Skip to main content
Log in

Hypertension and Age-Related Changes in the Heart

Implications for Drug Therapy

  • Review Article
  • Physiological Aspects of Aging
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Summary

Heart disease in older individuals can be characterised as the result of 2 processes, hypertension and atherosclerosis, which are the major causes of heart failure in the elderly population. The aging heart undergoes changes at the molecular, cellular and organ levels. These age-related changes may then be modulated by pathological conditions, such as hypertension, and by the reduction of blood pressure.

One characteristic of the aged heart is a limited capacity for adaptation, by hypertrophy, to increased mechanical load. This age-related attenuation of the hypertrophic response may be attributed to the diminished induction of proto-oncogenes such as c-fos, c-myc and c-jun. This diminution results from aging of the heart per se and may be modulated by extracardiac factors.

With regard to the coronary vasculature, the age at which hypertension develops seems to be an important factor for determining the vascularity of hypertrophied hearts. Late-onset hypertension is not accompanied by coronary angiogenesis, and it decreases dilator reserve in spite of the absence of myocardial hypertrophy. In contrast, mechanical overload in infant hearts is accompanied by angiogenesis and normal dilator reserve. In principle, the normalisation of hypertension results in the regression of myocardial hypertrophy and decreased coronary dilator reserve.

In aged hearts, it is not clear how hypertension-induced myocardial hypertrophy or coronary vascular changes regress. Although antihypertensive treatment is clearly associated with an improvement of cardiovascular mortality and morbidity in hypertensive elderly individuals, it remains unclear how treatments ameliorate the hypertension-induced alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Parmley WW. Pathophysiology and current therapy of congestive heart failure. J Am Coll Cardiol 1989; 13: 771–85

    Article  PubMed  CAS  Google Scholar 

  2. Luchi RJ, Taffet GE, Teasdale TA. Congestive heart failure in the elderly. J Am Geriatr Soc 1991; 39: 810–25

    PubMed  CAS  Google Scholar 

  3. Wei JY. Age and cardiovascular system. N Engl J Med 1992; 327: 1735–9

    Article  PubMed  CAS  Google Scholar 

  4. Kannel WB. Epidemiology and prevention of cardiac failure: Framingham Study insights. Eur Heart J 1987; 8 (F Suppl.): 23–39

    PubMed  Google Scholar 

  5. Lakatta EG, Yin FCP. Myocardial aging: functional alterations and related cellular mechanisms. Am J Physiol 1982; 242: H927–H941

    PubMed  CAS  Google Scholar 

  6. Anversa P, Hiler B, Ricci R, et al. Myocyte cell loss and myocyte hypertrophy in the aging rat heart. J Am Coll Cardiol 1986; 8: 1441–8

    Article  PubMed  CAS  Google Scholar 

  7. Isoyama S, Wei JY, Izumo S, et al. Effect of age on the development of cardiac hypertrophy produced by aortic constriction in the rat. Circ Res 1987; 61: 337–45

    Article  PubMed  CAS  Google Scholar 

  8. Isoyama S, Grossman W, Wei JY. Effects of age on myocardial adaptation to volume-overload in the rat. J Clin Invest 1988; 81: 1850–7

    Article  PubMed  CAS  Google Scholar 

  9. Anversa P, Puntillo E, Nikitin P, et al. Effects of age on mechanical and structural properties of myocardium of Fisher 344 rats. Am J Physiol 1989; 256: H1440–H1449

    PubMed  CAS  Google Scholar 

  10. Anversa P, Palackal T, Sonnenblick EH, et al. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990; 67: 871–85

    Article  PubMed  CAS  Google Scholar 

  11. Olivetti G, Melissari M, Capasso JM, et al. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991; 68: 1560–8

    Article  PubMed  CAS  Google Scholar 

  12. Capasso JM, Fitzpatrick D, Anversa P. Cellular mechanism of ventricular failure: myocyte kinetics and geometry with age. Am J Physiol 1992; 262: H1770–H1778

    PubMed  CAS  Google Scholar 

  13. Mukherjee D, Sen S. Collagen phenotypes during development and regression of myocardial hypertrophy in spontaneously hypertensive rats. Circ Res 1990; 67: 1474–80

    Article  PubMed  CAS  Google Scholar 

  14. Tomanek RJ, Aydelotte MR, Torry RJ. Remodelling of coronary vessels during aging in purebred beagles. Circ Res 1991; 69: 1068–74

    Article  PubMed  CAS  Google Scholar 

  15. Capasso JM, Palackal T, Olivetti G, et al. Severe myocardial dysfunction induced by ventricular remodelling in aging rat hearts. Am J Physiol 1990; 259: H1086–H1096

