Skip to main content
Log in

Second-Generation Antipsychotics

Is There Evidence for Sex Differences in Pharmacokinetic and Adverse Effect Profiles?

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Six second-generation antipsychotics (SGAs), aripiprazole, clozapine, olanzapine, quetiapine, risperidone and ziprasidone, are currently US FDA approved. The aim of this review is to investigate whether sex differences exist for efficacy and adverse effects of these drugs.

Sex-related differences have been shown in the pharmacokinetics of cytochrome P450 (CYP), with a higher activity in females for CYP3A4 and CYP2D6. However, even if there are pharmacokinetic differences between females and males, significantly higher plasma concentrations in women have been demonstrated only for olanzapine and clozapine.

To date, sex differences in adverse effects have not been well studied, but some adverse effects such as weight gain, hyperprolactinaemia and cardiac effects are reported to be particularly problematic for women. Most of the studies reviewed indicate that clozapine and olanzapine are associated with greater bodyweight gain than the other atypical antipsychotics, and that serious adverse effects such as metabolic syndrome, which includes increased visceral adiposity, hyperglycaemia, hypertension and dyslipidaemia induced by SGAs, are more frequent in females. According to most studies, the risk for cardiac adverse effects induced by SGAs is the same in male and female patients. Although women are at a lower risk of sudden cardiac death, they have a higher risk of induced long QT syndrome from antiarrhythmic and, probably, antipsychotic drugs. The propensity of sexual dysfunctions is higher with conventional antipsychotics than with SGAs. Additionally, there is some evidence that female sexual dysfunction is associated with high prolactin levels; however, whether the degree of prolactin level elevation is different between female and male patients remains controversial. There is no evidence for sex differences for any of the SGAs to cause a higher rate of extrapyramidal symptoms, acute dystonia or any other movement disturbance. Knowledge of the risks and benefits associated with the use of SGAs during pregnancy and lactation is limited, although the direction of dose adjustments during pregnancy depends on the drug and the enzyme that is responsible for its metabolism.

In general, data on sex differences were mostly obtained by post hoc analysis and, therefore, the conclusions that can be drawn are limited. For a better understanding of the basic mechanisms of sex differences, future studies with a primary focus on this topic are required. Data that are more specific will help determine the extent to which these differences will have implications for clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. FDA Consumer magazine. Does sex make a difference? [online]. Available from URL: http://www.fda.gov.fdac/features/2005/405_sex.html [Accessed 2006 Jun 8]

  2. NIH has increased its efforts to include women in research (GAO/HEHS-00-96). Report to Congressional Requesters. Washington, DC: United States General Accounting Office, 2000

  3. NIH policy and guidelines on the inclusion of women and minorities as subjects in clinical research. Notice NOT-OD-02-001. Bethesda (MD): National Institutes of Health, 2001 Oct 9

  4. Leung A, Chue P. Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl 2000; 401: 3–38

    Article  PubMed  CAS  Google Scholar 

  5. Agenda for Research on Women’s Health for the 21st Century: a report of the Task Force on the NIH Women’s Health Research Agenda for the 21st Century. Executive summary. Bethesda (MD): National Institutes of Health, 1999. NIH Publication No. 99-4385

  6. Hamilton J, Parry B. Sex-related differences in clinical drug response: implications for women’s health. J Am Med Womens Assoc 1983; 38: 126–32

    PubMed  CAS  Google Scholar 

  7. Anderson GD. Sex and racial differences in pharmacological response: where is the evidence? Pharmacogenetics, pharmacokinetics, and pharmacodynamics. J Womens Health 2005; 14: 19–29

    Article  Google Scholar 

  8. Meibohm B, Beierle I, Derendorf H. How important are gender differences in pharmacokinetics? Clin Pharmacokinet 2002; 41: 329–42

    Article  PubMed  CAS  Google Scholar 

  9. Woosley RL, Chen Y, Freiman JP, et al. Mechanism of the cardiotoxic actions of terfenadine. JAMA 1993; 269: 1532–6

    Article  PubMed  CAS  Google Scholar 

  10. Rathore SS, Wang Y, Krumholz HM. Sex-based differences in the effect of digoxin for the treatment of heart failure. N Engl J Med 2002; 347: 1403–11

