–28

    PubMed  CAS  Google Scholar 

  14. Koch R, Levy HL, Matalon R, et al. The North American Collaborative Study of Maternal Phenylketonuria. Status report 1993. Am J Dis Child 1993; 147: 1224–30

    PubMed  CAS  Google Scholar 

  15. Blank CA, Brantly M. Clinical features and molecular characteristics of α1-antitrypsin deficiency. Ann Allergy 1994; 72: 105–20

    PubMed  CAS  Google Scholar 

  16. Buist AS. α1-Antitrypsin deficiency in lung and liver disease. Hosp Pract Off Ed 1989; 24(5): 51–9

    PubMed  CAS  Google Scholar 

  17. Sifers RN, Finegold MJ, Woo SLC. Molecular biology and genetics of alpha1-antitrypsin deficiency. Semin Liver Dis 1992; 12: 301–10

    PubMed  CAS  Google Scholar 

  18. Lomas DA, Evans DL, Finch JT, et al. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature 1992; 357: 605–7

    PubMed  CAS  Google Scholar 

  19. Larsson C. Natural history and life expectancy in severe alpha1-antitrypsin deficiency, Pi Z. Acta Med Scand 1978; 204: 345–51

    PubMed  CAS  Google Scholar 

  20. Gadek JE, Fells GA, Crystal RG. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science 1979; 206: 1315–6

    PubMed  CAS  Google Scholar 

  21. Wewers MD, Casolaro MA, Sellers SE, et al. Replacement therapy for alpha1-antitrypsin deficiency associated with emphysema. N Engl J Med 1987; 316: 1055–62

    PubMed  CAS  Google Scholar 

  22. Hubbard RC, Crystal RG. Strategies for aerosol therapy of α1-antitrypsin deficiency by the aerosol route. Lung 1990; 168 Suppl.: 565–78

    PubMed  CAS  Google Scholar 

  23. Eriksson S. The potential role of elastase inhibitors in emphysema treatment. Eur Respir J 1991; 4: 1041–3

    PubMed  CAS  Google Scholar 

  24. Lemarchand P, Jaffe HA, Danel C, et al. Adenovirus-mediated transfer of a recombinant human α1-antitrypsin cDNA to human endothelial cells. Proc Natl Acad Sci USA 1992; 89: 6482–6

    PubMed  CAS  Google Scholar 

  25. Goldstein JL, Brown MS. Familial hypercholesterolemia. In: Scriver CR, Beaudet AL, Sly WS, et al., editors. The metabolic basis of inherited disease. 6th ed. New York: McGraw-Hill, 1989: 1215–51

    Google Scholar 

  26. Wald NJ, Law M, Watt HC, et al. Apolipoproteins and ischaemic heart disease: implications for screening. Lancet 1994; 343: 75–9

    PubMed  CAS  Google Scholar 

  27. Motulsky AG. Genetic aspects of familial hypercholesterolemia and its diagnosis. Arteriosclerosis 1989; 9 Suppl. 1: 13–7

    Google Scholar 

  28. Connor WE, Connor SL. Importance of diet in the treatment of familial hypercholesterolemia. Am J Cardiol 1993; 72(10): 42D–53D

    PubMed  CAS  Google Scholar 

  29. Gotto Jr AM. Heart disease in the assessment and treatment of hypercholsterolemia: coronary artery disease and other atherosclerotic disease, family history, and left ventricular hypertrophy. Am J Med 1994; 96(6A): 9S–18S

    PubMed  CAS  Google Scholar 

  30. Grossman M, Raper SE, Kozarsky K, et al. Successful ex vivo gene therapy directed to liver in a patient with familial hypercholesterolaemia. Nat Genet 1994; 6: 335–41

    PubMed  CAS  Google Scholar 

  31. Bild DE, Williams RR, Brewer HB, et al. Identification and management of heterozygous familial hypercholesterolemia: summary and recommendations from an NHLBI workshop. Am J Cardiol 1993; 72(10): 1D–5D