    PubMed  CAS  Google Scholar 

  16. Bing OHL, Fanburg BL, Brooks WW, et al. The effect of the lathyrogen β-aminopropionitrile (βAPN) on the mechanical properties of experimentally hypertrophied rat cardiac muscle. Circ Res 1978; 43: 632–7

    Article  PubMed  CAS  Google Scholar 

  17. Grossman W. Diastolic dysfunction in congestive heart failure. N Engl J Med 1991; 325: 1557–64

    Article  PubMed  CAS  Google Scholar 

  18. Capasso JM, Malhotra A, Scheuer J, et al. Myocardial, contractile, and electrical performance after imposition of hypertension in young and old rats. Circ Res 1986; 58: 445–60

    Article  PubMed  CAS  Google Scholar 

  19. Lakatta EG. Do hypertension and aging similarly affect the myocardium 7? Circulation 1987; 75 (I Suppl.): 169–177

    Google Scholar 

  20. Effron MB, Bhatnagar GM, Spurgeon HA, et al. Changes in myosin isoenzyme, ATPase activity, and contraction duration in rat cardiac muscle with aging can be modulated by thyroxine. Circ Res 1987; 60: 238–45

    Article  PubMed  CAS  Google Scholar 

  21. Maciel LMZ, Polikar R, Rohrer D, et al. Age-induced decreases in the messenger RNA coding for the sarcoplasmic reticulum Ca2+-ATPase of the rat heart. Circ Res 1990; 67: 230–4

    Article  PubMed  CAS  Google Scholar 

  22. Lompre AM, Lambert F, Lakatta EG, et al. Expression of sarcoplasmic reticulum Ca2+-ATPase and calsequestrin genes in rat heart during ontogenic development and aging. Circ Res 1991; 69: 1380–8

    Article  PubMed  CAS  Google Scholar 

  23. Taffet GE, Tate CA. CaATPase content is lower in cardiac sarcoplasmic reticulum isolated from old rats. Am J Physiol 1993; 264: H1609–H1614

    PubMed  CAS  Google Scholar 

  24. Takahashi T, Schunkert H, Isoyama S, et al. Age-related differences in the expression of proto-oncogene and contractile genes in response to pressure-overload in the rat myocardium. J Clin Invest 1992; 89: 939–46

    Article  PubMed  CAS  Google Scholar 

  25. Lakatta EG. Changes in cardiovascular function with aging. Eur Heart J 1990; 11 (Suppl. C): 22–9

    PubMed  Google Scholar 

  26. Yasue H, Natsuyama K, Okumura K, et al. Responses of angiographically normal human coronary arteries to intracoronary injection of acetycholine by age and segment: possible role of early coronary atherosclerosis. Circulation 1990; 81: 482–90

    Article  PubMed  CAS  Google Scholar 

  27. Egashira K, Inou T, Hirooka Y, et al. Effects of age on endotheliumdependent vasodilation of resistance coronary arterybyacetylcholineinhumans. Circulation 1993; 88: 77–81

    Article  PubMed  CAS  Google Scholar 

  28. Tomanek RJ, Hovanec JM. The effect of long-term pressure overload and aging on the myocardium. J Mol Cell Cardiol 1981; 13: 471–88

    Article  PubMed  CAS  Google Scholar 

  29. Engelman GL, Vitullo JC, Gerrity RG. Morphometric analysis of cardiac hypertrophy during development, maturation, and senescence in spontaneously hypertensive rats. Circ Res 1987; 60: 487–94

    Article  Google Scholar 

  30. Rakusan K, Wicker P. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovasc Res 1990; 24: 278–84

    Article  PubMed  CAS  Google Scholar 

  31. Vitullo JC, Penn MS, Rakusan K, et al. Effects of hypertension and aging on coronary arteriolar density. Hypertension 1993; 21: 406–14

    Article  PubMed  CAS  Google Scholar 

  32. Isoyama S, Sato F, Takishima T. Effects of age on coronary autoregulation and dilator capacity in rats. J Appl Cardiol 1991; 6: 141–50

    Google Scholar 

  33. Toma BS, Wangler RD, De Witt DF, et al. Effect of development on coronary vasodilator reserve in the isolated guinea pig heart. Circ Res 1985; 57: 538–44

    Article  PubMed  CAS  Google Scholar 

  34. Isoyama S, Sato F, Takishima T. Effects of age on coronary circulation after imposition of pressure-overload in rats. Hypertension 1991; 17: 369–77

