Skip to main content
Log in

Protease Inhibitor-Induced Diabetic Complications

Incidence, Management and Prevention

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Protease inhibitors (PIs) have become a crucial element in the treatment of patients infected with HIV. However, the widespread use of PI therapy has also been associated with a number of metabolic adverse effects, including fat redistribution and hyperglycaemia. The objective of this review is a discussion of the incidence, pathophysiology, management and prevention of PI-associated hyperglycaemia. Initial case reports have been followed by large cross-sectional and cohort studies, which demonstrate that the incidence of PI-induced impaired glucose tolerance, as well as frank diabetes mellitus, is significant and demands attention. Investigations into the pathophysiology behind PI-associated hyperglycaemia have identified an underlying problem of insulin resistance that is presumably caused by both direct PI-induced mechanisms and lipotoxicity. Given this, clinical trials have explored the use of various classes of oral hypoglycaemic agents in the management of PI-induced diabetic complications, and the use of insulin therapy must be considered as well. Newer PI agents are also under development, with the hope of reducing metabolic adverse effects. In the meantime, prevention, in the form of dietary modification, regular physical activity and periodic screening for impaired glucose tolerance, must receive heightened attention in the care plan of patients receiving long-term PI therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Visnegarwala F, Krause KL, Musher DM. Severe diabetes associated with protease inhibitor therapy. Ann Intern Med 1997 Nov; 127(10): 947

    PubMed  CAS  Google Scholar 

  2. Lee EC, Walmsley S, Fantus IG, et al. New-onset diabetes mellitus associated with protease inhibitor therapy in an HIV-positive patient: case report and review. CMAJ 1999; 161: 161–4

    PubMed  CAS  Google Scholar 

  3. Kan VL, Nylen ES. Diabetic ketoacidosis in an HIV patient: a new mechanism of HIV protease inhibitor-induced glucose intolerance. AIDS 1999; 13: 1987–9

    Article  PubMed  CAS  Google Scholar 

  4. Hughes C, Taylor G. Metformin in an HIV-infected patient with protease inhibitor-induced diabetic ketoacidosis. Ann Pharmacother 2001; 35: 877–80

    Article  PubMed  CAS  Google Scholar 

  5. Eastone JA, Decker C. New-onset diabetes mellitus associated with use of protease inhibitor [letter]. Ann Intern Med 1997; 127: 948

    PubMed  CAS  Google Scholar 

  6. Dube MP, Johnson DL, Currier JS, et al. Protease inhibitor-associated hyperglycaemia. Lancet 1997 Sep 6; 350: 713–4

    Article  PubMed  CAS  Google Scholar 

  7. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12: F51–8

    Article  PubMed  CAS  Google Scholar 

  8. Carr A, Samaras K, Thorisdottir A, et al. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 1999 Jun 19; 353: 2093–9

    Article  PubMed  CAS  Google Scholar 

  9. Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS 1999; 13: F63–70

    Article  PubMed  CAS  Google Scholar 

  10. Paparizos VA, Kyriakis KP, Botsis C, et al. Protease inhibitor therapy-associated lipodystrophy, hypertriglyceridaemia and diabetes mellitus. AIDS 2000; 14: 903–5

    Article  PubMed  CAS  Google Scholar 

  11. Dever L, Oruwari PA, Figueroa WE, et al. Hyperglycemia associated with protease inhibitors in an urban HIV-infected minority patient population. Ann Pharmacother 2000; 34: 580–4

    Article  PubMed  CAS  Google Scholar 

  12. Palma-Aguirre A, Halabe-Cherem J, Nellen-Hummel H, et al. Protease inhibitor-associated hyperglycemia in Mexican patients with HIV infection. Arch Med Res 2000; 31: 81–4

    Article  PubMed  CAS  Google Scholar 

  13. Tsiodras S, Mantzoros C, Hammer S, et al. Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy: a 5-year cohort study. Arch Intern Med 2000; 160: 2050–6

    Article  PubMed  CAS  Google Scholar 

  14. Saves M, Raffi F, Capeau J, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis 2002; 34: 1396–405

    Article  PubMed  CAS  Google Scholar 

  15. Murray M, Lumpkin MD. FDA Public Health Advisory: reports of diabetes and hyperglycemia in patients receiving protease inhibitors for the treatment of human immunodeficiency virus (HIV). Bethesda (MD): Food and Drug Administration, 1997

    Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and B-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412–9

    Article  PubMed  CAS  Google Scholar 

  17. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus on behalf of the American Diabetes Association. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1998 Jan; 21 (1 Suppl.): 5S–19S

