Skip to main content

Advertisement

Log in

The Efficacy of Aldose Reductase Inhibitors in the Management of Diabetic Complications

Comparison with Intensive Insulin Treatment and Pancreatic Transplantation

  • Drug Therapy
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Recently, aldose reductase inhibitors (ARIs) have been registered in several countries for the improvement of glycaemic control. However, their efficacy is still controversial. ARIs inhibit the enhanced flux of glucose through the polyol pathway. As such, they can never be more effective than normoglycaemia, and so their potential benefits and limitations should be considered relative to the effects of prolonged euglycaemia. The clinical effects of ARIs can be put into perspective by assessing the effects of improved glycaemic control attained in randomised trials of intensive insulin treatment [such as the Diabetes Control and Complications Trial (DCCT)] and after pancreatic transplantation. Although direct comparison of these 3 interventions is hampered by differences in patient populations, duration and methods of follow-up and in the potency of ARIs, the effects of these 3 metabolic interventions and their course in time appear remarkably similar.

For neuropathy, all 3 interventions induce an increase in average motor nerve conduction velocity of approximately 1 m/sec during the first months of treatment. At the same time, improvement of painful symptoms may occur. These changes probably largely represent a metabolic amelioration of the condition of the nerves. Around the second year of treatment with all 3 forms of metabolic improvement, an acceleration of nerve conduction of a similar magnitude occurs, with signs of structural nerve regeneration and some sensory recuperation.

Experience with ARIs in nephropathy is still limited, but similar improvements in glomerular filtration rate and, less consistently, in urinary albumin excretion were found during short term normoglycaemia produced by all 3 forms of treatment.

Comparison of a small number of studies, however, shows differences between intensive insulin regimens, pancreatic transplantation and ARIs in effects on retinopathy. Retinopathy often temporarily deteriorates in the early phases of improved glycaemic control, but this is not noted with ARIs. New microaneurysm formation was slightly reduced in a single long term study with the ARI sorbinil, but the preventive effects on the overall levels of retinopathy seemed less strong than in normoglycaemia trials of similar duration. However, the pharmacodynamic effects on inhibiting the polyol pathway differ among ARIs, and the half-life of the inhibiting effect of sorbinil may have been too short for a complete reduction of polyol pathway activity.

The trials of prolonged intensive insulin therapy and pancreatic transplantation have demonstrated that very strict metabolic control must be maintained continuously for many years before a significant reduction of complications can be demonstrated. In practice, this will often be impossible, especially in type 2 diabetic patients who carry the burden of complications. The effects of ARIs and of normoglycaemia appear to be similar. This justifies the use of ARIs in patients who are threatened by diabetic complications (particularly neuropathy) and who remain hyperglycaemic despite all efforts to achieve good glycaemic control. A large, lengthy prospective trial, with a size and design similar to the DCCT, will be necessary to finally assess the possibilities and limitations of ARIs in preventing, arresting or reversing the complications of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Merimee TJ. Diabetic retinopathy: a synthesis of perspectives. N Engl J Med 1990; 322: 978–83

    PubMed  CAS  Google Scholar 

  2. Tomlinson DR. The pharmacology of diabetic neuropathy. Diabetes Metab Rev 1992; 8: 67–84

    PubMed  CAS  Google Scholar 

  3. Østerby R. Glomerular structural changes in type 1 (insulindependent) diabetes mellitus: causes, consequences, and prevention. Diabetologia 1992; 35: 803–12

    PubMed  Google Scholar 

  4. Nathan DM. Long-term complications of diabetes mellitus. N Engl J Med 1993; 328: 1676–85

    PubMed  CAS  Google Scholar 

  5. Kennedy L, Baynes JW. Non-enzymatic glycosylation and the chronic complications of diabetes: an overview. Diabetologia 1984; 26: 93–8

    PubMed  CAS  Google Scholar 

  6. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988; 318: 1315–21

    PubMed  CAS  Google Scholar 

  7. Gabbay KH. Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med 1975; 26: 521–36

    PubMed  CAS  Google Scholar 

  8. Stribling D, Perkins CM. Aldose reductase inhibitors. In: Natrass M, editor. Recent advances in diabetes, volume 2. Edinburgh: Churchill Livingstone, 1986: 169–76

    Google Scholar 

  9. Jeffery J, Jornvall H. Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc Natl Acad Sci USA 1983; 80: 901–5

    PubMed  CAS  Google Scholar 

  10. Williams WF, Odom JD. Study of aldose reductase inhibition in intact lenses by 13C nuclear magnetic resonance spectroscopy. Science 1986; 233: 223–5

    PubMed  CAS  Google Scholar 

  11. Low PA. Recent advances in the pathogenesis of diabetic neuropathy. Muscle Nerve 1987; 10: 121–8

    PubMed  CAS  Google Scholar 

  12. Dyck PJ. Hypoxic neuropathy: does hypoxia play a role in diabetic neuropathy? [Robert Wartenberg Lecture 1988]. Neurology 1989; 39: 111–8

    PubMed  CAS  Google Scholar 

  13. Yue DK, McLennan SV, Turtle JR. Pathogenesis of diabetic microangiopathy: the roles of endothelial cell and basement membrane abnormalities. Diabet Med 1992; 9: 218–20

    PubMed  CAS  Google Scholar 

  14. Jamal GA. Pathogenesis of diabetic neuropathy: the role of the n-6 essential fatty acids and their eicosanoid derivatives. Diabet Med 1990; 7: 574–9

    PubMed  CAS  Google Scholar 

  15. Oberley LW. Free radicals and diabetes. Free Radic Biol Med 1988; 5: 113–24

    PubMed  CAS  Google Scholar 

  16. Packer L. The role of anti-oxidative treatment in diabetes mellitus [workshop report]. Diabetologia 1993; 36: 1212–3

    PubMed  CAS  Google Scholar 

  17. Winegrad AI. Does a common mechanism induce the diverse complications of diabetes? [Banting Lecture 1986]. Diabetes 1987; 36: 396–406

    PubMed  CAS  Google Scholar 

  18. Greene DA, Lattimer SA, Sima AAF. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med 1987; 316: 599–605

    PubMed  CAS  Google Scholar 

  19. Greene DA, Lattimer SA, Sima AAF. Are disturbances of sorbitol, phosphoinositide, and Na+-K+-ATPase regulation involved in pathogenesis of diabetic neuropathy? Diabetes 1988; 37: 688–93

    PubMed  CAS  Google Scholar 

  20. Lorenzi M. Glucose toxicity in the vascular complications of diabetes: the cellular perspective. Diab Metab Rev 1992; 8: 85–103

    CAS  Google Scholar 

  21. Stevens MJ, Dananberg J, Feldman EL, et al. The linked roles of nitric oxide, aldose reductase and (Na+, K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest 1994; 94: 853–9

