Drug-Induced Myelosuppression

Diagnosis and Management

Abstract

Myelosuppression is a common and anticipated adverse effect of cytotoxic chemotherapy. It is a potential but rare idiosyncratic effect with any other drug, but there is a recognised association with a number of higher-risk agents which justify additional vigilance. Genetic risk factors are being identified which may predispose individuals to this reaction with particular drugs. As marker tests become available, dose adjustment or alternative treatment choices may help to avoid more severe reactions. Myelosuppression is potentially life threatening because of the infection and bleeding complications of neutropenia and thrombocytopenia. Strategies for monitoring, early detection, diagnostic confirmation and appropriate supportive care are well developed for cytotoxic therapy. Developments in antimicrobial chemotherapy, blood product transfusion support and growth factor therapy have improved outcomes. These advances are largely applicable to idiosyncratic drug-induced myelosuppression, reinforcing the importance of early recognition and referral to appropriate expertise. Many reactions will resolve on drug withdrawal with appropriate supportive care during the period of cytopenia. Prolonged marrow failure may require more specific treatment with intensive immunosuppression or consideration of bone marrow transplantation.

This is a preview of subscription content, log in to check access.

Table I
Table II
Table III

References

  1. 1.

    Rawlins MD, Thompson JW. Pathogenesis of adverse drug reactions. In: Davis DM, editor. Textbook of adverse drug reactions. Oxford: Oxford University Press, 1977: 44

    Google Scholar 

  2. 2.

    Erslev AJ, Lichtman MA. Structure and function of the marrow. In: Williams WJ, Beutler E, Erslev AJ, et al., editors. Hematology. New York: McGraw Hill, 1990: 37–47

    Google Scholar 

  3. 3.

    Dexter TM. Stem cells in normal growth and disease. BMJ 1987; 295: 1192–4

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Balkwill FR. The colony stimulating factors. In: Balkwill FR, editor. Cytokines in cancer therapy. Oxford: Oxford University Press, 1989: 114

    Google Scholar 

  5. 5.

    Chabner BA, Wilson W. Pharmacology and toxicity of antineoplastic drugs. In: Beutler E, Lichtman MA, Coller BS, et al., editors. Hematology. New York: McGraw Hill, 1995: 143–55

    Google Scholar 

  6. 6.

    Hartwell L. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 1992; 71: 543–6

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Le Beau MM, Albain KS, Larson RA, et al. Clinical and cytogenetic correlations in 63 patients with therapy related myelodysplastic syndromes and acute non lymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no 5 and 7. J Clin Oncol 1986; 4: 325–45

    PubMed  Google Scholar 

  8. 8.

    Young NS, Maciejewski J. The pathophysiology of acquired aplastic anemia. N Engl J Med 1997; 336: 1365–72

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Maciejewski JP, Selleri C, Sato T, et al. A severe and consistent deficit in marrow and circulating primitive haemopoietic cells (long term culture initiating cells) in acquired aplastic anemia. Blood 1998; 91: 1983–91

    Google Scholar 

  10. 10.

    Mathé G, Amiel JL, Schwarzenberg L, et al. Bone marrow graft in man after conditioning by antilymphocytic serum. BMJ 170; 2: 131–6

  11. 11.

    Young NS, Barrett AJ. The treatment of severe acquired aplastic anemia. Blood 1995; 85: 3367–77

    PubMed  CAS  Google Scholar 

  12. 12.

    Fitchen JJ, Cline MJ, Saxon A, et al. Serum inhibitors of hemopoiesis in a patient with aplastic anemia and systemic lupus erythematosus: recovery after exchange plasmapheresis. Am J Med 1979; 66: 537–42

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Bailey FA, Lilly M, Bertoli LF, et al. An antibody that inhibits in vitro bone marrow proliferation in a patient with systemic lupus erythematosus and aplastic anemia. Arthritis Rheum 1989; 31: 901–5

    Google Scholar 

  14. 14.

    Rawlins MD, Thomas SM. Mechanisms of adverse drug reactions. In: Davis DM, Ferner RE, de Glanville H., editors. Textbook of adverse drug reactions. Oxford: Oxford University Press, 1998: 41

    Google Scholar 

  15. 15.

    Wallerstein RO, Condit PK, Kasper PK, et al. Statewide study of chloramphenicol and fatal aplastic anemia. JAMA 1969; 208: 2045–50

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Nagao T, Mauer AM. Concordance for drug induced aplastic anemia in identical twins. N Engl J Med 1969; 281(1): 7–11

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Nimer SD, Ireland P, Meshkinpour A, et al. An increased HLA DR2 frequency is seen in aplastic anemia patients. Blood 1994; 84: 923–7

    PubMed  CAS  Google Scholar 

  18. 18.