    Google Scholar 

  18. Welborn TA, Reid CM, Marriott G. Australian Diabetes Screening Study: impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Metabolism 1997; 46(1 Suppl.): 35–9

    Article  PubMed  CAS  Google Scholar 

  19. Alberti KGMM, Zimmet PZ, for the WHO Consultation. Definition, diagnosis and classification of diabetes mellitus and its complications: Pt 1. diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539–53

    Article  PubMed  CAS  Google Scholar 

  20. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus on behalf of the American Diabetes Association. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1997 Jul; 20 (7): 1183–97

  21. Dube MP. Disorders of glucose metabolism in patients infected with human immunodeficiency virus. Clin Infect Dis 2000; 31: 1467–75

    Article  PubMed  CAS  Google Scholar 

  22. Saves M, Chene G, Dellamonica P, et al. Incidence, prevalence, and pathogenic correlates of insulin resistance and lipodystrophy syndrome [abstract 682-T]. 9th Conference on Retroviruses and Opportunistic Infections, 2002 [online]. Available from URL: http://www.retroconference.org/2002/ [Accessed 2003 Jul 12]

    Google Scholar 

  23. Smeaton L, DeGruttola V, Robbins G, et al. ACTG (AIDS Clinical Trials Group) 384: a strategy trial comparing consecutive treatments for HIV-1. Control Clin Trials 2001; 22: 142–59

    Article  PubMed  CAS  Google Scholar 

  24. Noor AM, Seneviratne T, Aweeka FT, et al. Indinavir acutely inhibits insulin-stimulated glucose disposal in humans: a randomized, placebo-controlled study. AIDS 2002; 16: F1–8

    Article  PubMed  Google Scholar 

  25. Mulligan K, Grunfeld C, Tai VW, et al. Hyperlipidemia and insulin resistance are induced by protease inhibitors independent of changes in body composition in patients with HIV Infection. J Acquir Immune Defic Syndr 2000; 23: 35–43

    PubMed  CAS  Google Scholar 

  26. Besson C, Jubault V, Viard JP, et al. Ketoacidosis associated with protease inhibitor therapy. AIDS 1998; 12: 1399–400

    Article  PubMed  CAS  Google Scholar 

  27. Mellor-Pita S, Yebra-Bango M, Alfaro-Martinez J, et al. Acanthosis nigricans: a new manifestation of insulin resistance in patients receiving treatment with protease inhibitors. Clin Infect Dis 2002; 34: 716–7

    Article  PubMed  Google Scholar 

  28. Hadigan C, Miller K, Corcoran C, et al. Fasting hyperinsulinemia and changes in regional body composition in human immunodeficiency virus-infected women. J Clin Endocrinol Metab 1999; 84: 1932–7

    Article  PubMed  CAS  Google Scholar 

  29. Galli M, Cozzi-Lepri A, Ridolfo A, et al. Incidence of adipose tissue alterations in first-line antiretroviral therapy: the LipoICoNa Study. Arch Intern Med 2002; 162: 2621–8

    Article  PubMed  Google Scholar 

  30. Hadigan C, Corcoran C, Stanley T, et al. Fasting hyperinsulinemia in human immunodeficiency virus-infected men: relationship to body composition, gonadal function, and protease inhibitor use. J Clin Endocrinol Metab 2000; 85: 35–41

    Article  PubMed  CAS  Google Scholar 

  31. Hadigan C, Corcoran C, Piecuch S, et al. Hyperandrogenemia in human immunodeficiency virus-infected women with the lipodystrophy syndrome. J Clin Endocrinol Metab 2000; 85: 3544–50

    Article  PubMed  CAS  Google Scholar 

  32. Yarasheski K, Tebas P, Sigmund C, et al. Insulin resistance in HIV protease inhibitor-associated diabetes. J Acquir Immune Defic Syndr 1999; 21: 209–16

    Article  PubMed  CAS  Google Scholar 

  33. Murata H, Hruz PW, Mueckler M. The mechanism of insulin resistance caused by HIV protease inhibitor therapy. J Biol Chem 2000; 275: 20251–4

    Article  PubMed  CAS  Google Scholar 

  34. Hruz PW, Murata H, Qui H, et al. Indinavir induces acute and reversible peripheral insulin resistance in rats. Diabetes 2002; 51: 937–42

    Article  PubMed  CAS  Google Scholar 

  35. Schambelan M, Benson C, Carr A, et al. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an international AIDS society-USA panel. J Acquir Immune Defic Syndr 2002; 31: 257–75