    PubMed  CAS  Google Scholar 

  22. Green AJ, Jaspan JB. Treatment of diabetic neuropathy with inhibitors of the aldose reductase enzyme. J Diabetes Complications 1990; 4: 138–44

    CAS  Google Scholar 

  23. Masson EA, Boulton AJM. Aldose reductase inhibitors in the treatment of diabetic neuropathy. Drugs 1990; 39: 190–202

    PubMed  CAS  Google Scholar 

  24. Sarges R, Oates PJ. Aldose reductase inhibitors: recent developments. Prog Drug Res 1993; 40: 99–161

    PubMed  CAS  Google Scholar 

  25. Steele JW, Faulds D, Goa KL. Epalrestat: a review of its pharmacology, and therapeutic potential in late-onset complications of diabetes mellitus. Drugs Aging 1993; 3: 532–55

    PubMed  CAS  Google Scholar 

  26. Tsai SC, Burnakis TG. Aldose reductase inhibitors: an update. Ann Pharmacother 1993; 27: 751–4

    PubMed  CAS  Google Scholar 

  27. Tomlinson DR, Willars GB, Carrington AL. Aldose reductase inhibitors and diabetic complications. Pharmacol Ther 1992; 54: 151–94

    PubMed  CAS  Google Scholar 

  28. Tomlinson DR. Aldose reductase inhibitors and the complications of diabetes mellitus. Diabet Med 1993; 10: 214–30

    PubMed  CAS  Google Scholar 

  29. Asbury AK. Understanding diabetic neuropathy [editorial]. N Engl J Med 1988; 319; 577–8

    PubMed  CAS  Google Scholar 

  30. Frank RN. Aldose reductase inhibition: the chemical key to the control of diabetic retinopathy? [editorial]. Arch Ophthalmol 1990; 108: 1229–31

    PubMed  CAS  Google Scholar 

  31. Anonymous. Understanding diabetic neuropathy. Lancet 1991; 338: 1496–7

    Google Scholar 

  32. Thomas PK. Diabetic neuropathy: models, mechanisms and mayhem [Richardson Lecture 1991]. Can J Neurol Sci 1992; 19: 1–7

    PubMed  CAS  Google Scholar 

  33. Raskin PK. Aldose reductase inhibitors — hope or hype? [editorial]. J Diabetes Complications 1992; 6: 69

    PubMed  CAS  Google Scholar 

  34. Yue DK, Brooks B. The role of aldose reductase inhibitors in the treatment of diabetic neuropathy. Med J Aust 1993; 159: 76–8

    PubMed  CAS  Google Scholar 

  35. Florkowski CM. The role of aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy [letter]. Med J Aust 1993; 159: 711–2

    PubMed  CAS  Google Scholar 

  36. Karvonen M, Tuomilehto J, Libman I, et al. for the World Health Organization DIAMOND Project Group. A review of the recent epidemiological data on the worldwide incidence of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1993; 36: 883–93

    PubMed  CAS  Google Scholar 

  37. Wetterhall SF, Olson DR, DeStefano F, et al. Trends in diabetes and diabetic complications, 1980–1987. Diabetes Care 1992; 15: 960–7

    PubMed  CAS  Google Scholar 

  38. Christiansen JS. On the pathogenesis of the increased glomerular filtration rate in short-term insulin-dependent diabetes mellitus. Dan Med Bull 1984; 31: 349–61

    PubMed  CAS  Google Scholar 

  39. Mogensen CE, Schmitz O. The diabetic kidney: from hyperfiltration and microalbuminuria to end-stage renal failure. Med Clin North Am 1988; 72: 1465–92

    PubMed  CAS  Google Scholar 

  40. Reddi AS, Camerini-Davalos RA. Diabetic nephropathy — an update. Arch Intern Med 1990; 150: 31–43

    PubMed  CAS  Google Scholar 

  41. Steiner G. Diabetes and atherosclerosis. Diabetes 1981; 30 Suppl. 2: 1–7

    PubMed  CAS  Google Scholar 

  42. Colwell JA, Winocour PD, Lopes-Virella M, et al. New concepts about the pathogenesis of atherosclerosis in diabetes mellitus. Am J Med 1983; 75(5b): 67–80

    PubMed  CAS  Google Scholar 

  43. Gibbons GF. Hyperlipidaemia of diabetes. Clin Sci 1986; 71: 477–86

    PubMed  CAS  Google Scholar 

  44. Rytter L, Beck-Nielsen H, Troelsen S. Diabetic patients and myocardial infarction. Acta Endocrinol 1984; Suppl 262: 83–7

    Google Scholar 

  45. Davis MD. Diabetic retinopathy: a clinical overview. Diabetes Metab Rev 1988; 4: 291–322

    PubMed  CAS  Google Scholar 

  46. Dwyer MS, Melton III LJ, Ballard DJ, et al. Incidence of diabetic retinopathy and blindness: a population-based study in Rochester, Minnesota. Diabetes Care 1985; 8: 316–22

    PubMed  CAS  Google Scholar 

  47. Ewing DJ, Clarke BF. Diagnosis and management of diabetic autonomic neuropathy. BMJ 1982; 285: 916–8

    PubMed  CAS  Google Scholar 

  48. Hilsted J. Pathophysiology in diabetic autonomic neuropathy: cardiovascular, hormonal, and metabolic studies. Diabetes 1982; 31: 730–7

    PubMed  CAS  Google Scholar 

  49. Sidenius P. The axonopathy of diabetic neuropathy. Diabetes 1982; 31: 356–63

    PubMed  CAS  Google Scholar 

  50. Brooks AP. Diabetic amyotrophy: case reports and review. Pract Diab 1984; 1: 44–57

    Google Scholar 

  51. Brown MJ, Asbury AK. Diabetic neuropathy. Ann Neurol 1984; 15: 2–12

    PubMed  CAS  Google Scholar 

  52. Naikan E, Harati Y, Comstock JP. Diabetic autonomic neuropathy. Metabolism 1986; 35: 224–34

    Google Scholar 

  53. Ward JD. Diabetic neuropathies — current concepts in prevention and treatment. Drugs 1986; 32: 279–89

    PubMed  CAS  Google Scholar 

  54. Wuarin-Bierman L, Zahnd GR. Current aspects of research on the pathogenesis of diabetic neuropathy. Diabete Metabol 1986; 12: 319–24

    CAS  Google Scholar 

  55. Assal J-Ph, Liniger C. The classification of diabetic peripheral neuropathies: a special issue on diabetic peripheral neuropathies: physiopathology and clinical guidelines. Diabetes Res Clin Pract 1986; 2: 193–5

    Google Scholar 

  56. Harati Y. Diabetic peripheral neuropathies. Ann Int Med 1987; 107: 546–59

    PubMed  CAS  Google Scholar 

  57. Watkins PJ. Clinical observations and experiments in diabetic neuropathy [Castelli Pedroli Lecture 1991]. Diabetologia 1992; 35: 2–11