    Nakao S, Takamatsu H, Chuhjo T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine dependent aplastic anemia. Blood 1994; 84: 4257–61

    PubMed  CAS  Google Scholar 

  19. 19.

    Amsler HA, Teerenhovi L, Barth E, et al. Agranulocytosis in patients treated with clozapine: a study of the Finnish epidemic. Acta Psychiatr Scand 1977; 56(4): 241–8

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Alvir JM, Lieberman JA, Safferman AZ, et al. Clozapine induced agranulocytosis: incidence and risk factors in the United States. N Engl J Med 1993; 329(3): 162–7

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Meged S, Stein D, Sitora P, et al. Human leukocyte antigen typing, response to neuroleptics, and clozapine-induced agranulocytosis in Jewish Israeli schizophrenic patients. Int Clin Psychopharmacol 1999; 14(5): 305–12

    PubMed  CAS  Google Scholar 

  22. 22.

    Dettling M, Schaub RT, Mueller-Oerlinghausen B, et al. Further evidence of human leukocyte antigen-encoded susceptibility to clozapine-induced agranulocytosis independent of ancestry. Pharmacogenetics 2001; 11(2): 135–41

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Lieberman JA, Yunis J, Egea E, et al. HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch Gen Psychiatry 1990; 47(10): 945–8

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Corzo D, Yunis JJ, Yunis EJ, et al. HSP70-2 9.0kb variant is in linkage disequilibrium with HLA-B and DRB1* alleles associated with clozapine-induced agranulocytosis. J Clin Psychiatry 1994; 55Suppl. B: 149S–52S

    Google Scholar 

  25. 25.

    Corzo D, Yunis JJ, Salazar M, et al. The major histocompatibility complex region marked by HSP70-1 and HSP70-2 variants is associated with clozapine-induced agranulocytosis in two different ethnic groups. Blood 1995; 86(10): 3835–40

    PubMed  CAS  Google Scholar 

  26. 26.

    Evans WE, Horner M, Chu YQ, et al. Altered mercaptopurine metabolism, toxic effects, and dosage requirement in a thiopurine methyltransferase deficient child with acute lymphocytic leukemia. J Pediatr 1991; 119: 985–9

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Lennard L, Van Loon JA, Weinshilboum RM. Pharmacogenetics of acute azathioprine toxicity: relationship to thiopurine methyltranferase genetic polymorphism. Clin Pharmacol Ther 1989; 46: 149–54

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Relling MM, Hancock ML, Revera GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine Smethyltransferase gene locus. J Natl Cancer Inst 1999; 91: 2001–8

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Jackson A, Hall AG, McLelland J. Thiopurine methyltransferase levels should be measured before commencing patients on azathioprine. Br J Dermatol 1997; 136: 133–4

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Coulthard SA, Rabello C, Robson J, et al. A comparison of molecular and enzyme-based assays for the detection of thiopurine methyltransferase mutations. Br J Haematol 2000; 110: 599–604

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Urano W, Taniguchi A, Yamanaka H, et al. Polymorphisms in the methylenetetrahydofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 2002; 12(3): 183–90

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Meyer UA. Pharmacogenetics and adverse drug reactions. Lancet 2000; 356: 1667–71

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Marsh JCW, Chowdry J, Parry-Jones N, et al. Study of the association between cytochromes P450 2D6 and 2E1 genotypes and the risk of drug and chemical induced idiosyncratic aplastic anaemia. Br J Haematol 1999; 104: 266–70

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    O’Brien WM, Bagby GF. Rare adverse reactions to nonsteroidal antiinflammatory drugs. J Rheumatol 1985; 12: 347–53

    PubMed  Google Scholar 

  35. 35.

    International Agranulocytosis and Aplastic Anaemia Study. Risks of agranulocytosis and aplastic anaemia: a first report of their relation to drug use with special reference to analgesics. J Am Med Assoc 1986; 256: 1749–57

    Google Scholar 

  36. 36.

    International Agranulocytosis and Aplastic Anaemia Study. Risk of agranulocytosis and aplastic anaemia in relation to antithyroid drugs. BMJ 1988; 297: 262–5

    Google Scholar 

  37. 37.