    PubMed  CAS  Google Scholar 

  32. Gotto Jr AM. Cholesterol levels in young adults: screen and intervene? Hosp Pract Off Ed 1994; 29(3): 109–16

    PubMed  Google Scholar 

  33. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1992; 1: 445–66

    PubMed  CAS  Google Scholar 

  34. Kotze MJ, De Villiers WJS, Steyn K, et al. Phenotypic variation among familial hypercholesterolemics heterozygous for either one of two Afrikaner founder LDL receptor mutations. Arterioscler Thromb 1993; 13: 1460–8

    PubMed  CAS  Google Scholar 

  35. Knudson AG. All in the (cancer) family. Nature Genet 1993; 5: 103–4

    PubMed  CAS  Google Scholar 

  36. Wicking C, Berkman J, Wainwright B, et al. Fine genetic mapping of the gene for nevoid basal cell carcinoma syndrome. Genomics 1994; 22: 505–11

    PubMed  CAS  Google Scholar 

  37. Weksberg R, Teshima I, Williams BRG, et al. Molecular characterization of cytogenetic alterations associated with the Beckwith-Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet 1993; 2: 549–56

    PubMed  CAS  Google Scholar 

  38. Weksberg R, Shen DR, Fei YL, et al. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nature Genet 1993; 5: 143–50

    PubMed  CAS  Google Scholar 

  39. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 1994; 266: 66–71

    PubMed  CAS  Google Scholar 

  40. Wooster R, Neuhausen SL, Mangion J, et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q l2-13. Science 1994; 265: 2088–90

    PubMed  CAS  Google Scholar 

  41. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327: 293–7

    PubMed  CAS  Google Scholar 

  42. Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1987; 327: 298–303

    PubMed  CAS  Google Scholar 

  43. Baker SJ, Fearon ER, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989; 244: 217–21

    PubMed  CAS  Google Scholar 

  44. Nigro JM, Baker SJ, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 705–7

    PubMed  CAS  Google Scholar 

  45. Fearon ER, Cho KR, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990; 247: 49–56

    PubMed  CAS  Google Scholar 

  46. Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991; 66: 589–600

    PubMed  CAS  Google Scholar 

  47. Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 1991; 253: 665–9

    PubMed  CAS  Google Scholar 

  48. Fishel R, Lescoe MK, Rao MRS, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 1993; 75: 1027–38

    PubMed  CAS  Google Scholar 

  49. Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1215–25

    PubMed  CAS  Google Scholar 

  50. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994; 368: 258–61

    PubMed  CAS  Google Scholar 

  51. Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer. Science 1994; 263: 1625–9

    PubMed  CAS  Google Scholar 

  52. Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994; 371: 75–80

    PubMed  CAS  Google Scholar 

  53. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 1990; 250: 1233–8

    PubMed  CAS  Google Scholar 

  54. Donis-Keller H, Dou S, Chi D, et al. Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC. Hum Mol Genet 1993; 2: 851–6

    PubMed  CAS  Google Scholar 

  55. Hofstra RMW, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994; 367: 375–6

    PubMed  CAS  Google Scholar 

  56. Nancarrow DJ, Mann GJ, Holland EA, et al. Confirmation of chromosome 9p linkage in familial melanoma. Am J Hum Genet 1993; 53: 936–42

    PubMed  CAS  Google Scholar 

  57. Fujimori M, Wells Jr SA, Nakamura Y. Fine-scale mapping of the gene responsible for multiple endocrine neoplasia type 1 (MEN1). Am J Hum Genet 1992; 50: 399–403

    PubMed  CAS  Google Scholar 

  58. Mulligan LM, Kwok JBJ, Healey CS, et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 1993; 363: 458–60

    PubMed  CAS  Google Scholar 

  59. Biegel JA, White PS, Marshall HN, et al. Constitutional lp36 deletion in a child with neuroblastoma. Am J Hum Genet 1993; 52: 176–82

    PubMed  CAS  Google Scholar 

  60. Cawthorn RM, Weiss R, Xu G, et al. A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations. Cell 1990; 62: 193–201

    Google Scholar 

  61. Wallace MR, Marchuk DA, Andersen LB, et al. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 1990; 249: 181–6

    PubMed  CAS  Google Scholar 

  62. Rouleau GA, Merel P, Lutchman M, et al. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 1993; 363: 515–21

    PubMed  CAS  Google Scholar 

  63. Trofatter JA, MacCollin MM, Rutter JL, et al. A novel moesin-,ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 1993; 72: 791–800