    Article  PubMed  CAS  Google Scholar 

  35. Czernin J, Muller P, Chan S, et al. Influence of age and hemodynamics on myocardial blood flow reserve. Circulation 1993; 88: 62–9

    Article  PubMed  CAS  Google Scholar 

  36. Tomanek RJ, Aydelotte MR, Anderson KE, et al. Coronary blood flow in senescent rats with late-onset hypertension. Am J Physiol 1993; 264: Hl854–H1860

    Google Scholar 

  37. Hachamovitch R, Wicker P, Capasso JM, et al. Alterations of coronary blood flow and reserve with aging in Fisher 344 rats. Am J Physiol 1989; 256: H66–H73

    PubMed  CAS  Google Scholar 

  38. Hongo K, Nakagomi T, Kassell NF, et al. Effects of age and hypertension on endothelial-dependent vascular relaxation in rat carotid artery. Stroke 1988; 19: 892–7

    Article  PubMed  CAS  Google Scholar 

  39. Wei JY, Li Y-X, Lincoln T, et al. Chronic exercise training protects aged muscle against hypoxia. J Clin Invest 1989; 83: 778–84

    Article  PubMed  CAS  Google Scholar 

  40. Li YX, Lincoln T, Mendelowitz D, et al. Age-related differences in effect of exerise training on cardiac muscle function in rats. Am J Physiol 1986; 251: H12–H18

    PubMed  CAS  Google Scholar 

  41. Gwathmey JK, Slawsky MT, Perreault CL, et al. Effect of exercise conditioning on excitation-contraction coupling in aged rats. J Appl Physiol 1990; 69: 1366–71

    PubMed  CAS  Google Scholar 

  42. Takemoto KA, Bernstein L, Lopez JF, et al. Abnormalities of diastolic filling of the left ventricle associated with aging are less pronounced in exercise-trained individuals. Am Heart J 1992; 124: 143–8

    Article  PubMed  CAS  Google Scholar 

  43. Forman DE, Manning WJ, Hauser R, et al. Enhanced left ventricular diastolic filling associated with long-term endurance training. J Gerontol 1992; 47: M56–M58

    PubMed  CAS  Google Scholar 

  44. Schulman SP, Lakatta EG, Fleg JL, et al. Age-related decline in left ventricular filling at rest and exercise. Am J Physiol 1992; 263: H1932–H1938

    PubMed  CAS  Google Scholar 

  45. Levy WC, Cerqueira MD, Abrass IB, et al. Endurance exercise training augments diastolic filling at rest and during exercise in healthy young and older men. Circulation 1993; 88: 116–26

    Article  PubMed  CAS  Google Scholar 

  46. Ehsani AA, Ogawa T, Miller TR, et al. Exercise training improves left ventricular systolic function in older men. Circulation 1991; 83: 96–103

    Article  PubMed  CAS  Google Scholar 

  47. Stratton JR, Cerqueira MD, Schwartz RS, et al. Differences in cardiovascular responses to isoproterenol in relation to age and exercise training in healthy men. Circulation 1992; 86: 504–12

    Article  PubMed  CAS  Google Scholar 

  48. Spina RJ, Ogawa T, Coggan AR, et al. Exercise training improves left ventricular contractile response to β-adrenergic agonist. J Appl Physiol 1992; 72: 307–11

    PubMed  CAS  Google Scholar 

  49. Tate CA, Taffet GW, Hudson EK, et al. Enhanced calcium uptake of cardiac sarcoplasmic reticulum in exercise-trained old rats. Am J Physiol 1990; 258: H431–H435

    PubMed  CAS  Google Scholar 

  50. Farrar RP, Starnes JW, Cartee GD, et al. Effects of exercise on cardiac myosin isozyme composition during the aging process. J Appl Physiol 1988; 64: 880–3

    PubMed  CAS  Google Scholar 

  51. Chesky JA, LaFollette S, Travis M, et al. Effect of physical training on myocardial enzyme activities in aging rats. J Appl Physiol 1983; 55: 1349–53

    PubMed  CAS  Google Scholar 

  52. Walford GD, Spurgeon HA, Lakatta EG. Diminished cardiac hypertrophy and muscle performance in older compared with younger adult rats with chronic atrioventricular block. Circ Res 1988; 63: 502–11

    Article  PubMed  CAS  Google Scholar 

  53. Isoyama S, Kuroha M, Sato F, et al. Aging effects on myocardial hypertrophic response and coronary circulation in pressure-overload. Jpn Circ J 1991; 56: 482–8