    International Agranulocytosis and Aplastic Anemia Study. Anti-infective drug use in relation to the risks of agranulocytosis and aplastic anemia: a report form the International Agranulocytosis and Aplastic Anemia Study. Arch Intern Med 1989; 149 (5): 1036–40

    Google Scholar 

  38. 38.

    Kelly JP, Kaufman DW, Shapiro S. Risks of agranulocytosis and aplastic anemia in relation to the use of cardiovascular drugs: the international agranulocytosis and aplastic anaemia study. Clin Pharmacol Ther 1991; 49(3): 330–41

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Perucca E. The new generation of antiepileptic drugs: advantages and disadvantages. Br J Clin Pharmacol 1996; 42(5): 531–43

    PubMed  CAS  Google Scholar 

  40. 40.

    Morley A, Blake J. An animal model of chronic aplastic marrow failure: 1. Late marrow failure after busulfan. Blood 1974; 44: 49–56

    PubMed  CAS  Google Scholar 

  41. 41.

    Caster RP. Aplastic anaemia in soldiers treated with atabrine (quinacrine). Am J Med Sci 1946; 212: 211–24

    Google Scholar 

  42. 42.

    Smadel JE, Jackson EB. Chloromycetin, an antibiotic with chemotherapeutic activity in experimental and viral infections. Science 1944; 106: 418–9

    Article  Google Scholar 

  43. 43.

    Oski FA. Hematological consequences of chloramphenicol therapy. J Pediatr 1979; 94: 515–6

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Rich ML, Ritterhuf RJ, Hoffman RL. Fatal case of aplastic anaemia following chloramphenicol (chloromycetin) therapy. Ann Intern Med 1950; 33: 1459–61

    PubMed  CAS  Google Scholar 

  45. 45.

    Modan B, Segal S, Shani M, et al. Aplastic anemia in Israel: evaluation of the etiological role of chloramphenicol on a community wide basis. Am J Med Sci 1975; 270: 441–5

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Rayner SA, Buckley RJ. Ocular chloramphenicol and aplastic anaemia: is there a link? Drug Saf 1996; 14(5): 273–6

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Walker S, Diaper CJ, Bowman R, et al. Lack of evidence for systemic toxicity following topical chloramphenicol use. Eye 1998; 12(5): 875–9

    PubMed  Article  Google Scholar 

  48. 48.

    Willame LM, Joos R, Proot F, et al. Gold induced aplastic anemia. Clin Rheumatol 1987; 6: 600–5

    Article  Google Scholar 

  49. 49.

    Ammus SS, Yunis A. Acquired pure red cell aplasia. Am J Hematol 1987; 24: 311–26

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Casadevall N, Nataf J, Viron B, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med 2002; 346: 469–75

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Tomita N, Motomura S, Ishigatsubo Y. Interferon alpha induced pure red cell aplasia following chronic myelogenous leukemia. Anticancer Drugs 2001; 12(1): 7–8

    PubMed  Article  CAS  Google Scholar 

  52. 52.

    Hartl PW. Drug induced agranulocytosis. In: Girdwood RH, editor. Blood disorders due to drugs and other agents. Amsterdam: Exerpta Medica, 1973: 147-86

  53. 53.

    Young GAR, Vincent P. Drug induced agranulocytosis. Clin Lab Haematol 1980; 9(3): 483–504

    Google Scholar 

  54. 54.

    Gordon-Smith EC. Drug induced cytopenias In: Yin J, editor. Haematological aspects of systemic disease. London: Balliere-Tindall, 1990: 310–75

    Google Scholar 

  55. 55.

    Murphy MF, Riordan T, Minchinton RM, et al. Demonstration of an immune mediated mechanism of penicillin induced neutropenia and thrombocytopenia. Br J Haematol 1985; 55: 155–60

    Article  Google Scholar 

  56. 56.

    Pisciotta AV. Drug induced agranulocytosis: peripheral destruction of polymorphonuclear leukocytes and their marrow precursonrs. Blood Rev 1990; 4: 226–37

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Julia A, Olona M, Bueno J, et al. Drug induced agranulocytosis: prognostic factors in a series of 168 episodes. Br J Haematol 1991; 79: 366–71

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Sprikkelman A, de Wolf JTM, Vellenga E. The application of haematopoietic growth factors in drug-induced agranulocytosis: a review of 70 cases. Leukemia 1994; 8: 2031–6

    PubMed  CAS  Google Scholar 

  59. 59.

