Skip to main content
Log in

Drug-Induced Glaucomas

Mechanism and Management

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Glaucoma comprises a heterogeneous group of diseases that have in common a characteristic optic neuropathy and visual field defects, for which elevated intraocular pressure is the major risk factor. The level of intraocular pressure within the eye depends on the steady state of formation and drainage of the clear watery fluid, called the aqueous humour, in the anterior chamber of the eye. An obstruction in the circulatory pathway of aqueous humour causes an elevation in intraocular pressure. Because intraocular pressure is the most modifiable parameter, therapeutic measures (medical and surgical) are aimed at reducing the pressure to protect against optic nerve damage. Glaucomatous optic neuropathy results from degeneration of the axonal nerve fibres in the optic nerve and death of their cell bodies, the retinal ganglion cells. Clinical examination of the optic nerve head or disc and the peripapillary nerve fibre layer of the retina reveals specific changes, and the resulting visual field defects can be documented by perimetry.

Glaucoma can be classified into four main groups: primary open-angle glaucoma; angle-closure glaucoma; secondary glaucoma; and developmental glaucoma. Drug-induced glaucoma should be considered as a form of secondary glaucoma because it is brought about by specific systemic or topical medications. Although there is a high prevalence of glaucoma worldwide, the incidence of drug-induced glaucoma is uncertain.

Drugs that cause or exacerbate open-angle glaucoma are mostly glucocorticoids. Several classes of drugs, including adrenergic agonists, cholinergics, anticholinergics, sulpha-based drugs, selective serotonin reuptake inhibitors, tricyclic and tetracyclic antidepressants, anticoagulants and histamine H1 and H2 receptor antagonists, have been reported to induce or precipitate acute angle-closure glaucoma, especially in individuals predisposed with narrow angles of the anterior chamber. In some instances, bilateral involvement and even blindness have occurred. In this article, the mechanism and management of drug-induced glaucomatous disease of the eye are emphasised. Although the product package insert may mention glaucoma as a contraindication or as an adverse effect, the type of glaucoma is usually not specified. Clinicians should be mindful of the possibility of drug-induced glaucoma, whether or not it is listed as a contraindication and, if in doubt, consult an ophthalmologist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Table IV
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Physicians Desk Reference 56th ed. Medical Economics Company, Inc., Montvale, New Jersey, USA, 2002

  2. Fraunfelder FT, Fraunfelder FW. Drug-induced ocular side effects. Boston (MA): Butterworth-Heinemann, 2001

    Google Scholar 

  3. Duke-Elder S, Jay B. Introduction to glaucoma and hypotony. In: Duke-Elder S, editor. System of ophthalmology, vol. XI. St Louis (MO): Mosby, 1969: 337

    Google Scholar 

  4. American Academy of Ophthalmology. Basic and clinical science course: section 10, glaucoma 2000–2001. San Francisco (CA): The Foundation of the American Academy of Ophthalmology, 2000

  5. Report of the Glaucoma Panel. Vision research; a national plan 1999–2003 (a report of the National Advisory Council 2001 May). Available from URL: http://www.nei.nih.gov/ [Accessed 2002 Nov 15]

  6. Young P. Glaucoma and neurodegeneration: Research to Prevent Blindness Inc., USA [online]. Available from URL: http://www.rpbusa.org/ [Accessed 2002 Nov 15]

  7. Wolfs RCW, Borger PH, Ramrattan RS, et al. Changing views on open-angle glaucoma: definitions and prevalences: the Rotterdam Study. Invest Ophthalmol Vis Sci 2000; 41(11): 3309–21

    PubMed  CAS  Google Scholar 

  8. Rodriguez J, Sanchez R, Munoz B, et al. Causes of blindness and visual impairment in a population-based sample of US Hispanics. Ophthalmology 2002; 109: 737–43