    Article  PubMed  CAS  Google Scholar 

  11. Volavka J, Czobor P, Sheitman B, et al. Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry 2002; 159: 255–62

    Article  PubMed  Google Scholar 

  12. Lane HY, Chang YC, Chang WH, et al. Effects of gender and age on plasma levels of clozapine and its metabolites: analyzed by critical statistics. J Clin Psychiatry 1999; 60: 36–40

    Article  PubMed  CAS  Google Scholar 

  13. Gex-Fabry M, Balant-Gorgia AE, Balant LP. Therapeutic drug monitoring of olanzapine: the combined effect of age, gender, smoking, and comedication. Ther Drug Monit 2003; 25: 46–53

    Article  PubMed  CAS  Google Scholar 

  14. Weiss U, Marksteiner J, Kemmler G, et al. Effects of age and sex on olanzapine plasma concentrations. J Clin Psychopharmacol 2005; 25: 570–4

    Article  PubMed  CAS  Google Scholar 

  15. Kuruvilla A, Peedicayil J, Srikrishna G, et al. A study of serum prolactin levels in schizophrenia: comparison of males and females. Clin Exp Pharmacol Physiol 1992; 19: 603–16

    Article  PubMed  CAS  Google Scholar 

  16. Smith S, Wheeler MJ, Murray R, et al The effects of antipsychotic-induced hyperprolactinaemia on the hypothalamic-pituitary-gonadal axis. J Clin Psychopharmacol 2002; 22: 109–14

    Article  PubMed  CAS  Google Scholar 

  17. Kinon BJ, Gilmore JA, Liu H, et al. Hyperprolactinemia in response to antipsychotic drugs: characterization across comparative clinical trials. Psychoneuroendocrinology 2003; 28Suppl. 2: 69–82

    Article  PubMed  CAS  Google Scholar 

  18. Wieck A, Haddad PM. Antipsychotic-induced hyperprolactinaemia in women: pathophysiology, severity and consequences: selective literature review. Br J Psychiatry 2003; 182: 199–204

    Article  PubMed  CAS  Google Scholar 

  19. Melton LJ. How many women have osteoporosis now? J Bone Miner Res 1995; 10: 175–7

    Article  PubMed  Google Scholar 

  20. Homel P, Casey D, Allison DB. Changes in body mass index for individuals with and without schizophrenia, 1987-1996. Schizophr Res 2002; 55: 277–84

    Article  PubMed  Google Scholar 

  21. Russell JM, Mackell JA. Bodyweight gain associated with atypical antipsychotics: epidemiology and therapeutic implications. CNS Drugs 2001; 15: 537–51

    Article  PubMed  CAS  Google Scholar 

  22. Ford ES, Giles WH, Mokdad AH. Increasing prevalence of the metabolic syndrome among US adults. Diabetes Care 2004; 27: 2444–9

    Article  PubMed  Google Scholar 

  23. Makkar RR, Fromm BS, Steinman RT, et al. Female gender as a risk factor for torsades de pointes associated with cardiovascular drugs. JAMA 1993; 270: 2590–7

    Article  PubMed  CAS  Google Scholar 

  24. Larsen JA, Kadish AH. Effects of gender on cardiac arrhythmias. J Cardiovasc Electrophysiol 1998; 9: 655–64

    Article  PubMed  CAS  Google Scholar 

  25. Lehmann MH, Hardy S, Archibald D, et al. JTc prolongation with d,l-sotalol in women versus men. Am J Cardiol 1999; 83: 354–9

    Article  PubMed  CAS  Google Scholar 

  26. Wolbrette D. Gender differences in the proarrhythmic potential of QT-prolonging drugs. Curr Womens Health Rep 2002; 2: 105–9

    PubMed  Google Scholar 

  27. Meltzer HY, Rabinowitz J, Lee MA, et al. Age at onset and gender of schizophrenic patients in relation to neuroleptic resistance. Am J Psychiatry 1997; 154: 475–82