    PubMed  CAS  Google Scholar 

  58. Verhoeven S, Van Ballegooie E, Casparie AF. Impact of late complications in type 2 diabetes in a Dutch population. Diabet Med 1991; 8: 435–8

    PubMed  CAS  Google Scholar 

  59. Dyck PJ, Kratz KM, Karnes JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993; 43: 817–24

    PubMed  CAS  Google Scholar 

  60. Savettieri G, Rocca WA, Salemi G, et al. Prevalence of diabetic neuropathy with somatic symptoms: a door-to-door survey in two Sicilian municipalities. Neurology 1993; 43: 1115–20

    PubMed  CAS  Google Scholar 

  61. Young MJ, Boulton AJM, Macleod AF, et al. A multicentre study of the prevalence of diabetic peripheral neuropathy in the United Kingdom hospital clinic population. Diabetologia 1993; 36: 150–4

    PubMed  CAS  Google Scholar 

  62. Ziegler D, Mayer P, Gries FA. Evaluation of thermal, pain, and vibration sensation thresholds in newly diagnosed type 1 diabetic patients. J Neurol Neurosurg Psychiatry 1988; 51: 1420–4

    PubMed  CAS  Google Scholar 

  63. Lehtinen JM, Uusitupa M, Siitonen O, et al. Prevalence of neuropathy in newly diagnosed NIDDM and nondiabetic control subjects. Diabetes 1989; 38: 1307–13

    PubMed  CAS  Google Scholar 

  64. Ziegler D, Mayer P, Mühlen H, et al. The natural history of somatosensory and autonomic nerve dysfunction in relation to glycaemic control during the first 5 years after diagnosis of type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1991; 34: 822–9

    PubMed  CAS  Google Scholar 

  65. Lehtinen JM, Niskanen L, Hyvönen K, et al. Nerve function and its determinants in patients with newly-diagnosed type 2 (non-insulin-dependent) diabetes mellitus and in control subjects — a 5-year follow-up. Diabetologia 1993; 36: 68–72

    PubMed  CAS  Google Scholar 

  66. Nisén HO, Larsen A, Lindström BL, et al. Cardiovascular reflexes in the neurological evaluation of impotence. Br J Urol 1993; 71: 199–203

    PubMed  Google Scholar 

  67. Horowitz M, Fraser R. Disordered gastric motor function in diabetes mellitus. Diabetologia 1994; 37; 543–51

    PubMed  CAS  Google Scholar 

  68. Page MMcB, Watkins PJ. Cardiorespiratory arrest and diabetic autonomic neuropathy. Lancet 1978; 1: 14–6

    PubMed  CAS  Google Scholar 

  69. Rollins MD, Jenkins JG, Carson DJ, et al. Power spectral analysis of the electrocardiogram in diabetic children. Diabetologia 1992; 35: 452–5

    PubMed  CAS  Google Scholar 

  70. Veves A, Murray HJ, Young MJ, et al. The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study. Diabetologia 1992; 35: 660–3

    PubMed  CAS  Google Scholar 

  71. McFadden JP, Corrall RJM, O’Brien IAD. Autonomic and sensory nerve function in diabetic foot ulceration. Clin Exp Dermatol 1991; 16: 193–6

    PubMed  CAS  Google Scholar 

  72. LoGerfo FW, Coffman JD. Vascular and microvascular disease of the foot in diabetes: implications for foot care. N Engl J Med 1984; 311: 1615–9

    PubMed  CAS  Google Scholar 

  73. Bailey TS, Yu HM, Rayfield EJ. Patterns of foot examination in a diabetes clinic. Am J Med 1985; 78: 371–4

    PubMed  CAS  Google Scholar 

  74. Evans SI, Nixon BP, Lee I, et al. The prevalence and nature of podiatric problems in elderly diabetic patients. J Am Geriatr Soc 1991; 39: 241–5

    PubMed  CAS  Google Scholar 

  75. Moss SE, Klein R, Klein BEK. The prevalence and incidence of lower extremity amputation in a diabetic population. Arch Intern Med 1992; 152: 610–6

    PubMed  CAS  Google Scholar 

  76. Apelqvist J, Larsson J, Agardh C-D. Long-term prognosis for diabetic patients with foot ulcers. J Intern Med 1993; 233: 485–91

    PubMed  CAS  Google Scholar 

  77. Friend J, Thoft RA. The diabetic cornea. Int Ophthalmol Clin 1984; 24: 111–22

    PubMed  CAS  Google Scholar 

  78. Fisher BM, Frier BM. Evidence for a specific heart disease of diabetes in humans. Diabet Med 1990; 7: 478–89

    PubMed  CAS  Google Scholar 

  79. Primhak RA, Whincup G, Tsanakas JN, et al. Reduced vital capacity in insulin-dependent diabetes. Diabetes 1987; 36: 324–6

    PubMed  CAS  Google Scholar 

  80. Strojek K, Ziora D, Sroczynski JW, et al. Pulmonary complications of type 1 (insulin-dependendent) diabetic patients. Diabetologia 1992; 35: 1173–6

    PubMed  CAS  Google Scholar 

  81. Comi G, Martini A. Central nervous involvement in diabetic patients. In: Andreani D, Crepaldi G, Di Mario U, et al., editors. Diabetic complications: early diagnosis and treatment. Chichester: Wiley, 1987: 145–54

    Google Scholar 

  82. Mooradian AD. Diabetic complications of the central nervous system. Endocr Rev 1988; 9: 346–56

    PubMed  CAS  Google Scholar 

  83. Biessels GJ, Kappelle AC, Bravenboer B, et al. Cerebral function in diabetes mellitus. Diabetologia 1994; 37: 643–50

    PubMed  CAS  Google Scholar 

  84. Starkman HS, Gleason RE, Rand LI, et al. Limited joint mobility (LJM) of the hand in patients with diabetes mellitus: relation to chronic complications. Ann Rheum Dis 1986; 45: 130–5

    PubMed  CAS  Google Scholar 

  85. Wilson RM. Neutrophil function in diabetes. Diabetic Med 1986; 509-12

  86. Ostermann H, Van de Loo J. Factors of the hemostatic system in diabetic patients: a survey of controlled studies. Haemostasis 1986; 16: 386–416

    PubMed  CAS  Google Scholar 

  87. Ceriello A. Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects. Diabetologia 1993; 36: 1119–25

    PubMed  CAS  Google Scholar 

  88. Tchobroutsky G. Relation of diabetic control to development of microvascular complications. Diabetologia 1978; 15: 143–52

    PubMed  CAS  Google Scholar 

  89. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973, Pt 1. Diabetes Care 1978; 1: 168–88

    Google Scholar 

  90. Pirart J. Diabetes mellitus and its degenerative complications: a prospective study of 4400 patients observed between 1947 and 1973, Pt 2. Diabetes Care 1978; 1: 252–63

    Google Scholar 

  91. Nathan DM, Singer DE, Hurxthal K, et al. The clinical information value of the glycosylated hemoglobin assay. N Engl J Med 1984; 310: 341–6