    Article  PubMed  Google Scholar 

  9. Coleman AL. Glaucoma. Lancet 1999 Nov 20; 345(9192): 1803–10

    Article  Google Scholar 

  10. Thylefors B, Négrel A-D. The global impact of glaucoma. Bull World Health Organ 1994; 72(3): 323–6

    PubMed  CAS  Google Scholar 

  11. Quigley HA. Number of people with glaucoma worldwide. Br J Ophthalmol 1996 May; 80(5): 389–93

    Article  PubMed  CAS  Google Scholar 

  12. Quigley HA. Medical progress: open-angle glaucoma. N Engl J Med 1993 Apr; 328(15): 1097–106

    Article  PubMed  CAS  Google Scholar 

  13. Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. Arch Ophthalmol 1995 Feb; 113(2): 216–21

    Article  PubMed  CAS  Google Scholar 

  14. Tielsch JM. The epidemiology and control of open angle glaucoma: a population-based perspective. Annu Rev Public Health 1996; 17: 121–36

    Article  PubMed  CAS  Google Scholar 

  15. Salmon JF. Predisposing factors for chronic angle-closure glaucoma. Prog Retin Eye Res 1999 Jan; 18(1): 121–32

    Article  PubMed  CAS  Google Scholar 

  16. Patel KH, Javitt JC, Tielsch JM, et al. Incidence of angle-closure glaucoma after pharmacologic mydriasis. Am J Opthalmol 1996; 120(6): 709–17

    Google Scholar 

  17. Tripathi RC, Tripathi BJ. Functional anatomy of the anterior chamber angle. In: Tasman W, Jaeger EA, editors. Duane’s biomedical foundations of ophthalmology. Vol.1. Philadelphia (PA): Lippincott, 1982: 1–88

    Google Scholar 

  18. Zimmerman TJ, Kooner KS, Sharir M, et al., editors. Textbook of ocular pharmacology. Philadelphia (PA): Lippincott-Raven, 1997

    Google Scholar 

  19. Bron AJ, Tripathi RC, Tripathi BJ. Wolff’s anatomy of the eye and orbit. London (UK): Chapman and Hall, 1997

    Google Scholar 

  20. Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol 1999 Jan-Feb; 43(4): 293–320

    Article  PubMed  CAS  Google Scholar 

  21. Ritch R, Shields MB, Krupin T, editors. The glaucomas. St Louis (MO): Mosby, 1996

    Google Scholar 

  22. Shields MB. Textbook of glaucoma. Philadelphia (PA): Lippincott Williams & Wilkins, 1997

    Google Scholar 

  23. Stone EM, Fingert JH, Alward WLM, et al. Identification of a gene that causes primary open angle glaucoma. Science 1997; 275(5300): 668–70

    Article  PubMed  CAS  Google Scholar 

  24. Alward WL, Kwon YH, Khanna CL, et al. Variations in the myocilin gene in patients with open-angle glaucoma. Arch Ophthalmol 2002 Sep; 120(9): 1189–97

    Article  PubMed  CAS  Google Scholar 

  25. Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science 2002 Feb 8; 295(5557): 1077–9

    Article  PubMed  CAS  Google Scholar 

  26. Tripathi RC, Parapuram SK, Tripathi BJ, et al. Corticosteroids and glaucoma risk. Drugs Aging 1999 Dec; 15(6): 439–50

    Article  PubMed  CAS  Google Scholar 

  27. Tripathi RC, Kirschner BS, Kipp M, et al. Corticosteroid treatment for inflammatory bowel disease in pediatric patients increases intraocular pressure. Gastroenterology 1992; 102(6): 1957–61

    PubMed  CAS  Google Scholar 

  28. Tripathi RC, Kipp MA, Tripathi BJ, et al. Ocular toxicity of prednisone in pediatric patients with inflammatory bowel disease. Lens Eye Toxic Res 1992; 9(3-4): 469–82

    PubMed  CAS  Google Scholar 

  29. Kwok AK, Lam DS, Ng JS, et al. Ocular-hypertensive response to topical steroids in children. Ophthalmology 1997 Dec; 104(12): 2112–6

    PubMed  CAS  Google Scholar 

  30. Ng JSK, Fan DSP, Young AL, et al. Ocular hypertensive response to topical dexamethasone in children. Ophthalmology 2000 Nov; 107(11): 2097–100

    Article  PubMed  CAS  Google Scholar 

  31. Clark AF, Wilson K, de Kater AW, et al. Dexamethasone-induced ocular hypertension in perfusion-cultured human eyes. Invest Ophthalmol Vis Sci 1995; 36(2): 478–89