    PubMed  CAS  Google Scholar 

  28. Szymanski S, Lieberman J, Pollack S, et al. Gender differences in neuroleptic nonresponsive clozapine-treated schizophrenics. Biol Psychiatry 1996; 39: 249–54

    Article  PubMed  CAS  Google Scholar 

  29. Labelle A, Light M, Dunbar F. Risperidone treatment of outpatients with schizophrenia: no evidence of sex differences in treatment response. Can J Psychiatry 2001; 46: 534–41

    PubMed  CAS  Google Scholar 

  30. Pollock BG. Gender differences in psychotropic drug metabolism. Psychopharmacol Bull 1997; 33: 235–41

    PubMed  CAS  Google Scholar 

  31. Seeman MV. Gender differences in the prescribing of antipsychotic drugs. Am J Psychiatry 2004; 161: 1324–33

    Article  PubMed  Google Scholar 

  32. Aichhorn W, Weiss U, Marksteiner J, et al. Influence of age and gender on risperidone plasma concentrations. J Psychopharmacol 2005; 19: 395–401

    Article  PubMed  CAS  Google Scholar 

  33. Prior TI, Baker GB. Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci 2003; 28: 99–112

    PubMed  Google Scholar 

  34. Hagg S, Spigset O, Dahlqvist R. Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br J Clin Pharmacol 2001; 51: 169–73

    Article  PubMed  CAS  Google Scholar 

  35. Parkinson A, Mudra DR, Johnson C, et al. The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol 2004; 199: 193–209

    Article  PubMed  CAS  Google Scholar 

  36. Tamminga WJ, Wemer J, Oosterhuis B, et al. CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 1999; 55: 177–84

    Article  PubMed  CAS  Google Scholar 

  37. Tracy TS, Venkataramanan R, Glover DD, et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A Activity) during pregnancy. Am J Obstet Gynecol 2005; 192: 633–9

    Article  PubMed  CAS  Google Scholar 

  38. Anthony M, Berg MJ. Biologic and molecular mechanisms for sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics: part II. J Womens Health Gend Based Med 2002; 11: 617–29

    Article  PubMed  Google Scholar 

  39. Anthony M, Berg MJ. Biologic and molecular mechanisms for sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics: part I. J Womens Health Gend Based Med 2002; 11: 601–15

    Article  PubMed  Google Scholar 

  40. Kashuba AD, Nafziger AN, Kearns GL, et al. Quantification of intraindividual variability and the influence of menstrual cycle phase on CYP2D6 activity as measured by dextromethorphan phenotyping. Pharmacogenetics 1998; 8: 403–10

    Article  PubMed  CAS  Google Scholar 

  41. Kelly DL, Conley RR, Tamminga CA. Differential olanzapine plasma concentrations by sex in a fixed-dose study. Schizophr Res 1999; 40: 101–4

    Article  PubMed  CAS  Google Scholar 

  42. Rostami-Hodjegan A, Amin AM, Spencer EP, et al. Influence of dose, cigarette smoking, age, sex, and metabolic activity on plasma clozapine concentrations: a predictive model and nomograms to aid clozapine dose adjustment and to assess compliance in individual patients. J Clin Psychopharmacol 2004; 24: 70–8

    Article  PubMed  CAS  Google Scholar 

  43. Skogh E, Reis M, Dahl ML, et al. Therapeutic drug monitoring data on olanzapine and its N-demethyl metabolite in the naturalistic clinical setting. Ther Drug Monit 2002; 24: 518–26

    Article  PubMed  CAS  Google Scholar 

  44. Wong SL, Cao G, Mack RJ, et al. Pharmacokinetics of sertindole in healthy young and elderly male and female subjects. Clin Pharmacol Ther 1997; 62: 157–64

    Article  PubMed  CAS  Google Scholar 

  45. Perry PJ, Bever KA, Arndt S, et al. Relationship between patient variables and plasma clozapine concentrations: a dosing nomogram. Biol Psychiatry 1998; 44: 733–8

    Article  PubMed  CAS  Google Scholar 

  46. Callaghan JT, Bergstrom RF, Ptak LR, et al. Olanzapine: pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet 1999; 37: 177–93