    Pisciotta AV. Immune and toxic mechanisms in drug induced agranulocytosis. Semin Hematol 1973; 10: 279–310

    PubMed  CAS  Google Scholar 

  60. 60.

    Neftel KA, Hauser SP, Muller M. Inhibition of granulopoiesis in vivo and in vitro by beta lactam antibiotics. J Infect Dis 1985; 152: 90–7

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Bastani B, Alphs LD, Meltzer HY. Development of the clozaril patient management system. Psychopharmacology (Berl) 1989; 99Suppl. 1: 122S–5S

    Article  Google Scholar 

  62. 62.

    Munro J, O’Sullivan D, Andrews C, et al. Active monitoring of 12,760 clozapine recipients in the UK and Ireland: beyond pharmacovigilance. Br J Psychiatry 1999; 175: 576–80

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Gerson SL, Meltzer H. Mechanisms of clozapine-induced agranulocytosis. Drug Saf 1992; 7Suppl. 1: 17S–25S

    Article  Google Scholar 

  64. 64.

    Cooper DA, Goldmintz D, Levin AA, et al. Agranulocytosis associated with antithyroid drugs: effects of patients age and drug dose. Ann Intern Med 1983; 98: 26–9

    PubMed  CAS  Google Scholar 

  65. 65.

    Keisu M, Ekman E. Sulfasalazine associated agranulocytosis in Sweden 1972-1989. Eur J Clin Pharmacol 1992; 43: 215–8

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Scott JM, Weir DG. Drug induced megaloblastic change. Clin Haematol 1980; 9(3): 587–606

    PubMed  CAS  Google Scholar 

  67. 67.

    Yunis AA, Salem Z. Drug induced mitochondrial damage and sideroblastic change. Clin Haematol 1980; 9(3): 607–9

    PubMed  CAS  Google Scholar 

  68. 68.

    Kuter DJ, Tillotson GS. Hematological effects of antimicrobials: focus on the oxazolidinone linezolid. Pharmacotherapy 2001; 21(8): 1010–3

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Abena PA, Mathieux YG, Schieff JM, et al. Linezolid and reversible myelosuppression. JAMA 2001; 286(16): 1973–4

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Hughes WT, Armstrong D, Bodey GP, et al. 1997 guidelines for the use of antimicrobial agents in neutropenic patients with unexplained fever. Clin Infect Dis 1997; 25: 551–73

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    British Committee for Standards in Haematology Taskforce. Guidelines for the provision of facilities for the care of adult patients with haematological malignancies (including leukaemia and lymphoma and severe bone marrow failure). Clin Lab Haematol 1995; 17: 3–10

    Google Scholar 

  72. 72.

    Bodey GP, Buckley M, Sathe YS, et al. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann Intern Med 1966; 64: 328–40

    PubMed  CAS  Google Scholar 

  73. 73.

    Zinner SH. Changing epidemiology of infections in patients with neutropenia and cancer. Clin Infect Dis 199; 29: 490–494

  74. 74.

    Nováková IRO, Donelly JP, Verhagen CS, et al. Teicoplanin as a modification of initial empirical therapy in febrile granulocytopenic patients. J Antimicrob Chemother 1990; 25: 149–57

    Article  Google Scholar 

  75. 75.

    EORTC International Antimicrobial Therapy Cooperative Group. Empiric antifungal therapy in febrile granulocytopenic patients. Am J Med 1996; 100: 17–23

    Google Scholar 

  76. 76.

    Hughes WT, Kahn S, Chaudhary S, et al. Successful chemoprophylaxis for pneumocystis carinii pneumonitis. N Engl J Med 1977; 297: 1419–26

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Goodman JL, Winston DJ, Greenfield RA, et al. A controlled trial of fluconazole to prevent fungal infections in patients undergoing bone marrow transplantation. N Engl J Med 1992; 326: 845–51

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Davis I, Morstyn G. The role of granulocyte colony stimulating factor in cancer chemotherapy. Semin Hematol 1991; 28: 25–33

    PubMed  CAS  Google Scholar 

  79. 79.

    Pettengell R, Gurney H, Radford JA, et al. Granulocyte colony stimulating factor to prevent dose limiting neutropenia in non-Hodgkin’s lymphoma: a randomised controlled trial. Blood 1992; 80: 1430–6

    PubMed  CAS  Google Scholar 

  80. 80.

    Dunn CJ, Goa KL. Lenograstim: an update of its pharmacological properties and use in chemotherapy-induced neutropenia and related clinical settings. Drugs 2000; 59(3): 681–717

    PubMed  Article  CAS  Google Scholar 

  81. 81.