    PubMed  CAS  Google Scholar 

  64. Friend SH, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323: 643–6

    PubMed  CAS  Google Scholar 

  65. Neilist M, Brook-Carter PT, Connor JM, et al. Identification of markers flanking the tuberous sclerosis locus on chromosome 9 (TSC1). J Med Genet 1993; 30: 224–7

    Google Scholar 

  66. The European Chromosome 16 Tuberous Sclerosis Consortium. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 1993; 75: 1305–15

    Google Scholar 

  67. Lauf F, Tory K, Gnarra J, et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993; 260: 1317–20

    Google Scholar 

  68. Call KM, Glaser T, Ito CY, et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 1990; 60: 509–20

    PubMed  CAS  Google Scholar 

  69. Gessler M, Poustka A, Cavenee W, et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343: 774–8

    PubMed  CAS  Google Scholar 

  70. Zimmerman LE. Retinoblastoma and retinocytoma. In: Spencer WH, editor. Ophthalmic pathology. An atlas and textbook. 3rd. ed. Philadelphia: W.B. Saunders Company, 1985; 2: 1292–351

    Google Scholar 

  71. Vogel F. Genetics of retinoblastoma. Hum Genet 1979; 52: 1–54

    PubMed  CAS  Google Scholar 

  72. Draper GJ, Sanders BM, Kingston JE. Second primary neoplasms in patients with retinoblastoma. Br J Cancer 1986; 53: 661–71

    PubMed  CAS  Google Scholar 

  73. Knudson Jr AG. Genetics of human cancer. Annu Rev Genet 1986; 20: 231–51

    PubMed  Google Scholar 

  74. Wiggs J, Nordenskjöld M, Yandell D, et al. Prediction of the risk of hereditary retinoblastoma, using DNA polymorphisms within the retinoblastoma gene. N Engl J Med 1988; 318: 151–7

    PubMed  CAS  Google Scholar 

  75. Pierro L, Brancato R, Capoferri C. Prenatal detection and early diagnosis of hereditary retinoblastoma in a family. Ophthalmologica 1993; 207: 106–11

    PubMed  CAS  Google Scholar 

  76. Silverberg E, Boring CC, Squires TS. Cancer statistics, 1990. CA Cancer J Clin 1990; 40: 9–26

    PubMed  CAS  Google Scholar 

  77. Seidman H, Mushinski MH, Gelb SK, et al. Probabilities of eventually developing or dying of cancer — United States, 1985. CA Cancer J Clin 1985; 35: 36–56

    PubMed  CAS  Google Scholar 

  78. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759–67

    PubMed  CAS  Google Scholar 

  79. Vogelstein B, Kinzler KW. The multistep nature of cancer. Trends Genet 1993; 9: 138–41

    PubMed  CAS  Google Scholar 

  80. Ferrucci JT. Screening for colon cancer: controversies and recommendations. Radiol Clin North Am 1993; 31: 1189–95

    PubMed  CAS  Google Scholar 

  81. Loeb LA. Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 1994; 54: 5059–63

    PubMed  CAS  Google Scholar 

  82. Su SS, Lahue RS, Au KG, et al. Mispair specificity of methyl-directed DNA mismatch correction in vitro. J Biol Chem 1988; 263: 6829–35

    PubMed  CAS  Google Scholar 

  83. National Advisory Council for Human Genome Research. Statement on use of DNA testing for presymptomatic identification of cancer risk. JAMA 1994; 271: 785

    Google Scholar 

  84. King MC, Rowell S, Love SM. Inherited breast and ovarian cancer. What are the risks? What are the choices? JAMA 1993; 269: 1975–80

    PubMed  CAS  Google Scholar 

  85. Newman B, Austin MA, Lee M, et al. Inheritance of human breast cancer: evidence for autosomal dominant transmission in high-risk families. Proc Natl Acad Sci USA 1988; 85: 3044–8

    PubMed  CAS  Google Scholar 

  86. Easton DF, Bishop DT, Ford D, et al. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. Am J Hum Genet 1993; 52: 678–701

    PubMed  CAS  Google Scholar 

  87. Castilla LH, Couch FJ, Erdos MR, et al. Mutations in the BRCA1 gene in families with early-onset breast and ovarian cancer. Nature Genet 1994; 8: 387–91