    PubMed  CAS  Google Scholar 

  32. Francois J, Victoria-Troncoso V. Corticosteroid glaucoma. Ophthalmologica 1977; 174(4): 195–209

    Article  PubMed  CAS  Google Scholar 

  33. Putney LK, Brandt JD, O’Donnell ME. Effects of dexamethasone on sodium-potassium-chloride cotransport in trabecular meshwork cells. Invest Ophthalmol Vis Sci 1997; 38(6): 1229–40

    PubMed  CAS  Google Scholar 

  34. Yun AJ, Murphy CG, Polansky JR, et al. Proteins secreted by human trabecular cells: glucocorticoid and other effects. Invest Ophthalmol Vis Sci 1989; 30(9): 2012–22

    PubMed  CAS  Google Scholar 

  35. Steely HT, Browder SL, Julian MB, et al. The effects of dexamethasone on fibronectin expression in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci 1992; 33(7): 2242–50

    PubMed  CAS  Google Scholar 

  36. Dickerson Jr JE, Steely HT, English-Wright SL, et al. The effect of dexamethasone in integrin and laminin expression in cultured human trabecular meshwork cells. Exp Eye Res 1998; 66(6): 731–8

    Article  PubMed  CAS  Google Scholar 

  37. Snyder RW, Stamer WD, Kramer TR, et al. Corticosteroid treatment and trabecular meshwork proteases in cell and organ culture supernatants. Exp Eye Res 1993; 57(4): 461–8

    Article  PubMed  CAS  Google Scholar 

  38. Samples JR, Alexander JP, Acott TS. Regulation of the levels of human trabecular matrix metalloproteinases and inhibitor by interleukin-1 and dexamethasone. Invest Ophthalmol Vis Sci 1993; 34(12): 3386–95

    PubMed  CAS  Google Scholar 

  39. Clark AF, Wilson K, McCartney MD, et al. Glucocorticoid-induced formation of cross-linked actin networks in cultured human trabecular meshwork cells. Invest Ophthalmol Vis Sci 1994; 35(1): 281–94

    PubMed  CAS  Google Scholar 

  40. Wilson K, McCartney MD, Miggins ST, et al. Dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells. Curr Eye Res 1993; 12(9): 783–93

    Article  PubMed  CAS  Google Scholar 

  41. Clark AF, Lane D, Wilson K, et al. Inhibition of dexamethasone-induced cytoskeletal changes in cultured human trabecular meshwork cells by tetrahydracortisol. Invest Ophthalmol Vis Sci 1996; 37(5): 805–13

    PubMed  CAS  Google Scholar 

  42. Tripathi BJ, Millard CB, Tripathi RC. Corticosteroids induce a sialated glycoprotein (cort-GP) in trabecular cells in vitro. Exp Eye Res 1990; 51(6): 735–7

    Article  PubMed  CAS  Google Scholar 

  43. Polanksy JR, Fauss DJ, Chen P, et al. Cellular pharmacology and molecular biology of the trabecular meshwork inducible glucocorticoid response gene product. Ophthalmologica 1997; 221(3): 126–39

    Google Scholar 

  44. Nguyen TD, Chen P, Huang WD, et al. Gene structure and properties of TIGR, an olfactomedin-related glycoprotein cloned from glucocorticoid-induced trabecular meshwork cells. J Biol Chem 1998; 273(11): 6341–50

    Article  PubMed  CAS  Google Scholar 

  45. Tripathi BJ, Tripathi RC, Swift HH. Hydrocortisone-induced DNA endoreplication in human trabecular cells in vitro. Exp Eye Res 1989; 49(2): 259–70

    Article  PubMed  CAS  Google Scholar 

  46. Laurell C-G, Zetterstrom C. Effects of dexamethasone, diclofenac, or placebo on inflammatory response after cataract surgery. Br J Ophthalmol 2002 Dec; 86(12): 1380–4

    Article  PubMed  Google Scholar 

  47. Kulkarni PS. Steroids in ocular therapy. In: Zimmerman TJ, editor. Textbook of ocular pharmacology. Philadelphia (PA): Lippincott-Raven, 1997: 61