    Article  PubMed  CAS  Google Scholar 

  47. Olanzapine prescribing information [online]. Available from URL: http://pi.lilly.com/us/zyprexa-pi.pdf [Accessed 2006 Jun 8]

  48. Hasselstrom J, Linnet K. Quetiapine serum concentrations in psychiatric patients: the influence of comedication. Ther Drug Monit 2004; 26: 486–91

    Article  PubMed  CAS  Google Scholar 

  49. Wilner KD, Demattos SB, Anziano RJ, et al. Ziprasidone and the activity of cytochrome P450 2D6 in healthy extensive metabolizers. Br J Clin Pharmacol 2000; 49Suppl. 1: 43S–7S

    PubMed  CAS  Google Scholar 

  50. Aichhorn W, Marksteiner J, Walch T, et al. Influence of age, gender, body weight and valproate comedication on quetiapine plasma concentrations. Int Clin Psychopharmacol 2006 Mar; 21(2): 81–5

    Article  PubMed  Google Scholar 

  51. Beierle I, Meibohm B, Derendorf H. Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther 1999; 37: 529–47

    PubMed  CAS  Google Scholar 

  52. Meibohm B, Beierle I, Derendorf H. How important are gender differences in pharmacokinetics? Clin Pharmacokinet 2002; 41: 329–42

    Article  PubMed  CAS  Google Scholar 

  53. Heinrich J, Director Health Care-Public Health Issues, US General Accounting Office. Drug safety: most drugs withdrawn in recent years had greater health risks for women. GAO-01-286R; drugs withdrawn from market. Letter to: Harkin T, OJ Snowe, US Senate and HA Waxman, House of Representatives. January 19, 2001 [online]. Available from URL: http://www.gao.gov/new.items/d01286r.pdf [Accessed 2006 May 18]

  54. Miller LJ. Sexuality, reproduction, and family planning in women with schizophrenia. Schizophr Bull 1997; 23: 623–35

    Article  PubMed  CAS  Google Scholar 

  55. Marder SR, Essock SM, Miller AL, et al. Physical health monitoring of patients with schizophrenia. Am J Psychiatry 2004; 161: 1334–49

    Article  PubMed  Google Scholar 

  56. Wang PS, Walker AM, Tsuang MT, et al. Dopamine antagonists and the development of breast cancer. Arch Gen Psychiatry 2002; 59: 1147–54

    Article  PubMed  CAS  Google Scholar 

  57. Oksbjerg Dalton S, Munk Laursen T, Mellemkjaer L, et al. Schizophrenia and the risk for breast cancer. Schizophr Res 2003; 62: 89–92

    Article  PubMed  Google Scholar 

  58. Kopecek M, Bares M, Svarc J, et al. Hyperprolactinemia after low dose of amisulpride. Neuro Endocrinol Lett 2004; 25: 419–22

    PubMed  CAS  Google Scholar 

  59. Haddad PM, Wieck A. Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 2004; 64: 2291–314

    Article  PubMed  CAS  Google Scholar 

  60. Volavka J, Czobor P, Cooper TB, et al. Prolactin levels in schizophrenia and schizoaffective disorder patients treated with clozapine, olanzapine, risperidone, or haloperidol. J Clin Psychiatry 2004; 65: 57–61

    Article  PubMed  CAS  Google Scholar 

  61. Compton MT, Miller AH. Antipsychotic-induced hyperprolactinemia and sexual dysfunction. Psychopharmacol Bull 2002; 36: 143–64

    PubMed  Google Scholar 

  62. Goodnick PJ, Rodriguez L, Santana O. Antipsychotics: impact on prolactin levels. Expert Opin Pharmacother 2002; 3: 1381–91

    Article  PubMed  CAS  Google Scholar 

  63. Hummer M, Huber J. Hyperprolactinaemia and antipsychotic therapy in schizophrenia. Curr Med Res Opin 2004; 20: 189–97

    Article  PubMed  CAS  Google Scholar 

  64. Petty RG. Prolactin and antipsychotic medications: mechanism of action. Schizophr Res 1999 Mar 1; 35Suppl. 1: S67–73

    Article  PubMed  Google Scholar 

  65. Marder SR, McQuade RD, Stock E, et al. Aripiprazole in the treatment of schizophrenia: safety and tolerability in short-term, placebo-controlled trials. Schizophr Res 2003; 61: 123–36