    PubMed  CAS  Google Scholar 

  88. Friedman LS, Ostermeyer EA, Szabo CI, et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nature Genet 1994; 8: 399–404

    PubMed  CAS  Google Scholar 

  89. Simard J, Tonin P, Durocher F, et al. Common origins of BRCA1 mutations in Canadian breast and ovarian cancer families. Nature Genet 1994; 8: 392–8

    PubMed  CAS  Google Scholar 

  90. Futreal PA, Liu Q, Shattuck-Eidens D, et al. BRCA1 mutations in primary breast and ovarian carcinomas. Science 1994; 266: 120–2

    PubMed  CAS  Google Scholar 

  91. Claus EB, Risch N, Thompson WD. Genetic analysis of breast cancer in the cancer and steroid hormone study. Am J Hum Genet 1991; 48: 232–42

    PubMed  CAS  Google Scholar 

  92. Rowell S, Newman B, Boyd J, et al. Inherited predisposition to breast and ovarian cancer [editorial]. Am J Hum Genet 1994; 55: 861–5

    PubMed  CAS  Google Scholar 

  93. Ries LAG, Hankey BF, Miller BA, et al. Cancer Statistics Review 1973–1988. Bethesda: National Cancer Institute, 1991

    Google Scholar 

  94. Pike MC, Krailo MD, Henderson BE, et al. ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 1983; 303: 767–70

    PubMed  CAS  Google Scholar 

  95. Henderson BE, Ross RK, Pike MC. Toward the primary prevention of cancer. Science 1991; 254: 1131–8

    PubMed  CAS  Google Scholar 

  96. Nayfield SG, Karp JE, Ford LG, et al. Potential role of tamoxifen in prevention of breast cancer. J Natl Cancer Inst 1991; 83: 1450–9

    PubMed  CAS  Google Scholar 

  97. Biesecker BB, Boehnke M, Calzone K, et al. Genetic counselling for families with inherited susceptibility to breast and ovarian cancer. JAMA 1993; 269: 1970–4

    PubMed  CAS  Google Scholar 

  98. Statement of the American Society of Human Genetics on genetic testing for breast and ovarian cancer predisposition. Am J Hum Genet 1994; 55: i–iv

  99. Collins F, Galas D. A new five-year plan for the U.S. Human Genome Project. Science 1993; 262: 43–6

    PubMed  CAS  Google Scholar 

  100. Willems PJ. Dynamic mutations hit double figures. Nature Genet 1994; 8: 213–5

    PubMed  CAS  Google Scholar 

  101. Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992; 68: 799–808

    PubMed  CAS  Google Scholar 

  102. Fu YH, Pizzuti A, Fenwick Jr RG, et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992; 255: 1256–8

    PubMed  CAS  Google Scholar 

  103. Mahadevan M, Tsilfidis C, Sabourin L, et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992; 255: 1253–5

    PubMed  CAS  Google Scholar 

  104. Harper PS. Myotonic dystrophy. 2nd ed. London: W.B. Saunders Company, 1989

    Google Scholar 

  105. Reardon W, MacMillan JC, Myring J, et al. Cataract and myotonic dystrophy: the role of molecular diagnosis. Br J Ophthalmol 1993; 77: 579–83

    PubMed  CAS  Google Scholar 

  106. Redman JB, Fenwick Jr RG, Fu YH, et al. Relationship between parental trinucleotide GCT repeat length and severity of myotonic dystrophy in offspring. JAMA 1993; 269: 1960–5

    PubMed  CAS  Google Scholar 

  107. Fleischer B. Über myotonische Dystrophie mit Katarakt. Eine hereditäre, familiäre Degeneration. Graefe Arch Klin Exp Ophthal 1918; 96: 91–133

    Google Scholar 

  108. Vogt A. Die Cataract bei myotonischer Dystrophie. Schweiz Med Wochenschr 1921; 29: 669–74

    Google Scholar 

  109. Dunne PW, Walch ET, Epstein HF. Phosphorylation reactions of recombinant human myotonic dystrophy protein kinase and their inhibition. Biochemistry 1994; 33: 10809–14