    Google Scholar 

  48. Howes JF. Loteprednol etabonate: a review of ophthalmic clinical studies. Pharmazie 2000; 55(3): 178–83

    PubMed  CAS  Google Scholar 

  49. Rowen S. Preoperative and postoperative medications used for cataract surgery. Curr Opin Ophthalmol 1999; 10(1): 29–35

    Article  PubMed  CAS  Google Scholar 

  50. Fabre-Guillevin E, Tchen N, Anibali-Charpiat, et al. Taxane-induced glaucoma. Lancet 1999 Oct; 354(9185): 1181–2

    Article  PubMed  CAS  Google Scholar 

  51. De Giorgi U, Acciarri R, Fiorentini G, et al. Glaucoma and paclitaxel [letter]. Lancet 2000 Jan; 355(9199): 231

    Article  PubMed  Google Scholar 

  52. del Pilar Bernal M, Loftfield K, Nussdorf, et al. Taxane-induced glaucoma [letter]. Lancet 2000 Feb; 355(9203): 577

    Article  PubMed  Google Scholar 

  53. American Academy of Ophthalmology. Basic and clinical science course: section 2, fundamentals and principles of ophthalmology 2001–2002. San Francisco (CA): the Foundation of the American Academy of Ophthalmology, 2001

  54. Rho DS. Acute angle-closure glaucoma after albuterol nebulizer treatment. Am J Ophthalmol 2000 Jul; 130(1): 123–4

    Article  PubMed  CAS  Google Scholar 

  55. Vorwerk CK, Simon P, Goria M, et al. Pilocarpine toxicity in retinal ganglion cells. Invest Ophthalmol Vis Sci 1999; 40(3): 813–6

    PubMed  CAS  Google Scholar 

  56. Schwartz H, Apt L. Mydriatic effect of anticholinergic drugs used during reversal of non-depolarising muscle relaxants. Am J Ophthalmol 1979 Sep; 88(3 Pt 2): 609–12

    PubMed  CAS  Google Scholar 

  57. Fazio DT, Bateman JB, Christensen RE. Acute angle-closure glaucoma associated with surgical anesthesia. Arch Ophthalmol 1985 Mar; 103(3): 360–2

    Article  PubMed  CAS  Google Scholar 

  58. Ates H, Kayikccioglu O, Andac K. Bilateral angle closure glaucoma following general anesthesia. Int Ophthalmol 2001; 23: 129–30

    Article  Google Scholar 

  59. Shah P, Dhurjon L, Metcalfe T, et al. Acute angle closure glaucoma associated with nebulised ipratropium bromide and salbutamol. BMJ 1992 Jan; 304(6818): 40–1

    Article  PubMed  CAS  Google Scholar 

  60. Hall SK. Acute angle-closure glaucoma as a complication of combined beta-agonist and ipratropium bromide therapy in the emergency department. Ann Emerg Med 1994 Apr; 23(4): 884–7

    Article  PubMed  CAS  Google Scholar 

  61. Fan JT, Johnson DH, Burk RR. Transient myopia, angle-closure glaucoma, and choroidal detachment after oral acetazolamide. Am J Ophthalmol 1993 Jun; 115(6): 813–4

    PubMed  CAS  Google Scholar 

  62. Geanon JD, Perkins TW. Bilateral acute angle-closure glaucoma associated with drug sensitivity to hydrochlorothiazide. Arch Ophthalmol 1995 Oct; 113(10): 1231–2

    Article  PubMed  CAS  Google Scholar 

  63. Grinbaum A, Ashkenazi I, Gutman I, et al. Suggested mechanism for acute transient myopia after sulfonamide treatment. Ann Ophthalmol 1993 Jun; 25(6): 224–6

    PubMed  CAS  Google Scholar 

  64. Postal EA, Assalian A, Epstein DL. Drug-induced transient myopia and angle-closure glaucoma associated with supraciliary choroidal effusion. Am J Ophthalmol 1996 Jul; 122(1): 110–2

    Google Scholar 

  65. Banta JT, Hoffman K, Budenz DL, et al. Presumed topiramate bilateral acute angle-closure glaucoma. Am J Ophthalmol 2001 Jul; 132(1): 112–4