    PubMed  CAS  Google Scholar 

  92. Health and Public Policy Committee, American College of Physicians. Glycosylated hemoglobin assays in the management and diagnosis of diabetes mellitus. Ann Intern Med 1984; 101: 710–3

    Google Scholar 

  93. Hanssen KF, Dahl-Jørgensen K, Lauritzen T, et al. Diabetic control and microvasular complications: the near normoglycemia experience. Diabetologia 1986; 29: 677–84

    PubMed  CAS  Google Scholar 

  94. Strowig S, Raskin P. Glycemic control and diabetic complications. Diabetes Care 1992; 15: 1126–40

    PubMed  CAS  Google Scholar 

  95. Greene DA, Brown MJ, Braunstein SN, et al. Comparison of clinical course and sequential electrophysiological tests in diabetics with symptomatic polyneuropathy and its implications for clinical trials. Diabetes 1981; 30: 139–47

    PubMed  CAS  Google Scholar 

  96. The Diabetic Retinopathy Study Research Group. Report 7: a modification of the Airlie House classification of diabetic retinopathy. Invest Ophthalmol Vis Sci 1981; 21: 210–26

    Google Scholar 

  97. Dyck PJ, Karnes J, Bushek W, et al. Computer assisted sensory examination to detect and quantitate sensory deficit in diabetic neuropathy. Neurobehavior Toxicol Teratol 1983; 5: 697–704

    CAS  Google Scholar 

  98. Mogensen CE, Christensen CK. Predicting diabetic nephropathy in insulin-dependent patients. N Engl J Med 1984; 311: 89–93

    PubMed  CAS  Google Scholar 

  99. Ewing DJ, Martyn CN, Young RJ, et al. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985; 8: 491–8

    PubMed  CAS  Google Scholar 

  100. Barbosa J. Diabetes: the science and the art — hyperglycemia v complications [editorial]. Arch Intern Med 1983; 143: 1118–9

    PubMed  CAS  Google Scholar 

  101. Committee on Health Care Issues, American Neurological Society. Does improved control of glycemia prevent or ameliorate diabetic polyneuropathy? [consensus statement]. Ann Neurol 1986; 19: 288–90

    Google Scholar 

  102. The DCCT Research Group. Are continuing studies of metabolic control and microvascular complications in insulindependent diabetes mellitus justified? N Engl J Med 1988; 318: 246–50

    Google Scholar 

  103. The Diabetes Control and Complications Trial Research Group. Color photography vs fluorescein angiography in the detection of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol 1987; 105: 1344–51

    Google Scholar 

  104. American Diabetes Association, American Academy of Neurology. Report and recommendations of the San Antonio Conference on diabetic neuropathy. Diabetes 1988; 37: 1000–4

    Google Scholar 

  105. Dyck PJ, O’Brien PC. Meaningful degrees of prevention of nerve conduction in controlled trials. Diabetes Care 1989; 12: 649–52

    PubMed  CAS  Google Scholar 

  106. Mathiesen ER. Prevention of diabetic nephropathy: microalbuminuria and perspectives for intervention in insulindependent diabetes. Dan Med Bull 1993; 40: 273–85

    PubMed  CAS  Google Scholar 

  107. The Diabetes Control and Complications Trial Research Group. The Diabetes Control and Complications Trial: design and methodological considerations for the feasibility phase. Diabetes 1986; 35: 530–45

    Google Scholar 

  108. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N Engl J Med 1993; 329: 977–86

    Google Scholar 

  109. Wang PH, Lau J, Chalmers TC. Meta-analysis of effects of intensive blood-glucose control on late complications of type 1 diabetes. Lancet 1993; 341: 1306–9

    PubMed  CAS  Google Scholar 

  110. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study (UKPDS), VIII: study design, progress and performance. Diabetologia 1991; 34: 877–90

    Google Scholar 

  111. Lefebre PJ. Pancreatic transplantation: why, when and who? Diabetologia 1991; 35: 494–7

    Google Scholar 

  112. Sutherland DER. Report from the international pancreas transplant registry. Diabetologia 1991; 34 Suppl. 1: S28–39

    PubMed  Google Scholar 

  113. Warnock GL, Kneteman NM, Ryan EA, et al. Long-term follow-up after transplantation of insulin-producing pancreatic islets into patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1992; 35: 89–95

    PubMed  CAS  Google Scholar 

  114. Kennedy WR, Navarro X, Goetz FC, et al. Effects of pancreatic transplantation on diabetic neuropathy. N Engl J Med 1990; 322: 1031–7

    PubMed  CAS  Google Scholar 

  115. Solders G, Tydèn G, Persson A, et al. Improvement of nerve conduction in diabetic neuropathy: a follow-up study 4 years after combined pancreatic and renal transplantation. Diabetes 1992; 41: 946–51

    PubMed  CAS  Google Scholar 

  116. Müller-Felber W, Landgraf R, Scheuer R, et al. Diabetic neuropathy 3 years after successful pancreas and kidney transplantation. Diabetes 1993; 42: 1482–6

    PubMed  Google Scholar 

  117. Bohman SO, Tydén G, Wilczek H, et al. Prevention of kidney graft diabetic nephropathy by pancreas transplantation in man. Diabetes 1985; 34: 306–8

    PubMed  CAS  Google Scholar 

  118. Solders G, Tydèn G, Persson A, et al. Improvement in diabetic neuropathy 4 years after succesful pancreatic and renal transplantation. Diabetologia 1991; 34 Suppl. 1: SI25–7

    Google Scholar 

  119. Comi G, Galardi G, Amadio E, et al. Neurophysiological study of the effect of combined pancreatic and renal transplantation on diabetic neuropathy: a 2-year follow-up evaluation. Diabetologia 1991; 34 Suppl. 1: S103–7

    PubMed  Google Scholar 

  120. Van der Vliet JA, Navarro X, Kennedy WR, et al. Long-term follow-up of polyneuropathy in diabetic kidney transplant recipients. Diabetes 1988; 37: 1247–52

    PubMed  Google Scholar 

  121. Ekstrand A, Groop L, Pettersson E, et al. Metabolic control and progression of complications in insulin-dependent diabetic patients after kidney transplantation. J Intern Med 1992; 232: 253–61

    PubMed  CAS  Google Scholar 

  122. Boucek P, Bartos V, Vanek I, et al. Diabetic autonomic neuropathy after pancreas and kidney transplantation. Diabetologia 1991; 34 Suppl. 1: S121–4

    PubMed  Google Scholar 

  123. Hathaway D, Abell T, Cardoso S, et al. Improvement in autonomic function following pancreas-kidney versus kidney alone transplantation. Transplant Proc 1993; 25: 1306–8

    PubMed  CAS  Google Scholar 

  124. Navarro X, Kennedy WR, Loewenson RB, et al. Influence of pancreas transplantation on cardiorespiratory reflexes, nerve conduction, and mortality in diabetes mellitus. Diabetes 1990; 39: 802–6