    Article  Google Scholar 

  54. Kuroha M, Isoyama S, Ito N, et al. Effects of age on right ventricular hypertrophic response to pressure-overload in rats. J Mol Cell Cardiol 1991; 23: 1177–90

    Article  PubMed  CAS  Google Scholar 

  55. Bauters C, Moalic JM, Bercovici J, et al. Coronary flow as a determinant of c-myc and c-fos proto-oncogene expression in an isolated adult rat heart. J Mol Cell Cardiol 1988; 20: 97–101

    Article  PubMed  CAS  Google Scholar 

  56. Delcayre C, Klug D, Thiem NV, et al. Aortic perfusion pressure as early determinant of β-isomyosin expression in perfused hearts. Am J Physiol 1992; 263: H1537–H1545

    PubMed  CAS  Google Scholar 

  57. Schunkert H, Jahn L, Izumo S, et al. Localization and regulation of c-fos and c-jun proto-oncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci USA 1991; 88: 11480–4

    Article  PubMed  CAS  Google Scholar 

  58. Shida M, Isoyama S. Effects of age on c-fos and c-myc gene expression in response to hemodynamic stress in isolated, perfused rat hearts. J Mol Cell Cardiol 1993; 25: 1025–35

    Article  PubMed  CAS  Google Scholar 

  59. Kira Y, Kochel PJ, Gordon EE, et al. Aortic perfusion pressure as a determinant of cardiac protein synthesis. Am J Physiol 1984; 246: C247–C258

    PubMed  CAS  Google Scholar 

  60. Bigs RB, Booth FW. Protein synthesis rate is not suppressed in rat heart during senescence. Am J Physiol 1990; 258: H207–H211

    Google Scholar 

  61. Dillan WH. Hormonal influences on cardiac myosin ATPase activity and myosin isoenzyme distribution. Mol Cell Endocrinol 1984; 34: 169–81

    Article  Google Scholar 

  62. Starksen NF, Simpson PC, Bishopric N, et al. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci USA 1986; 83: 8348–50

    Article  PubMed  CAS  Google Scholar 

  63. Lengsfeld M, Morano I, Ganten U, et al. Gonadectomy and hormonal replacement changes systolic blood pressure and ventricular myosin isoenzyme pattern of spontaneously hypertensive rats. Circ Res 1988; 63: 1090–4

    Article  PubMed  CAS  Google Scholar 

  64. Long CS, Ordahl CP, Simpson PC. α1-Adrenergic receptor stimulation of sarcomeric actin isogene transcription in hypertrophy of cultured rat heart muscle cells. J Clin Invest 1989; 83: 1078–82

    Article  PubMed  CAS  Google Scholar 

  65. Timsit J, Riou B, Bertherat J, et al. Effects of chronic growth hormone hypersecretion on intrinsic contractility, energetics, isomyosin pattern, and myosin adenosine triphosphatase activity of rat left ventricle. J Clin Invest 1990; 86: 507–15

    Article  PubMed  CAS  Google Scholar 

  66. Winegrad S, Wisnewsky C, Schwartz K. Effect of thyroid hormone on the accumulation of mRNA for skeletal and cardiac α-actin in hearts from normal and hypophysectomized rats. Proc Natl Acad Sci USA 1990; 87: 2456–60

    Article  PubMed  CAS  Google Scholar 

  67. Morgan HE, Baker KM. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 1991; 83: 13–25

    Article  PubMed  CAS  Google Scholar 

  68. Florini JR, Saito Y, Manowitz EJ. Effect of age on thyroxine-induced cardiac hypertrophy in mice. J Gerontol 1973; 28: 293–7

    PubMed  CAS  Google Scholar 

  69. Zitnik G, Roth GS. Effects of thyroid hormones on cardiac hypertrophy and beta-adrenergic receptors during aging. Mech Ageing Dev 1981; 15: 19–28

    Article  PubMed  CAS  Google Scholar 

  70. Buttrick PA, Malhotra A, Factor S, et al. Effect of age and hypertension on myosin biochemistry and gene expression in the rat heart. Circ Res 1991; 68: 645–52

    Article  PubMed  CAS  Google Scholar 

  71. Tomanek RJ, Butters CA, Zimmerman MB. Initiation of cardiac hypertrophy in response to thyroxine is not limited by age. Am J Physiol 1993; 264: H1041–H1047

    PubMed  CAS  Google Scholar 

  72. Schneider MD, Parker TG. Cardiac myocytes as targets for the action of peptide growth factors. Circulation 1990; 81: 1443–56