    Article  PubMed  Google Scholar 

  36. Leow M, Addy C, Mantzoros C. Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies. J Clin Endocrinol Metab 2003; 88: 1961–76

    Article  PubMed  CAS  Google Scholar 

  37. Woerle H, Mariuz P, Meyer C, et al. Mechanisms for deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes 2003; 52: 918–25

    Article  PubMed  CAS  Google Scholar 

  38. Gan SK, Samaras K, Thompson C, et al. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes 2002; 51: 3163–9

    Article  PubMed  CAS  Google Scholar 

  39. Luzi L, Perseghin G, Tambussi G, et al. Intramyocellular lipid accumulation and reduced whole body lipid oxidation in HIV lipodystrophy. Am J Physiol Endocrinol Metab 2003; 284: E274–80

    PubMed  CAS  Google Scholar 

  40. Yarasheski K, Reeds D, Schulte J, et al. Impaired insulin sensitivity in HIV infected individuals is associated with higher hepatic lipid content and visceral adiposity [abstract 757]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 [online]. Available from URL: http://www.retroconference.org/2003/ [Accessed 2003 Jul 12]

  41. Saint-Marc T, Touraine JL. Effects of metformin on insulin resistance and central adiposity in patients receiving effective protease inhibitor therapy. AIDS 1999; 13: 1000–2

    Article  PubMed  CAS  Google Scholar 

  42. Hadigan C, Corcoran C, Basgoz N, et al. Metformin in the treatment of HIV lipodystrophy syndrome: a randomized controlled trial. JAMA 2000; 284: 472–7

    Article  PubMed  CAS  Google Scholar 

  43. Hadigan C, Meigs JB, Rabe J, et al. Increased PAI-1 and tPA antigen levels are reduced with metformin therapy in HIV-infected patients with fat redistribution and insulin resistance. J Clin Endocrinol Metab 2001; 86: 939–43

    Article  PubMed  CAS  Google Scholar 

  44. The panel on Clinical Practices for Treatment of HIV Infection convened by the Department of Health and Human Services (DHHS) and the Henry J. Kaiser Family Foundation. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents [online]. Available from URL: http://www.aidsinfo.nih.gov/guidelines/ [Accessed 2002 Feb 4]

  45. Moyle G, Datta D, Mandalia S, et al. Hyperlactataemia and lactic acidosis during antiretroviral therapy: relevance, reproducibility and possible risk factors. AIDS 2002; 16: 1341–9

    Article  PubMed  Google Scholar 

  46. DeFronzo R. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999; 131: 281–303

    PubMed  CAS  Google Scholar 

  47. John M, Moore C, James I, et al. Chronic hyperlactatemia in HIV-infected patients taking antiretroviral therapy. AIDS 2001; 15: 717–23

    Article  PubMed  CAS  Google Scholar 

  48. Luna B, Feinglos MN. Drug-induced hyperglycemia. JAMA 2001; 286: 1945–8

    Article  PubMed  CAS  Google Scholar 

  49. Walli R, Michl GM, Muhlbayer D, et al. Effects of troglitazone on insulin sensitivity in HIV-infected patients with protease inhibitor-associated diabetes mellitus. Res Exp Med (Berl) 2000; 199: 253–62

    Article  CAS  Google Scholar 

  50. A twelve-week evaluation of rosiglitazone in the treatment of HIV-associated hyperlipidemia [online]. Available from URL: http://www.ClinicalTrials.gov [Accessed 2003 Feb 27]

  51. Sutinen J, Hakkinen AM, Westerbacka J, et al. Rosiglitazone in the treatment of HAART associated lipodystrophy (HAL): a randomized, double-blind, placebo-controlled study [abstract LB13]. 9th Conference on Retroviruses and Opportunistic Infections; 2002 [online]. Available from URL: http://www.retroconference.org/2002/ [Accessed 2003 Jul 12]

  52. Sutinen J, Hakkinen AM, Westerbacka J. Rosiglitazone in the treatment of HAART-associated lipodystrophy: a randomized double-blind placebo-controlled study. Antivir Ther 2003; 8: 199–207

    PubMed  CAS  Google Scholar 

  53. Gelato M, Mynarcik D, Quick J, et al. Improved insulin sensitivity and body fat distribution in HIV-infected patients treated with rosiglitazone: a pilot study. J Acquir Immune Defic Syndr 2002; 31: 163–70