    PubMed  CAS  Google Scholar 

  125. Jörneskog G, Tydén G, Bolinder J, et al. Skin microvascular reactivity in fingers of diabetic patients after combined kidney and pancreas transplantation. Diabetologia 1991; 34 Suppl. 1: S135–7

    PubMed  Google Scholar 

  126. Abendroth D, Landgraf R, Illner WD, et al. Evidence for reversibility of diabetic microangiopathy following pancreas transplantation. Transplant Proc 1989; 21: 2850–1

    PubMed  CAS  Google Scholar 

  127. Chueng ATW, Cox KL, Ahlfors CE, et al. Reversal of microangiopathy in long-term diabetic patients after succesful simultaneous pancreas-kidney transplants. Transplant Proc 1993; 25: 1310–3

    Google Scholar 

  128. Ramsay RC, Goetz FC, Sutherland DER, et al. Progression of diabetic retinopathy after pancreas transplantation for insulin-dependent diabetes mellitus. N Engl J Med 1988; 318: 208–14

    PubMed  CAS  Google Scholar 

  129. Scheider A, Meyer Schwickerath E, Nusser J, et al. Diabetic retinopathy and pancreas transplantation: a 3-year follow-up. Diabetologia 1991; 34 Suppl. 1: S95–9

    PubMed  Google Scholar 

  130. Königsrainer A, Miller K, Steurer W, et al. Does pancreas transplantation influence the course of diabetic retinopathy. Diabetologia 1991; 34 Suppl. 1: S86–8

    PubMed  Google Scholar 

  131. Bilous Rw, Mauer SM, Sutherland DER, et al. The effects of pancreas transplantation on the glomerular structure of renal allografts in patients with insulin-dependent diabetes. N Engl J Med 1989; 321: 80–5

    PubMed  CAS  Google Scholar 

  132. Wilczek HE, Jaremko G, Tyden G, et al. Pancreatic graft protects a simultaneously transplanted kidney from developing diabetic nephropathy: a 1- to 6-year follow-up study. Transplant Proc 1993; 25: 1314–5

    PubMed  CAS  Google Scholar 

  133. Raja RM, Lerner L, Morris M, et al. Hypertension with combined pancreas-kidney transplantation in patients with diabetic nephropathy. Transplantation 1993; 55: 1187–8

    PubMed  CAS  Google Scholar 

  134. Fioretto P, Mauer M, Bilous RW, et al. Effects of pancreas transplantation on glomerular structure in insulin-dependent diabetic patients with their own kidneys. Lancet 1993; 342: 1193–6

    PubMed  CAS  Google Scholar 

  135. American Diabetes Association. Pancreas transplantation for patients with diabetes mellitus. Diabetes Care 1992; 15: 1668–72

    Google Scholar 

  136. Gabbay KH, Spack N, Loo S, et al. Aldose reductase inhibition: studies with alrestatin. Metabolism 1979; 28 (4 Suppl. 1): 471–6

    PubMed  CAS  Google Scholar 

  137. Culebras A, Alio J, Herrera J-L, et al. Effect of an aldose reductase inhibitor on diabetic peripheral neuropathy: preliminary report. Arch Neurol 1981; 38: 133–4

    PubMed  CAS  Google Scholar 

  138. Judzewitsch RG, Jaspan JB, Polonsky KS, et al. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med 1983; 308: 119–25

    PubMed  CAS  Google Scholar 

  139. Fagius J, Brattberg A, Jameson S, et al. Limited benefit of treatment of diabetic polyneuropathy with an aldose reductase inhibitor: a 24-week controlled trial. Diabetologia 1985; 28: 323–9

    PubMed  CAS  Google Scholar 

  140. Lehtinen JM, Hyvonen SK, Uusitupa M, et al. The effect of sorbinil treatment on red blood cell sorbitol levels and clinical and electrophysiological parameters of diabetic neuropathy. J Neurol 1986; 233: 174–7

    PubMed  CAS  Google Scholar 

  141. Macleod AF, Boulton AJM, Owens DR, et al. A multicentre trial of the aldose reductase inhibitor tolrestat, in patients with symptomatic diabetic peripheral neuropathy. Diabete Metab 1992; 18: 14–20

    PubMed  CAS  Google Scholar 

  142. Van Gerven JMA, Lemkes HHPJ, Van Dijk JG. Long-term effects of tolrestat on symptomatic diabetic sensory polyneuropathy. J Diabetes Complications 1992; 6: 21–4

    Google Scholar 

  143. Goto Y, Hotta N, Shigeta Y, et al. A placebo-controlled doubleblind study of epalrestat (ONO-2235) in patients with diabetic neuropathy. Diabet Med 1993; 10 Suppl. 2: 39S–43S

    PubMed  Google Scholar 

  144. Young RJ, Ewing DJ, Clarke BF. A controlled trial of sorbinil, an aldose reductase inhibitor, in chronic painful diabetic neuropathy. Diabetes 1983; 32: 938–42

    PubMed  CAS  Google Scholar 

  145. Lewin IG, O’Brien IAD, Morgan MH, et al. Clinical and neurophysiological studies with aldose reductase inhibitor, sorbinil, in symptomatic diabetic neuropathy. Diabetologia 1984; 26: 445–8

    PubMed  CAS  Google Scholar 

  146. Christensen JEJ, Varnek L, Gregersen G. The effect of an aldose reductase inhibitor (sorbinil) on diabetic neuropathy and neural function of the retina: a double blind study. Acta Neurol Scand 1985; 71: 164–7

    PubMed  CAS  Google Scholar 

  147. Martyn CN, Reid W, Young RJ, et al. Six-month treatment with sorbinil in asymptomatic diabetic neuropathy. Failure to improve abnormal nerve function. Diabetes 1987; 36: 987–90

    PubMed  CAS  Google Scholar 

  148. Sundkvist G, Lilja B, Rosen I, et al. Autonomie and peripheral nerve function in early diabetic neuropathy: possible influence of a novel aldose reductase inhibitor on autonomic function. Acta Med Scand 1987; 221: 445–53

    PubMed  CAS  Google Scholar 

  149. Price DE, Alani SM, Wales JK. Effect of aldose reductase inhibition on resistance to ischemic conduction block in diabetic subjects. Diabetes Care 1991; 14: 411–3

    PubMed  CAS  Google Scholar 

  150. Florkowski CM, Rowe BR, Nightingale S, et al. Clinical and neurophysiological studies of aldose reductase inhibitor ponalrestat in chronic symptomatic diabetic peripheral neuropathy. Diabetes 1991; 40: 129–33

    PubMed  CAS  Google Scholar 

  151. Faes TJC, Yff GA, De Weerdt O, et al. Treatment of diabetic autonomic neuropathy with an aldose reductase inhibitor. J Neurol 1993; 240: 156–60