    Article  PubMed  CAS  Google Scholar 

  73. Parker TG, Packer SE, Schneider MD. Peptide growth factors can provoke ‘fetal’ contractile protein gene expression in rat cardiac myocytes. J Clin Invest 1990; 85: 507–14

    Article  PubMed  CAS  Google Scholar 

  74. Ito H, Hirata Y, Hiroe M, et al. Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes. Circ Res 1991; 69: 209–15

    Article  PubMed  CAS  Google Scholar 

  75. Parker TG, Schneider MD. Growth factors, proto-oncogenes, and plasticity of the cardiac phenotype. Ann Rev Physiol 1991; 53: 179–200

    Article  CAS  Google Scholar 

  76. Dzau VJ. Local contractile and growth modulators in the myocardium. Clin Cardiol 1993; 16 (Suppl. II): II5–II9

    PubMed  CAS  Google Scholar 

  77. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an α1-adrenergic receptor and induction of beating through an aland oci-adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res 1985; 56: 884–94

    Article  PubMed  CAS  Google Scholar 

  78. Klein I, Hong C. Effects of thyroid hormone on cardiac size and myosin content of the heterotropically transplanted rat heart. J Clin Invest 1986; 77: 1694–8

    Article  PubMed  CAS  Google Scholar 

  79. Korecky B, Zak R, Schwartz K, et al. Role of thyroid hormone in regulation of isomyosin composition, contractility, and size of heterotopically isotransplanted rat heart. Circ Res 1987; 60: 824–30

    Article  PubMed  CAS  Google Scholar 

  80. Marban E, Koretsune Y. Cell calcium, oncogenes, and hypertrophy. Hypertension 1990; 15: 652–8

    Article  PubMed  CAS  Google Scholar 

  81. Torres A, Tucker DC. Effects of thyroid hormones on cardiac development in oculo. Am J Physiol 1993; 264: H244–H251

    PubMed  CAS  Google Scholar 

  82. Komatsu M, Isoyama S, Takishima T. Effects of aging on the induction of cardiocyte growth by extracardiac factors. Am J Physiol. In press

  83. Boluyt MO, Opiteck JA, Esser KA, et al. Cardiac adaptation to aortic constriction in adult and aged rats. Am J Physiol 1989; 257: H643–H648

    PubMed  CAS  Google Scholar 

  84. Tomanek RJ, Aydelotte MR. Late onset renal hypertension in old rats alters left ventricular structure and function. Am J Physiol 1992; 262: H531–H538

    PubMed  CAS  Google Scholar 

  85. Isoyama S, Ito N, Satoh K, et al. Collagen deposition and the reversal of coronary reserve in cardiac hypertrophy. Hypertension 1992; 20: 491–500

    Article  PubMed  CAS  Google Scholar 

  86. Ito N, Isoyama S, Takahashi T, et al. Coronary dilator reserve and morphological changes after relief of pressure-overload in rats. J Mol Cell Cardiol 1993; 25: 3–14

    Article  PubMed  CAS  Google Scholar 

  87. Weber KT, Janicki JS, Scroff SG, et al. Collagen remodelling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 1988; 62: 757–65

    Article  PubMed  CAS  Google Scholar 

  88. Weber KT, Anversa P, Armstrong PW, et al. Remodelling and reparation of cardiovascular system. J Am Coll Cardiol 1992; 20: 3–16

    Article  PubMed  CAS  Google Scholar 

  89. Villarreal FJ, Dillmann WH. Cardiac hypertrophy-induced changes in mRNA levels for TGF-β1, fibronectin, and collagen. Am J Physiol 1992; 262: H1861–H1866

    PubMed  CAS  Google Scholar 

  90. Ito N, Nitta Y, Ohtani H, et al. Remodelling of microvessels by coronary hypertension or cardiac hypertrophy in rats. J Mol Cell Cardiol 1994; 26: 49–59

    Article  PubMed  CAS  Google Scholar 

  91. Tomanek RJ, Aydelotte MR, Butters CA. Late-onset hypertension in old rats alters myocardial microvessels. Am J Physiol 1990; 259: H1681–H1687

    PubMed  CAS  Google Scholar 

  92. Haudenshild CC, Chobanian AV. Blood pressure lowering diminishes age-related changes in the rat aortic intima. Hypertension 1984; 6Suppl. I: 162–168

    Google Scholar 

  93. Brush Jr JE, Faxon DP, Salmon S, et al. Abnormal endothelium-dependent coronary vasomotion in hypertensive patients. J Am Coll Cardiol 1992; 19: 809–15