    Article  PubMed  CAS  Google Scholar 

  54. Hadigan C, Yawetz S, Thomas A, et al. Metabolic effects of rosiglitazone in HIV lipodystrophy. Ann Intern Med 2004; 140: 786–94

    PubMed  CAS  Google Scholar 

  55. Carr A, Workman C, Carey D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet 2004; 363: 429–38

    Article  PubMed  CAS  Google Scholar 

  56. Adult AIDS Clinical Trials Group. AACTG recommendations for metabolic problems: guide covers insulin resistance and diabetes. AIDS Alert 2003 Jan; 18 (1): 6

    Google Scholar 

  57. Botella JI, Valero MA, Munoz V, et al. Complete resolution of protease inhibitor induced diabetes mellitus. Clin Endocrinol 2000; 52: 241–3

    Article  CAS  Google Scholar 

  58. Martinez E, Coget I, Lozano L, et al. Reversion of metabolic abnormalities after switching from HIV-1 protease inhibitors to nevirapine. AIDS 1999; 13: 805–10

    Article  PubMed  CAS  Google Scholar 

  59. Duncan MH, Singh BM, Wise PH, et al. A simple measure of insulin resistance. Lancet 1995; 346: 120–1

    Article  PubMed  CAS  Google Scholar 

  60. Martinez E, Arnaiz J, Podzamczer D, et al. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. N Engl J Med 2003; 349: 1036–46

    Article  PubMed  CAS  Google Scholar 

  61. Moyle G, Baldwin C, Mandalia S, et al. Changes in metabolic parameters and body shape after replacement of protease inhibitor with efavirenz in virologically controlled HIV-1 positive persons: single-arm observational cohort. J Acquir Immune Defic Syndr 2001; 28: 399–401

    PubMed  CAS  Google Scholar 

  62. Domingo P, Matias-Guiu X, Pujol RM, et al. Switching to nevirapine decreases insulin levels but does not improve subcutaneous adipocyte apoptosis in patients with highly active antiretroviral therapy-associated lipodystrophy. J Infect Dis 2001; 184: 1197–201

    Article  PubMed  CAS  Google Scholar 

  63. Wanke C, Falutz J, Shevitz A, et al. Clinical evaluation and management of metabolic and morphologic abnormalities associated with human immunodeficiency virus. Clin Infect Dis 2002; 34: 248–59

    Article  PubMed  Google Scholar 

  64. Moyle G. Overcoming obstacles to the success of protease inhibitors in highly active antiretroviral therapy regimens. AIDS Patient Care and STDs 2002; 16(12): 585–97

    Article  PubMed  Google Scholar 

  65. Dube MP, Qian D, Edmondson-Melancon H, et al. Prospective, intensive study of metabolic changes associated with 48 weeks of amprenavir-based antiretroviral therapy. Clin Infect Dis 2002; 35: 475–81

    Article  PubMed  CAS  Google Scholar 

  66. Orrick JJ, Steinhart CR. Atazanavir. Ann Pharmacother 2004; 38(10): 1664–74

    Article  PubMed  CAS  Google Scholar 

  67. Nystrom T, Bratt G, Sjoholm A. Bezafibrate-induced improvement in glucose uptake and endothelial function in protease inhibitor-associated insulin resistance. J Intern Med 2002; 252: 570–4

    Article  PubMed  CAS  Google Scholar 

  68. Joint Workgroup of the ADA and NIDDKD. The prevention or delay of type 2 diabetes: ADA and NIDDKD Position Statement. Diabetes Care 2002; 24: 742–749

    Google Scholar 

  69. Friis-Moller N, Weber R, Reiss P, et al. Cardiovascular disease risk factors in HIV patients: association with antiretroviral therapy: results from the DAD study. AIDS 2003; 17: 1179–93

    Article  PubMed  Google Scholar 

  70. Hadigan C, Shafali J, Anderson E, et al. Modifiable dietary habits and their relation to metabolic abnormalities in men and women with human inmunodeficiency virus infection and fat redistribution. Clin Infect Dis 2001; 33: 710–7

    Article  PubMed  CAS  Google Scholar 

  71. van Leeuwen R, Katlama C, Murphy R, et al. A randomized trial to study first-line combination therapy with or without a protease inhibitor in HIV-1 infected patients. AIDS 2003; 17: 987–99

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lillian F. Lien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lien, L.F., Feinglos, M.N. Protease Inhibitor-Induced Diabetic Complications. Drug-Safety 28, 209–226 (2005). https://doi.org/10.2165/00002018-200528030-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200528030-00003

Keywords

Navigation