    PubMed  CAS  Google Scholar 

  152. Greene DA, Sima AAF. Effects of aldose reductase inhibitors on the progression of nerve damage. Diabet Med 1993; 10 Suppl. 2: 31S–2S

    PubMed  Google Scholar 

  153. Jaspan J, Masselli R, Herold K, et al. Treatment of severely painful diabetic neuropathy with an aldose reductase inhibitor: relief of pain and improved somatic and autonomic nerve function. Lancet 1983; 2: 758–62

    PubMed  CAS  Google Scholar 

  154. Jaspan JB, Herold K, Bartkus C. Effects of sorbinil therapy in diabetic patients with painful peripheral neuropathy and autonomic neuropathy. Am J Med 1985; 79(5a): 24–37

    PubMed  CAS  Google Scholar 

  155. Cohen KL, Harris S. Efficacy and safety of nonsteroidal antiinflammatory drugs in the therapy of diabetic neuropathy. Arch Intern Med 1987; 147: 1442–4

    PubMed  CAS  Google Scholar 

  156. Young RJ, Ewing DJ, Clarke BF. Chronic and remitting painful diabetic polyneuropathy: correlations with clinical features and subsequent changes in neurophysiology. Diabetes Care 1988; 11: 34–40

    PubMed  CAS  Google Scholar 

  157. Britland ST, Young RJ, Sharma AK, et al. Association of painful and painless diabetic polyneuropathy with different patterns of nerve fiber degeneration and regeneration. Diabetes 1990; 39: 898–908

    PubMed  CAS  Google Scholar 

  158. Tsigos C, White A, Young RJ. Discrimination between painful and painless diabetic neuropathy based on testing of large somatic nerve and sympathetic nerve function. Diabet Med 1991; 9: 359–65

    Google Scholar 

  159. Boulton AJM, Drury J, Claske B, et al. Continuous subcutaneous insulin infusion in the management of painful diabetic neuropathy. Diabetes Care 1982; 5: 386–90

    PubMed  CAS  Google Scholar 

  160. Samanta A, Burden AC. Rapid improvement in pain of diabetic neuropathy using an open-loop intravenous insulin infusion system. Pract Diabetes 1985; 2: 22–3

    Google Scholar 

  161. Bertelsmann FW, Heimans JJ, Van Rooy JCGM, et al. Peripheral nerve function in patients with painful diabetic neuropathy treated with continuous subcutaneous insulin infusion. J Neurol Neurosurg Psychiatry 1987; 50: 1337–41

    PubMed  CAS  Google Scholar 

  162. Boulton AJM. Causes of neuropathic pain. Diabet Med 1993; 10 Suppl. 2: 87S–8S

    PubMed  Google Scholar 

  163. Archer AG, Watkins PJ, Thomas PK, et al. The natural history of acute painful neuropathy in diabetes mellitus. J Neurol Neurosurg Psychiatry 1983; 46: 491–9

    PubMed  CAS  Google Scholar 

  164. Cunha-Vaz JG, Mota CC, Leite EC, et al. Effect of sorbinil on blood-retinal barrier in early diabetic retinopathy. Diabetes 1986; 35: 574–8

    PubMed  CAS  Google Scholar 

  165. Van Gerven JMA, Boot JP, Lemkes HHPJ, et al. Effects of aldose reductase inhibition with tolrestat on diabetic retinopathy in a six months double blind trial. Doc Ophthalmol. In press

  166. Ranganathan S, Krempf M, Feraille E, et al. Short term effect of an aldose reductase inhbitor on urinary albumin excretion rate (UAER) and glomerular filtration rate (GFR) in type 1 diabetic patients with incipient nephropathy. Diabete Metab 1993; 19: 257–61

    PubMed  CAS  Google Scholar 

  167. Mau Pedersen M, Christiansen JS, Mogensen CE. Reduction of glomerular hyperfiltration in normoalbuminuric IDDM patients by 6 months of aldose reductase inhibition. Diabetes 1991; 40: 527–31

    Google Scholar 

  168. Passariello N, Sepe J, Marrazzo G, et al. Effect of aldose reductase inhibitor (tolrestat) on urinary albumin excretion rate and glomerular filtration rate in IDDM subjects with nephropathy. Diabetes Care 1993; 16: 789–95

    PubMed  CAS  Google Scholar 

  169. Cobo M. Aldose reductase and diabetic keratopathy. In: Cogan DG, moderator. Aldose reductase and complications of diabetes. Ann Intern Med 1984; 101: 87–9

    Google Scholar 

  170. Ohashi Y, Matsuda M, Hosotani H, et al. Aldose reductase inhibitor (CT-112) eyedrops for diabetic corneal epitheliopathy. Am J Ophthalmol 1988; 105: 233–8

    PubMed  CAS  Google Scholar 

  171. Tsubota K, Yamada M. The effect of aldose reductase inhibitor on the corneal epithelium. Cornea 1993; 12: 161–2

    PubMed  CAS  Google Scholar 

  172. Eaton RP, Sibbitt WL, Harsh A. The effect of an aldose reductase inhibiting agent on limited joint mobility in diabetic patients. JAMA 1985; 253: 1437–40

    PubMed  CAS  Google Scholar 

  173. Eaton RP. Aldose reductase inhibition and the diabetic syndrome of limited joint mobility: implications for altered collagen hydration. Metabolism 1986; 35 Suppl. 1: 119–21

    PubMed  CAS  Google Scholar 

  174. Rosenbloom AL, Buithieu M, Jelliffe KA, et al. Effect of an aldose reductase inhibiting agent on limited joint mobility in IDDM [letter]. Diabetes Care 1992; 15: 588–9

    PubMed  CAS  Google Scholar 

  175. Popp-Snijders C, Lomecky-Janousek MZ, Schouten JA, et al. Myo-inositol and sorbitol in erythrocytes from diabetic patients before and after sorbinil treatment. Diabetologia 1984; 27: 514–6

    PubMed  CAS  Google Scholar 

  176. Malone JI, Leavengood H, Peterson MJ, et al. Red blood cell sorbitol as an indicator of polyol pathway activity inhibition by sorbinil in insulin-dependent diabetic subjects. Diabetes 1984; 33: 45–9

    PubMed  CAS  Google Scholar 

  177. Mueller P, Hockwin O, Ohrloff C. Comparison of aldose reductase inhibitors by determination of IC50 with bovine and rat lens extracts. Ophthalmic Res 1985; 17: 115–9

    CAS  Google Scholar 

  178. Martyn CN, Matthews DM, Popp-Snijders C, et al. Effects of sorbinil treatment on erythrocytes and platelets of persons with diabetes. Diabetes Care 1986; 9: 36–9

    PubMed  CAS  Google Scholar 

  179. Boland OM, Blackwell CC, Clarke BF, et al. Effects of ponalrestat, an aldose reductase inhibitor, on neutrophil killing of Escherichia coli and autonomic function in patients with diabetes mellitus. Diabetes 1993; 42: 336–40