    Article  PubMed  Google Scholar 

  66. Conley RR. Risperidone side effects. J Clin Psychiatry 2000; 61Suppl. 8: 20–3

    PubMed  CAS  Google Scholar 

  67. Kleinberg DL, Davis JM, de Coster R, et al. Prolactin levels and adverse events in patients treated with risperidone. J Clin Psychopharmacol 1999; 19: 57–61

    Article  PubMed  CAS  Google Scholar 

  68. O’Keane V, Meaney AM. Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia? J Clin Psychopharmacol 2005; 25: 26–31

    Article  PubMed  CAS  Google Scholar 

  69. Meaney AM, Smith S, Howes OD, et al. Effects of long-term prolactin-raising antipsychotic medication on bone mineral density in patients with schizophrenia. Br J Psychiatry 2004; 184: 503–8

    Article  PubMed  CAS  Google Scholar 

  70. Hamner MB, Arana GW. Hyperprolactinaemia in antipsychotic-treated patients: guidelines for avoidance and management. CNS Drugs 1998; 10: 209–22

    Article  CAS  Google Scholar 

  71. Halbreich U, Rojansky N, Palter S, et al. Decreased bone mineral density in medicated psychiatric patients. Psychosom Med 1995; 57: 485–91

    PubMed  CAS  Google Scholar 

  72. Hummer M, Malik P, Gasser RW, et al. Osteoporosis in patients with schizophrenia. Am J Psychiatry 2005; 162: 162–7

    Article  PubMed  Google Scholar 

  73. Wirshing DA, Pierre JM, Marder SR, et al. Sexual side effects of novel antipsychotic medications. Schizophr Res 2002; 56: 25–30

    Article  PubMed  Google Scholar 

  74. Smith SM, O’Keane V, Murray R. Sexual dysfunction in patients taking conventional antipsychotic medication. Br J Psychiatry 2002; 181: 49–55

    Article  PubMed  CAS  Google Scholar 

  75. Aizenberg D, Modai I, Landa A, et al. Comparison of sexual dysfunction in male schizophrenic patients maintained on treatment with classical antipsychotics versus clozapine. J Clin Psychiatry 2001; 62: 541–4

    Article  PubMed  CAS  Google Scholar 

  76. DeBusk R, Drory Y, Goldstein I, et al. Management of sexual dysfunction in patients with cardiovascular disease: recommendations of the Princeton Consensus Panel. Am J Cardiol 2000; 86: 175–81

    Article  PubMed  CAS  Google Scholar 

  77. Huang ML, van Peer A, Woestenborghs R, et al. Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin Pharmacol Ther 1993; 54: 257–68

    Article  PubMed  CAS  Google Scholar 

  78. Tran PV, Hamilton SH, Kuntz AJ, et al. Double-blind comparison of olanzapine versus risperidone in the treatment of schizophrenia and other psychotic disorders. J Clin Psychopharmacol 1997; 17: 407–18

    Article  PubMed  CAS  Google Scholar 

  79. Kim KS, Pae CU, Chae JH, et al. Effects of olanzapine on prolactin levels of female patients with schizophrenia treated with risperidone. J Clin Psychiatry 2002; 63: 408–13

    Article  PubMed  CAS  Google Scholar 

  80. Knegtering R, Castelein S, Bous H, et al. A randomized open-label study of the impact of quetiapine versus risperidone on sexual functioning. J Clin Psychopharmacol 2004; 24: 56–61

    Article  PubMed  CAS  Google Scholar 

  81. Allison DB, Mentore JL, Heo M, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 1999; 156: 1686–96

    PubMed  CAS  Google Scholar 

  82. Umbricht DS, Wirshing WC, Wirshing DA, et al. Clinical predictors of response to clozapine treatment in ambulatory patients with schizophrenia. J Clin Psychiatry 2002; 63: 420–4

    Article  PubMed  Google Scholar 

  83. Wetterling T, Mussigbrodt HE. Weight gain: side effect of atypical neuroleptics? J Clin Psychopharmacol 1999; 19: 316–21