    PubMed  CAS  Google Scholar 

  110. Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 1983; 306: 234–8

    PubMed  CAS  Google Scholar 

  111. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971–83

    Google Scholar 

  112. Meissen GJ, Myers RH, Mastromauro CA, et al. Predictive testing for Huntington’s disease with use of a linked DNA marker. N Engl J Med 1988; 318: 535–42

    PubMed  CAS  Google Scholar 

  113. Brandt J, Quaid KA, Folstein SE, et al. Presymptomatic diagnosis of delayed-onset disease with linked DNA markers. The experience in Huntington’s disease. JAMA 1989; 261: 3108–14

    PubMed  CAS  Google Scholar 

  114. Morris MJ, Tyler A, Lazarou L, et al. Problems in genetic prediction for Huntington’s disease. Lancet 1989; 2(8663): 601–3

    PubMed  CAS  Google Scholar 

  115. The World Federation of Neurology Research Group on Huntington’s Disease. Presymptomatic testing for Huntington’s disease: a world wide survey. J Med Genet 1993; 30: 1020–2

    Google Scholar 

  116. Quaid KA, Morris M. Reluctance to undergo predictive testing: the case of Huntington disease. Am J Med Genet 1993; 45: 41–5

    CAS  Google Scholar 

  117. Quaid KA. Presymptomatic testing for Huntington disease in the United States [letter]. Am J Hum Genet 1993; 53: 785–7

    PubMed  CAS  Google Scholar 

  118. Read AP. Huntington’s disease: testing the test. Nature Genet 1993; 4: 329–30

    PubMed  CAS  Google Scholar 

  119. Nowak R. Genetic testing set for takeoff [published erratum appears in Science 1994; 265: 1792]. Science 1994; 265: 464–7

    PubMed  CAS  Google Scholar 

  120. Wiggins S, Whyte P, Huggins M, et al. The psychological consequences of predictive testing for Huntington’s disease. N Engl J Med 1992; 327: 1401–5

    PubMed  CAS  Google Scholar 

  121. Benjamin CM, Adam S, Wiggins S, et al. Proceed with care: direct predictive testing for Huntington disease [published erratum appears in Am J Hum Genet 1995; 56: 1015]. Am J Hum Genet 1994; 55: 606–17

    PubMed  CAS  Google Scholar 

  122. Hayes CV. Genetic testing for Huntington’s disease — a family issue [editorial]. N Engl J Med 1992; 327: 1449–51

    PubMed  CAS  Google Scholar 

  123. Ambrose CM, Duyao MP, Barnes G, et al. Structure and expression of the Huntington’s disease gene: evidence against simple inactivation due to an expanded CAG repeat. Somat Cell Mol Genet 1994; 20: 27–38

    PubMed  CAS  Google Scholar 

  124. Hoogeveen AT, Willemsen R, Meyer N, et al. Characterization and localization of the Huntington disease gene product. Hum Mol Genet 1993; 2: 2069–73

    PubMed  CAS  Google Scholar 

  125. Wexler NS, Young AB, Tanzi RE, et al. Homozygotes for Huntington’s disease. Nature 1987; 326: 194–7

    PubMed  CAS  Google Scholar 

  126. Adam S, Wiggins S, Whyte P, et al. Five year study of prenatal testing for Huntington’s disease: demand, attitudes, and psychological assessment. J Med Genet 1993; 30: 549–56

    PubMed  CAS  Google Scholar 

  127. Pauling L, Itano HA, Singer SJ, et al. Sickle cell anemia, a molecular disease. Science 1949; 110: 543–8

    PubMed  CAS  Google Scholar 

  128. Rommens JM, Iannuzzi MC, Kerem BS, et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 1989; 245: 1059–65

    PubMed  CAS  Google Scholar 

  129. Riordan JR, Rommens JM, Kerem BS, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245: 1066–73

    PubMed  CAS  Google Scholar 

  130. Kerem BS, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245: 1073–80

    PubMed  CAS  Google Scholar 

  131. Crystal RG, McElvaney NG, Rosenfeld MA, et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nature Genet 1994; 8: 42–51

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossiter, B.J.F., Caskey, C.T. Presymptomatic Testing for Genetic Diseases of Later Life. Drugs & Aging 7, 117–130 (1995). https://doi.org/10.2165/00002512-199507020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199507020-00006

Keywords

Navigation