    Article  PubMed  Google Scholar 

  94. Clozel M, Kuhn H, Hefti F. Effects of angiotensin converting enzyme inhibitors and of hydralazine on endothelial function in hypertensive rats. Hypertension 1990; 16: 532–40

    Article  PubMed  CAS  Google Scholar 

  95. Rakusan K, De Rochemont WM, Braasch W, et al. Capacity of the terminal vascular bed during normal growth in cardiomegaly, and in cardiac atrophy. Circ Res 1967; 21: 209–15

    Article  PubMed  CAS  Google Scholar 

  96. Bache RJ, Alyono D, Sublett E, et al. Myocardial blood flow in left ventricular hypertrophy developing in young and adult dogs. Am J Physiol 1986; 251: H949–H956

    PubMed  CAS  Google Scholar 

  97. Bache RJ. Effects of hypertrophy on the coronary circulation. Prog Cardivasc Dis 1988; 31: 403–40

    Article  Google Scholar 

  98. Tomanek RJ, Schalk KA, Marcus ML, et al. Coronary angiogenesis during long-term hypertension and left venticular hypertrophy in dogs. Circ Res 1989; 65: 352–9

    Article  PubMed  CAS  Google Scholar 

  99. Flanagan MF, Fujii AM, Colan SD, et al. Myocardial angiogenesis and coronary perfusion in left ventricular pressure-overload hypertrophy in the young lamb: evidence for inhibition with chronic protamine administration. Circ Res 1991; 68: 1458–70

    Article  PubMed  CAS  Google Scholar 

  100. Rakusan K, Flanagan MF, Geva T, et al. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation 1992; 86: 38–46

    Article  PubMed  CAS  Google Scholar 

  101. Alyono D, Anderson RW, Parrish DG, et al. Alterations of myocardial flow associated with experimental canine left ventricular hypertrophy secondary to valvular aortic stenosis. Circ Res 1986; 58: 47–57

    Article  PubMed  CAS  Google Scholar 

  102. Marcus ML, Harrison D, Chilian WM, et al. Alterations in the coronary circulation in hypertrophied ventricles. Circulation 1987; 75Suppl. I: 119–125

    Google Scholar 

  103. Tanaka M, Fujiwara H, Onodera T, et al. Quantitative analysis of narrowings of intramyocardial small arteries in normal hearts, hypertensive hearts, and hearts with hypertrophic cardiomyopathy. Circulation 1987; 75: 1130–9

    Article  PubMed  CAS  Google Scholar 

  104. Schwartzkopff B, Frenzel H, Dickerhoff J, et al. Morphometric investigation of human myocardium in arterial hypertension and valvular aortic stenosis. Eur Heart J 1992; 13Suppl. D: 17–23

    PubMed  Google Scholar 

  105. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Lancet 1986; 1: 397–401

    Google Scholar 

  106. Currie RW, Karmazyn M, Kloc M, et al. Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 1988; 63: 543–9

    Article  PubMed  CAS  Google Scholar 

  107. Donnelly TJ, Sievers RE, Vissern FLJ, et al. Heat shock protein induction in rat hearts: a role for improved myocardial salvage after ischemia and reperfusion? Circulation 1992; 85: 769–78

    Article  PubMed  CAS  Google Scholar 

  108. Katayose D, Isoyama S, Fujita H, et al. Separate regulation of heme oxygenase and heat shock protein mRNA expression in the rat heart by hemodynamic stress. Biochem Biophys Res Comm 1993; 191: 587–94

    Article  PubMed  CAS  Google Scholar 

  109. Currie RW, Tanguay RM, Kingma Jr JG. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 1993; 87: 963–71

    Article  PubMed  CAS  Google Scholar 

  110. Iwaki K, Chi S-H, Dillman WH, et al. Induction of HSP70 in cultured rat neonatal cardiomyocytes by hypoxia and mechanical stress. Circulation 1993; 87: 2023–32

    Article  PubMed  CAS  Google Scholar 

  111. Nitta Y, Abe K, Aoki M, et al. Severity of ischemia affects age-related modulation of heat shock protein mRNA induction [abstract]. Circulation 1993; 88Suppl. I: 1–569

    Google Scholar 

  112. Liu AY-C, Lin Z, Choi HS, et al. Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J Biol Chem 1989; 264: 12037–45

    PubMed  CAS  Google Scholar 

  113. Blake MJ, Fargnoli J, Gershon D, et al. Concomitant decline in heat-induced hyperthermia and HSP70 mRNA expression in aged rats. Am J Physiol 1991; 260: R663–R667