    Article  PubMed  CAS  Google Scholar 

  84. Perry PJ, Argo TR, Carnahan RM, et al. The association of weight gain and olanzapine plasma concentrations. J Clin Psychopharmacol 2005; 25: 250–4

    Article  PubMed  CAS  Google Scholar 

  85. Claus A, Bollen J, De Cuyper H, et al. Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double-blind comparative study. Acta Psychiatr Scand 1992; 85: 295–305

    Article  PubMed  CAS  Google Scholar 

  86. Casey DE, Zorn SH. The pharmacology of weight gain with antipsychotics. J Clin Psychiatry 2001; 62Suppl. 7: 4–10

    PubMed  CAS  Google Scholar 

  87. Goff DC, Posever T, Herz L, et al. An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol 1998; 18: 296–304

    Article  PubMed  CAS  Google Scholar 

  88. Tandon R. Safety and tolerability: how do newer generation “atypical” antipsychotics compare? Psychiatr Q 2002; 73: 297–311

    Article  PubMed  Google Scholar 

  89. Newcomer JW. Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 2005; 19Suppl. 1: 1–93

    PubMed  CAS  Google Scholar 

  90. Ebenbichler CF, Laimer M, Eder U, et al. Olanzapine induces insulin resistance: results from a prospective study. J Clin Psychiatry 2003; 64: 1436–9

    Article  PubMed  CAS  Google Scholar 

  91. Melkersson KI, Hulting AL, Brismar KE. Different influences of classical antipsychotics and clozapine on glucose-insulin homeostasis in patients with schizophrenia or related psychoses. J Clin Psychiatry 1999; 60: 783–91

    Article  PubMed  CAS  Google Scholar 

  92. Melkersson KI, Dahl ML. Relationship between levels of insulin or triglycerides and serum concentrations of the atypical antipsychotics clozapine and olanzapine in patients on treatment with therapeutic doses. Psychopharmacology (Berl) 2003; 170: 157–66

    Article  CAS  Google Scholar 

  93. Eder U, Mangweth B, Ebenbichler C, et al. Association of olanzapine-induced weight gain with an increase in body fat. Am J Psychiatry 2001; 158: 1719–22

    Article  PubMed  CAS  Google Scholar 

  94. Atmaca M, Kuloglu M, Tezcan E, et al. Serum leptin and triglyceride levels in patients on treatment with atypical antipsychotics. J Clin Psychiatry 2003; 64: 598–604

    Article  PubMed  CAS  Google Scholar 

  95. Atmaca M, Kuloglu M, Tezcan E, et al. Weight gain, serum leptin and triglyceride levels in patients with schizophrenia on antipsychotic treatment with quetiapine, olanzapine and haloperidol. Schizophr Res 2003; 60: 99–100

    Article  PubMed  Google Scholar 

  96. Bobes J, Rejas J, Garcia-Garcia M, et al. Weight gain in patients with schizophrenia treated with risperidone, olanzapine, quetiapine or haloperidol: results of the EIRE study. Schizophr Res 2003; 62: 77–88

    Article  PubMed  CAS  Google Scholar 

  97. Basson BR, Kinon BJ, Taylor CC, et al. Factors influencing acute weight change in patients with schizophrenia treated with olanzapine, haloperidol, or risperidone. J Clin Psychiatry 2001; 62: 231–8

    Article  PubMed  CAS  Google Scholar 

  98. McEvoy JP, Meyer JM, Goff DC, et al. Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr Res 2005; 80: 19–32

    Article  PubMed  Google Scholar 

  99. Ollendorf DA, Joyce AT, Rucker M. Rate of new-onset diabetes among patients treated with atypical or conventional antipsychotic medications for schizophrenia. MedGenMed 2004; 6(1): 5

    PubMed  Google Scholar 

  100. Citrome L, Jaffe A, Levine J, et al. Relationship between antipsychotic medication treatment and new cases of diabetes among psychiatric inpatients. Psychiatr Serv 2004; 55: 1006–13