    PubMed  CAS  Google Scholar 

  180. Jennings PE, Nightingale S, Le Guen C, et al. Prolonged aldose reductase inhibition in chronic peripheral diabetic neuropathy: effects on microangiopathy. Diabet Med 1990; 7: 63–8

    PubMed  CAS  Google Scholar 

  181. Jespersen J, Gram J, Christensen JEJ. Neurophysiological variables and fibrinolysis in insulin-dependent diabetes treated with an aldose reductase inhibitor or placebo. Haemostasis 1986; 16: 453–7

    PubMed  CAS  Google Scholar 

  182. Dyck PJ, Zimmerman BR, Vilen TH, et al. Nerve glucose, fructose, sorbitol, myo-inositol, and fiber degeneration and regeneration in diabetic neuropathy. N Engl J Med 1988; 319: 542–8

    PubMed  CAS  Google Scholar 

  183. Dyck PJ, Bushek W, Spring EM, et al. Vibratory and cooling detection compared with other tests in diagnosing and staging diabetic neuropathy. Diabetes Care 1987; 10: 432–40

    PubMed  CAS  Google Scholar 

  184. Griffey RH, Eaton P, Sibbitt RR, et al. Diabetic neuropathy —structural analysis of nerve hydration by magnetic resonance spectroscopy. JAMA 1988; 260: 2872–8

    PubMed  CAS  Google Scholar 

  185. Sima AAF, Bril V, Nathaniel V, et al. Regeneration and repair of myelinated fibers in sural-nerve biopsy specimens from patients with diabetic neuropathy treated with sorbinil. N Engl J Med 1988; 319: 548–55

    PubMed  CAS  Google Scholar 

  186. Sima AAF, Prashar A, Nathaniel V, et al. Overt diabetic neuropathy: repair of axoglial dysfunction and axonal atrophy by aldose reductase inhibition and its correlation to improvement in nerve conduction velocity. Diabet Med 1993; 10: 115–21

    PubMed  CAS  Google Scholar 

  187. Sima AAF, Nathaniel V, Prashar A, et al. Endoneurial microvessels in human diabetic neuropathy: endothelial cell dysjunction and lack of treatment effect by aldose reductase inhibitor. Diabetes 1991; 40: 1090–9

    PubMed  CAS  Google Scholar 

  188. Sima AAF, Greene DA, and the Tolrestat Study Group. Effect of hyperglycemia and the aldose reductase inhibitor tolrestat on sural nerve biochemistry and morphometry in advanced diabetic peripheral polyneuropathy. J Diabetes Complications 1993; 7: 157–69

    PubMed  CAS  Google Scholar 

  189. Santiago JV, Sönksen PH, and the Tolrestat Study Group. Withdrawal of the aldose reductase inhibitor tolrestat in patients with diabetic neuropathy: effect on nerve function. J Diabetes Complications 1993; 7: 170–8

    PubMed  CAS  Google Scholar 

  190. Gieron MA, Malone JI, Lowitt S, et al. Improvement in peripheral nerve function after one year of sorbinil. Neuroreport 1991; 2: 348–50

    PubMed  CAS  Google Scholar 

  191. Green A, Jaspan J, Kavin H, et al. Influence of long-term aldose reductase inhibitor therapy on autonomic dysfunction of urinary bladder, stomach and cardiovascular systems in diabetic patients. Diabetes Res Clin Pract 1988; 4: 67–75

    Google Scholar 

  192. Roy TM, Broadstone VL, Peterson HR, et al. The effect of an aldose reductase inhibitor on cardiovascular performance in patients with diabetes mellitus. Diabetes Res Clin Pract 1990; 10: 91–7

    PubMed  CAS  Google Scholar 

  193. Guy RJC, Gilbert SG, Sheeny M, et al. Diabetic neuropathy in the upper limb and the effect of twelve months sorbinil treat-ment. Diabetologia 1988; 31: 214–20

    PubMed  CAS  Google Scholar 

  194. O’Hare JP, Morgan MH, Alden P, et al. Aldose reductase inhibition in diabetic neuropathy: clinical and neurophysiological studies of one year’s treatment with sorbinil. Diabet Med 1988; 5: 537–42

    PubMed  Google Scholar 

  195. Sorbinil Retinopathy Trial Research Group. The Sorbinil Retinopathy Trial: neuropathy results. Neurology 1993; 43: 1144–9

    Google Scholar 

  196. Boulton AJM, Levin S, Comstock J. A multicentre trial of the aldosereductase inhibitor, tolrestat, in patients with symptom-atic diabetic neuropathy. Diabetologia 1990; 33: 431–7

    PubMed  CAS  Google Scholar 

  197. Terranova R, Luca S. Trattamento con un inibitore dell’aldoso reduttasi nella neuropatia periferica in pazienti diabetici anziani [abstract in English]. Minerva Med 1993; 84: 461–6

    PubMed  CAS  Google Scholar 

  198. Giugliano D, Marfella R, Quatraro A, et al. Tolrestat for mild diabetic neuropathy: a 52-week, randomized, placebo-controlled trial. Ann Intern Med 1993; 118: 7–11

    PubMed  CAS  Google Scholar 

  199. Ziegler D, Mayer P, Rathmann W, et al. One-year treatment with the aldose reductase inhibitor, ponalrestat, in diabetic neuropathy. Diabetes Res Clin Pract 1991; 14: 63–74

    PubMed  CAS  Google Scholar 

  200. Sundkvist G, Armstrong FM, Bradbury JE, et al. Peripheral and autonomic nerve function in 259 diabetic patients with peripheral neuropathy treated with ponalrestat (an aldose reductase inhibitor) or placebo for 18 months. J Diabetes Complications 1992; 6: 123–30

    PubMed  CAS  Google Scholar 

  201. Krentz AJ, Honigsberger L, Ellis SH, et al. A 12-month randomized controlled study of the aldose reductase inhibitor ponalrestat in patients with chronic symptomatic diabetic neuropathy. Diabet Med 1992; 9: 463–8

    PubMed  CAS  Google Scholar 

  202. Krans HMJ. Recent clinical experience with aldose reductase inhibitors. Diabet Med 1993; 10 Suppl. 2: 44S–8S

    PubMed  Google Scholar 

  203. Ramirez LC, Arauz C, Pruneda L, et al. The effect of aldose reductase inhibition with ponalrestat on the width of the capillary basement membrane in diabetes mellitus. Diabetes Res Clin Pract 1991; 11: 73–80

    PubMed  CAS  Google Scholar 

  204. Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinop-athy. Arch Ophthalmol 1990; 108: 1234–44

    Google Scholar 

  205. Tromp A, Hooymans JMM, Barendsen BC, et al. The effects of an aldose reductase inhibitor on the progression of diabetic retinopathy. Doc Ophthalmol 1991; 78: 153–9