    PubMed  CAS  Google Scholar 

  114. Liu AY-C, Choi HS, Lee Y-K, et al. Molecular events involved in transcriptional activation of heat shock genes progressively refractory to heat stimulation during aging of human diploid fibroblasts. J Cell Physiol 1991; 149: 560–6

    Article  PubMed  CAS  Google Scholar 

  115. Heydari AR, Wu B, Takahashi R, et al. Expression of heat shock protein 70 is altered by age and diet at the level of transcription. Mol Cell Biol 1993; 13: 2909–18

    PubMed  CAS  Google Scholar 

  116. Udelsman R, Blake MJ, Stagg CA, et al. Vascular heat shock protein expression in response to stress. Endocrine and autonomie regulation of this age-dependent response. J Clin Invest 1993; 91: 465–73

    Article  PubMed  CAS  Google Scholar 

  117. Fargnoli J, Kunisada T, Fornace AJ, et al. Decreased expression of heat shock protein mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci USA 1990; 87: 846–50

    Article  PubMed  CAS  Google Scholar 

  118. Deguchi Y, Negoro S, Kishimoto S. Age-related changes of heat shock protein gene transcription in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 1988; 157: 580–4

    Article  PubMed  CAS  Google Scholar 

  119. Benjamin IJ, Horie JS, Greenberg ML, et al. Induction of stress proteins in cultured myogenic cells: molecular signaling for the activation of heat shock trascriptional factor during ischemia. J Clin Invest 1992; 89: 1685–9

    Article  PubMed  CAS  Google Scholar 

  120. Opie L. ATP synthesis and breakdown. In: Opie L, editor. The heart. London: Grune & Stratton, 1984

    Google Scholar 

  121. Fouad-Tarazi FM, Liebson PR. Echocardiographic studies of regression of left ventricular hypertrophy in hypertension. Hypertension 1987; 9Suppl. II: II65–II68

    PubMed  CAS  Google Scholar 

  122. Motz W, Strauer BE. Left ventricular function and collagen content after regression of hypertensive hypertrophy. Hypertension 1989; 13: 43–50

    Article  PubMed  CAS  Google Scholar 

  123. Scmieder RE, Messerli FH, Sturgill D, et al. Cardiac performance after reduction of myocardial hypertrophy. Am J Med 1989; 87: 22–7

    Article  Google Scholar 

  124. Isoyama S, Ito N, Kuroha M, et al. Complete reversibility of physiological coronary vascular abnormalities in hypertrophied hearts produced by pressure-overload in the rat. J Clin Invest 1989; 84: 288–94

    Article  PubMed  CAS  Google Scholar 

  125. Ito N, Isoyama S, Kuroha M, et al. Duration of pressure overload alters regression of coronary circulation abnormalities. Am J Physiol 1990; 258: H1753–H1760

    PubMed  CAS  Google Scholar 

  126. Sato F, Isoyama S, Takishima T. Normalization of impaired coronary circulation in hypertrophied rat hearts. Hypertension 1990; 16: 26–34

    Article  PubMed  CAS  Google Scholar 

  127. Childs TJ, Adams MA, Mak AS. Regression of cardiac hypertrophy in spontaneously hypertensive rats by enalapril and the expression of contractile proteins. Hypertension 1990; 16: 662–8

    Article  PubMed  CAS  Google Scholar 

  128. Pahor M, Bernabei R, Sgadari A, et al. Enalapril prevents cardiac fibrosis and arrhythmias in hypertensive rats. Hypertension 1991; 18: 148–57

    Article  PubMed  CAS  Google Scholar 

  129. Pauletto P, Nascimben L, Piccolo D, et al. Ventricular myosin and creatine-kinase isoenzymes in hypertensive rats treated with captopril. Hypertension 1989; 14: 556–62

    Article  PubMed  CAS  Google Scholar 

  130. Cooper G IV, Marino TA. Complete reversibility of cat right ventricular chronic progressive pressure overload. Circ Res 1984; 54: 323–31

    Article  PubMed  Google Scholar 

  131. Monrad ES, Hess OM, Murakami T, et al. Time course of regression of left ventricular hypertrophy after aortic valve replacement. Circulation 1988; 77: 1345–55

    Article  PubMed  CAS  Google Scholar 

  132. Sato F, Isoyama S, Takishima T. Effects of duration of pressure overload on the reversibility of impaired coronary autoregulation. Int JCardiol 1992; 37: 131–43

    Article  CAS  Google Scholar 

  133. Anderson PG, Bishop SP, Digerness SB. Vascular remodelling and improvement of coronary reserve after hydralazine treatment in spontaneously hypertensive rats. Circ Res 1989; 64: 1127–36