    Article  PubMed  Google Scholar 

  101. Lamberti JS, Crilly JF, Maharaj K, et al. Prevalence of diabetes mellitus among outpatients with severe mental disorders receiving atypical antipsychotic drugs. J Clin Psychiatry 2004; 65: 702–6

    Article  PubMed  Google Scholar 

  102. Ostbye T, Curtis LH, Masselink LE, et al. Atypical antipsychotic drugs and diabetes mellitus in a large outpatient population: a retrospective cohort study. Pharmacoepidemiol Drug Saf 2005; 14: 407–15

    Article  PubMed  CAS  Google Scholar 

  103. Citrome LL. The increase in risk of diabetes mellitus from exposure to second-generation antipsychotic agents. Drugs Today (Barc) 2004; 40: 445–64

    Article  CAS  Google Scholar 

  104. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care 2004; 27: 596–601

    Google Scholar 

  105. Collins P, Stevenson JC, Mosca L. Spotlight on gender. Cardiovasc Res 2002; 53: 535–7

    Article  PubMed  CAS  Google Scholar 

  106. Haddad PM, Anderson IM. Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs 2002; 62: 1649–71

    Article  PubMed  CAS  Google Scholar 

  107. Kelly DL, Love RC. Ziprasidone and the QTc interval: pharmacokinetic and pharmacodynamic considerations. Psychopharmacol Bull 2001; 35: 66–79

    PubMed  CAS  Google Scholar 

  108. Drici MD, Clement N. Is gender a risk factor for adverse drug reactions? The example of drug-induced long QT syndrome. Drug Saf 2001; 24: 575–85

    Article  PubMed  CAS  Google Scholar 

  109. Bailey MS, Curtis AB. The effects of hormones on arrhythmias in women. Curr Womens Health Rep 2002; 2: 83–8

    PubMed  Google Scholar 

  110. Wolbrette DL. Risk of proarrhythmia with class III antiarrhythmic agents: sex-based differences and other issues. Am J Cardiol 2003; 91: 39D–44D

    Article  PubMed  CAS  Google Scholar 

  111. Drici MD, Burklow TR, Haridasse V, et al. Sex hormones prolong the QT interval and downregulate potassium channel expression in the rabbit heart. Circulation 1996; 94: 1471–4

    Article  PubMed  CAS  Google Scholar 

  112. Harrigan EP, Miceli JJ, Anziano R, et al. A randomized evaluation of the effects of six antipsychotic agents on QTc, in the absence and presence of metabolic inhibition. J Clin Psychopharmacol 2004; 24: 62–9

    Article  PubMed  CAS  Google Scholar 

  113. Roe CM, Odell KW, Henderson RR. Concomitant use of antipsychotics and drugs that may prolong the QT interval. J Clin Psychopharmacol 2003; 23: 197–200

    Article  PubMed  CAS  Google Scholar 

  114. Casey DE. Neuroleptic drug-induced extrapyramidal syndromes and tardive dyskinesia. Schizophr Res 1991; 4: 109–20

    Article  PubMed  CAS  Google Scholar 

  115. Kane JM. Extrapyramidal side effects are unacceptable. Eur Neuropsychopharmacol 2001; 11Suppl. 4: S397–403

    Article  PubMed  CAS  Google Scholar 

  116. Leucht S, Pitschel-Walz G, Abraham D, et al. Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo: a meta-analysis of randomized controlled trials. Schizophr Res 1999; 35: 51–68

    Article  PubMed  CAS  Google Scholar 

  117. Morgenstern H, Glazer WM. Identifying risk factors for tardive dyskinesia among long-term outpatients maintained with neuroleptic medications: results of the Yale Tardive Dyskinesia Study. Arch Gen Psychiatry 1993; 50: 723–33

    Article  PubMed  CAS  Google Scholar 

  118. Kapur S, Remington G, Zipursky RB, et al. The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a PET study. Life Sci 1995; 57: L103–7

    Article  Google Scholar 

  119. Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: a new hypothesis. Am J Psychiatry 2001; 158: 360–9