    PubMed  CAS  Google Scholar 

  206. Hotta N, Kakuta H, Ando F, et al. Current progress in clinical trials of aldose reductase inhibitors in Japan. Exp Eye Res 1990; 50: 625–8

    PubMed  CAS  Google Scholar 

  207. Cameron NE, Cotter MA, Dines KC, et al. Aldose reductase inhibition, nerve perfusion, oxygenation and function in streptozotocin-diabetic rats: dose-response considerations and independence from a myoinositol mechanism. Diabetologia 1994; 37: 651–63

    PubMed  CAS  Google Scholar 

  208. Cheng HM, Gonzalez RG. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis. Metabolism 1986; 35 Suppl. 1: 10–4

    PubMed  CAS  Google Scholar 

  209. Malone JI, Knox G, Harvey C. Sorbitol accumulation is altered in type I (insulin-dependent) diabetes mellitus. Diabetologia 1984; 27: 509–13

    PubMed  CAS  Google Scholar 

  210. Vinores SA, Campochiaro PA, Williams EH, et al. Aldose reductase expression in human diabetic retina and pigment epithelium. Diabetes 1988; 37: 1658–64

    PubMed  CAS  Google Scholar 

  211. Srivastava SK, Ansari NH, Hair GA, et al. Activation of human erythrocyte, brain, aorta, muscle, and ocular tissue aldose reductase. Metabolism 1986; 35 Suppl. 1: 114–8

    PubMed  CAS  Google Scholar 

  212. Kruse W. Patient compliance with drug treatment — new perspectives on an old problem. Clin Investig 1992; 70: 163–6

    PubMed  CAS  Google Scholar 

  213. Peterson MJ, Page MG, Just LJ, et al. Applicability of red blood cell sorbitol measurements to monitor the clinical activity of sorbinil. Metabolism 1986; 35 Suppl. 1: 93–5

    PubMed  CAS  Google Scholar 

  214. Pietri A, Ehle AL, Raskin P. Changes in nerve conduction velocity after six weeks of glucoregulation with portable insulin infusion pumps. Diabetes 1980; 29: 668–71

    PubMed  CAS  Google Scholar 

  215. Pfeifer MA. Effects of glycemic control and aldose reductase inhibition on nerve conduction velocity. Am J Med 1985; 79 Suppl. 5A: 18–23

    PubMed  CAS  Google Scholar 

  216. Service FJ, Rizza RA, Daube JR, et al. Near normoglycemia improved nerve conduction and vibratory sensation in diabetic neuropathy. Diabetologia 1985; 28: 722–7

    PubMed  CAS  Google Scholar 

  217. Ward JD, Fisher DJ, Barnes CG, et al. Improvement of nerve conduction following treatment in newly diagnosed diabetics. Lancet 1971; 1: 428–31

    PubMed  CAS  Google Scholar 

  218. Graf RJ, Halter JB, Pfeifer MA, et al. Glycemic control and nerve conduction abnormalities in non-insulin dependent diabetic subjects. Ann Intern Med 1981; 94: 307–11

    PubMed  CAS  Google Scholar 

  219. Llewelyn JG, Thomas PK, Fonseca V, et al. Acute painful diabetic neuropathy precipitated by strict glycaemic control. Acta Neuropathol (Berl) 1986; 72: 157–63

    CAS  Google Scholar 

  220. Beggs JL, Johnson PC, Olafsen AG, et al. Regression of perineurial cell basement membrane in a human diabetic following isogenic pancreas transplant. Acta Neuropathol 1989; 79: 108–12

    PubMed  CAS  Google Scholar 

  221. Beggs JL, Johnson PC, Olafsen AG, et al. Signs of nerve regeneration and repair following pancreas transplantation in an insulin-dependent diabetic with neuropathy. Clin Transplant 1990; 4: 133–41

    Google Scholar 

  222. Ehle AL, Raskin P. Increased nerve conduction in diabetics after a year of improved glycemic control. J Neurol Sci 1986; 74: 191–7

    PubMed  CAS  Google Scholar 

  223. Dahl-Jørgensen K. Near-normoglycemia and late diabetic complications: the Oslo study. Acta Endocrinol 1987; Suppl. 284: 1–38

    Google Scholar 

  224. Holman RR, Dornan TL, Mayon-White V, et al. Prevention of deterioration of renal and sensory-nerve function by more intensive management of insulin-dependent diabetic patients. Lancet 1983; 1: 204–8

    PubMed  CAS  Google Scholar 

  225. Jakobsen J, Christiansen JS, Kristoffersen I, et al. Autonomic and somatosensory nerve function after 2 years of continuous subcutaneous insulin infusion in type 1 diabetes. Diabetes 1988; 37: 452–5

    PubMed  CAS  Google Scholar 

  226. Reichard P, Britz A, Carlsson P, et al. Metabolic control and complications over 3 years in patients with insulin-dependent diabetes mellitus (IDDM): the Stockholm Diabetes Intervention Study (SDIS). J Intern Med 1990; 280: 511–7

    Google Scholar 

  227. Lasker RD. The Diabetes Control and Complications Trial: implications for policy and practice. N Engl J Med 1993; 329: 1035–6

    PubMed  CAS  Google Scholar 

  228. Wang PH. Tight glucose control and diabetic complications. Lancet 1993; 342: 129

    PubMed  CAS  Google Scholar 

  229. Alberti KGMM, Gries FA. Management of non-insulin-dependent diabetes mellitus in Europe: a consensus view. Diabet Med 1988; 5: 275–81

    PubMed  CAS  Google Scholar 

  230. Williams G. Management of non-insulin-dependent diabetes mellitus. Lancet 1994; 343: 95–100

    PubMed  CAS  Google Scholar 

  231. Stout RW. Insulin and atheroma: an update. Lancet 1987; 1: 1077–9

    PubMed  CAS  Google Scholar 

  232. Jarrett RJ. In defence of insulin: a critique of syndrome X. Lancet 1992; 340: 469–71

    PubMed  CAS  Google Scholar 

  233. Hadden DR, Blair ALT, Wilson EA, et al. Natural history of diabetes presenting age 40-69 years: a prospective study of the influence of intensive dietary therapy. Q J Med 1986; 230: 579–98

    Google Scholar 

  234. Ryder S, Sarokhan B, Shand DG, et al. Human safety profile of tolrestat. Drug Develop Res 1987; 11: 131–43

    Google Scholar 

  235. Dahl-Jørgensen K, Brichmann-Hansen O, Hanssen KF, et al. Rapid tightening of blood glucose control leads to transient deterioration of retinopathy in insulin-dependent diabetes mellitus. BMJ 1985; 290: 811–5

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gerven, J.M.A., Tjon-A-Tsien, A.M.L. The Efficacy of Aldose Reductase Inhibitors in the Management of Diabetic Complications. Drugs & Aging 6, 9–28 (1995). https://doi.org/10.2165/00002512-199506010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199506010-00002

Keywords

Navigation