    Article  PubMed  CAS  Google Scholar 

  66. Rhee DJ, Goldberg MJ, Parrish RK. Bilateral angle-closure glaucoma and ciliary body swelling from topiramate. Arch Ophthalmol 2001; 119(11): 1721–3

    PubMed  CAS  Google Scholar 

  67. Hulihan J. Important drug warning [online]. Available from URL: http://www.fda.gov/medwatch/safety/2001 [Accessed 2002 Nov 15]

  68. Fraunfelder FW, Fraunfelder FT, Keates EU. Topiramate associated acute, bilateral, secondary angle-closure glaucoma. Ophthalmology 2003. In press

    Google Scholar 

  69. Krieg PH, Schipper I. Drug-induced ciliary body oedema: a new theory. Eye 1996; 10(Pt 1): 121–6

    Article  PubMed  Google Scholar 

  70. Ahmad S. Fluoxetine and glaucoma [letter]. Drug Intell Clin Pharm 1991 Apr; 25(4): 436

    CAS  Google Scholar 

  71. Costagliola C, Mastropasqua L, Steardo L, et al. Fluoxetine oral administration increases intraocular pressure [letter]. Br J Ophthalmol 1996 Jul; 80(7): 678

    Article  PubMed  CAS  Google Scholar 

  72. Eke T, Bates AK. Acute angle closure glaucoma associated with paroxetine [letter]. BMJ 1997 May; 314(7091): 1387

    Article  PubMed  CAS  Google Scholar 

  73. Kirwan JF, Subak-Sharpe I, Teimory M. Bilateral acute angle closure glaucoma after administration of paroxetine [letter]. Br J Ophthalmol 1997 Mar; 81(3): 252

    Article  PubMed  CAS  Google Scholar 

  74. Eke T, Carr S. Acute glaucoma, chronic glaucoma and serotoninergic drugs. Br J Ophthalmol 1998 Aug; 82(8): 976–8

    Article  PubMed  CAS  Google Scholar 

  75. Jiménez-Jiménez FJ, Orti-Pareja M, Zurdo JM. Aggravation of glaucoma with fluvoxamine. Ann Pharmacother 2001 Dec; 35(12): 1565–6

    Article  PubMed  Google Scholar 

  76. Ng B, Sanbrook GMC, Malouf AJ, et al. Venlafaxine and bilateral acute angle closure glaucoma [letter]. Med J Aust 2002 Mar 4; 176(5): 241

    PubMed  Google Scholar 

  77. Ritch R, Krupin T, Henry C, et al. Oral imipramine and acute angle closure glaucoma. Arch Ophthalmol 1994 Jan; 112(1): 67–8

    Article  PubMed  CAS  Google Scholar 

  78. Kadoi C, Hayasaka S, Tsukamoto E, et al. Bilateral angle closure glaucoma and visual loss precipitated by antidepressant and antianxiety agents in a patient with depression. Ophthalmologica 2000 May; 214(5): 360–1

    Article  PubMed  CAS  Google Scholar 

  79. Caronia RM, Sturm RT, Fastenberg DM, et al. Bilateral secondary angle-closure glaucoma as a complication of anticoagulation in a nanophthalmic patient. Am J Ophthalmol 1998 Aug; 126(2): 307–9

    Article  PubMed  CAS  Google Scholar 

  80. Dobrilla G, Felder M, Chilovi F, et al. Exacerbation of glaucoma associated with both cimetidine and ranitidine [letter]. Lancet 1982 May; I(8280): 1078

    Article  Google Scholar 

  81. Sabroe RA, Black AK. Angiotensin-converting enzymes (ACE) inhibitors and angio-oedema. Br J Dermatol 1997; 136(2): 153–8

    Article  PubMed  CAS  Google Scholar 

  82. Hille K, Hille A, Ruprecht KW. Malignant glaucoma due to drug-related angioedema. Am J Ophthalmol 2003; 135(2): 224–6

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported in part by Vision Research Foundation. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, R.C., Tripathi, B.J. & Haggerty, C. Drug-Induced Glaucomas. Drug-Safety 26, 749–767 (2003). https://doi.org/10.2165/00002018-200326110-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200326110-00002

Keywords

Navigation