    Article  PubMed  CAS  Google Scholar 

  120. Seeman P, Kapur S. Clozapine occupies high levels of dopamine D2 receptors. Life Sci 1997; 60: L–16

    Article  Google Scholar 

  121. Kapur S, Zipursky R, Jones C, et al. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000; 157: 514–20

    Article  PubMed  CAS  Google Scholar 

  122. Yassa R, Jeste DV. Gender differences in tardive dyskinesia: a critical review of the literature. Schizophr Bull 1992; 18: 701–15

    PubMed  CAS  Google Scholar 

  123. Correll CU, Leucht S, Kane JM. Lower risk for tardive dyskinesia associated with second-generation antipsychotics: a systematic review of 1-year studies. Am J Psychiatry 2004; 161: 414–25

    Article  PubMed  Google Scholar 

  124. Gentile S. Clinical utilization of atypical antipsychotics in pregnancy and lactation. Ann Pharmacother 2004; 38: 1265–71

    Article  PubMed  CAS  Google Scholar 

  125. McKenna K, Koren G, Tetelbaum M, et al. Pregnancy outcome of women using atypical antipsychotic drugs: a prospective comparative study. J Clin Psychiatry 2005; 66: 444–9

    Article  PubMed  CAS  Google Scholar 

  126. Kirchheiner J, Berghofer A, Bolk-Weischedel D. Healthy outcome under olanzapine treatment in a pregnant woman. Pharmacopsychiatry 2000; 33: 78–80

    Article  PubMed  CAS  Google Scholar 

  127. Stoner SC, Sommi RW, Marken PA, et al. Clozapine use in two full-term pregnancies. J Clin Psychiatry 1997; 58: 364–5

    Article  PubMed  CAS  Google Scholar 

  128. Dickson RA, Hogg L. Pregnancy of a patient treated with clozapine. Psychiatr Serv 1998; 49: 1081–3

    PubMed  CAS  Google Scholar 

  129. Nguyen HN, Lalonde P. Clozapine and pregnancy [in French]. Encephale 2003; 29(2): 119–24

    PubMed  CAS  Google Scholar 

  130. Ernst CL, Goldberg JF. The reproductive safety profile of mood stabilizers, atypical antipsychotics, and broad-spectrum psychotropics. J Clin Psychiatry 2002; 63Suppl. 4: 42–55

    PubMed  CAS  Google Scholar 

  131. Croke S, Buist A, Hackett LP, et al. Olanzapine excretion in human breast milk: estimation of infant exposure. Int J Neuropsychopharmacol 2002; 5: 243–7

    Article  PubMed  CAS  Google Scholar 

  132. Gardiner SJ, Kristensen JH, Begg EJ, et al. Transfer of olanzapine into breast milk, calculation of infant drug dose, and effect on breast-fed infants. Am J Psychiatry 2003; 160: 1428–31

    Article  PubMed  Google Scholar 

  133. Aichhorn W, Stuppaeck C, Whitworth AB. Risperidone and breast-feeding. J Psychopharmacol 2005; 19: 211–3

    Article  PubMed  CAS  Google Scholar 

  134. Hill RC, McIvor RJ, Wojnar-Horton RE, et al. Risperidone distribution and excretion into human milk: case report and estimated infant exposure during breast-feeding. J Clin Psychopharmacol 2000; 20: 285–6

    Article  PubMed  CAS  Google Scholar 

  135. Ilett KF, Hackett LP, Kristensen JH, et al. Transfer of risperidone and 9-hydroxyrisperidone into human milk. Ann Pharmacother 2004; 38: 273–6

    Article  PubMed  Google Scholar 

  136. Lee A, Giesbrecht E, Dunn E, et al. Excretion of quetiapine in breast milk. Am J Psychiatry 2004; 161: 1715–6

    Article  PubMed  Google Scholar 

  137. Bennett JA, Keck PE. A target-dose finding study of clozapine in patients with schizophrenia. Ann Clin Psychiatry 1996; 8: 19–21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. None of the authors have any conflicts of interest directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Marksteiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aichhorn, W., Whitworth, A.B., Weiss, E.M. et al. Second-Generation Antipsychotics. Drug-Safety 29, 587–598 (2006). https://doi.org/10.2165/00002018-200629070-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200629070-00004

Keywords

Navigation