    Article  PubMed  CAS  Google Scholar 

  134. Canby CA, Tomanek RJ. Role of lowering arterial pressure on maximal coronary flow with and without regression of cardiac hypertrophy. Am J Physiol 1989; 257: H1110–H1118

    PubMed  CAS  Google Scholar 

  135. Ishihara K, Zile MR, Nagatsu M, et al. Coronary blood flow after regression of pressure-overload left ventricular hypertrophy. Circ Res 1992; 71: 1472–81

    Article  PubMed  CAS  Google Scholar 

  136. Luscher TF, Vanhoutte PM, Raiji L. Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension 1987; 9 (Suppl. III): III193–7

    PubMed  CAS  Google Scholar 

  137. SHEP Cooperative Research Group. Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. JAMA 1991; 265: 3255–64

    Article  Google Scholar 

  138. Beard K, Bulpitt C, Mascie-Taylor H, et al. Management of elderly patients with sustained hypertension. BMJ 1992; 304: 412–6

    Article  PubMed  CAS  Google Scholar 

  139. SHEP Cooperative Research Group. Implications of the systolic hypertension in the elderly program. Hypertension 1993; 21: 335–43

    Article  Google Scholar 

  140. Goldstein G, Materson BJ, Cushman WC, et al. Treatment of hypertension in the elderly: II. Cognitive and behavioral function. Results of a Department of Veterans Affairs cooperative study. Hypertension 1990; 15: 361–9

    Article  PubMed  CAS  Google Scholar 

  141. Farnett L, Mulrow CD, Linn WD, et al. The J-curve phenomenon and the treatment of hypertension: is there a point beyond which pressure reduction is dangerous? JAMA 1991; 265: 489–95

    Article  PubMed  CAS  Google Scholar 

  142. Fletcher AE, Bulpitt CJ. How far should blood pressure be lowered? N Engl J Med 1992; 326: 251–4

    Article  PubMed  CAS  Google Scholar 

  143. MRC Working Party. Medical Research Council trial of treatment of hypertension in older adults: principal results. BMJ 1992; 304: 405–12

    Article  Google Scholar 

  144. Langer RD, Criqui MH, Barrett-Connor EL, et al. Blood pressure change and survival after age 75. Hypertension 1993; 22: 551–9

    Article  PubMed  CAS  Google Scholar 

  145. Wei JY. Use of calcium entry blockers in elderly patients. Special consideration. Circulation 1989; 80 (IV Suppl.): IV171–IV177

    PubMed  CAS  Google Scholar 

  146. Kvasnicka J, Flack JM, Grimm RH. Treatment of hypertension in the presence of coexisting medical conditions. Drugs Aging 1994; 4: 304–12

    Article  PubMed  CAS  Google Scholar 

  147. Frohlich ED. Hemodynamics and other determinants in development of left ventricular hypertrophy. Fed Proc 1983; 42: 2709–15

    PubMed  CAS  Google Scholar 

  148. Frohlich ED, Horinaka S. Cardiac and aortic effects of angiotensin converting enzyme inhibitors. Hypertension 1991; 18Suppl. II: II2–II7

    Article  PubMed  CAS  Google Scholar 

  149. Frohlich ED, Apstein C, Chobanian AV, et al. The heart in hypertension. N Engl J Med 1992; 327: 998–1008

    Article  PubMed  CAS  Google Scholar 

  150. Chaignon MM, Mourad J-J, Guedon J. Comparative effects of antihypertensive drugs on systolic blood pressure. J Hypertens 1993; 11Suppl. 1: S27–S31

    Article  CAS  Google Scholar 

  151. Schunkert H, Dzau VJ, Tang SS, et al. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: effects on coronary resistance, contractility, and relaxation. J Clin Invest 1990; 86: 1913–20

    Article  PubMed  CAS  Google Scholar 

  152. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium: fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849–65

    Article  PubMed  CAS  Google Scholar 

  153. Chobanian AV, Haudenschild CC, Nickerson C, et al. Antiatherogenic effect of captopril in the Watanabe heritable hyperlipidemic rabbit. Hypertension 1990; 15: 327–31

    Article  PubMed  CAS  Google Scholar 

  154. Holzgreve H, Burkle B. Anti-atherosclerotic effects of calcium antagonists. J Hypertens 1993; 11 (1 Suppl.): 555–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isoyama, S. Hypertension and Age-Related Changes in the Heart. Drugs & Aging 5, 102–115 (1994). https://doi.org/10.2165/00002512-199405020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-199405020-00004

Keywords

Navigation