    Avilez A, Guzman R, Garcia EL, et al. Results of a randomized trial of granulocyte colony stimulating factor in patients with infection and severe granulocytopenia. Anticancer Drugs 1996; 7: 392–7

    Article  Google Scholar 

  82. 82.

    Ozer H, Armitage JO, Bennett CL, et al. 2000 update of recommendations for the use of hematopoietic colony stimulating factors: evidence-based, clinical practice guidelines. J Clin Oncol 2000; 18: 3558–85

    PubMed  CAS  Google Scholar 

  83. 83.

    Balducci L, Lyman G. Patients aged >70 are at high risk for neutropenic infection and should receive hemopoietic growth factors when treated with moderately toxic chemotherapy. J Clin Oncol 2001; 19: 1583–4

    PubMed  CAS  Google Scholar 

  84. 84.

    Schaison G, Eden OB, Henze G, et al. Recommendations on the use of colony-stimulating factors in children: conclusions of a European panel. Eur J Pediatr 1998; 157(12): 955–66

    PubMed  Article  CAS  Google Scholar 

  85. 85.

    Teitelbaum AH, Bell AJ, Brown SL. Filgrastim (r-metHuG-CSF) reversal of drug induced agranulocytosis. Am J Med 1993; 95: 245–6

    PubMed  Article  CAS  Google Scholar 

  86. 86.

    Tamai H, Mukuta T, Matsubayashi S, et al. Treatment of methimazole induced agranulocytosis using recombinant human granulocyte colony stimulating factor (rhG-CSF). J Clin Endocrinol Metab 1993; 77: 1356–60

    PubMed  Article  CAS  Google Scholar 

  87. 87.

    Gerson SL, Gullion G, Yeh HS, et al. Granulocyte colony stimulating factor for clozapine induced agranulocytosis [letter]. Lancet 1992; 340: 1097

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Lamberti JS, Bellnier TJ, Schwarzkopf SB, et al. Figrastim treatment of three patients with clozapine-induced agranulocytosis. J Clin Psychiatry 1995; 56(6): 256–9

    PubMed  CAS  Google Scholar 

  89. 89.

    Gullion G, Yeh HS. Treatment of clozapine-induced agranulocytosis with recombinant granulocyte colony-stimulating factor. J Clin Psychiatry 1994; 55(9): 401–5

    PubMed  CAS  Google Scholar 

  90. 90.

    Sprikkelman A, de Wolf JTM, Vellenga E. The application of haematopoietic growth factors in drug induced agranulocytosis: a review of 70 cases. Leukemia 1994; 8: 2031–6

    PubMed  CAS  Google Scholar 

  91. 91.

    Anderlini P, Przepiorka D, Champlin R, et al. Biologic and clinical effects of granulocyte colony stimulating factor in normal individuals. Blood 1996; 88: 2819–25

    PubMed  CAS  Google Scholar 

  92. 92.

    Murphy MF, Wallington TB, Kelsey P, et al. Guidelines for the clinical use of red cell transfusions. Br J Haematol 2001; 113: 24–31

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Guidelines for gamma irradiation of blood components for the prevention of transfusion associated graft versus host disease. Transfus Med 1996; 6: 261–71

  94. 94.

    British Society for Standards in Haematology Blood Transfusion Taskforce. Guidelines for the clinical use of leucocyte depleted blood components. Transfus Med 1998; 8: 59–71

    Google Scholar 

  95. 95.

    Quirt I, Micucci S, Moran LA, et al. Erythropoietin in the management of cancer patients with non-hematologic malignancies receiving chemotherapy. Cancer Prev Control 1997; 1(3): 241–6

    PubMed  CAS  Google Scholar 

  96. 96.

    Murphy MF, Brozovic B, Murphy W, et al. Guidelines for platelet transfusion. Transfus Med 1992; 2: 311–8

    PubMed  Article  CAS  Google Scholar 

  97. 97.

    Bacigalupo A, Brand R, Oneto R, et al. Treatment of acquired severe aplastic anemia: bone marrow transplantation compared with immunosuppression therapy - the European group for blood and marrow transplantation experience. Semin Hematol 2000; 37: 69–80

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Rosenfeld SJ, Kimball J, Vining D, et al. Intensive immunosuppression with antithymocyte globulin and cyclosporine as treatment for severe aplastic anemia. Blood 1995; 85: 3058–65

    PubMed  CAS  Google Scholar 

  99. 99.

    Bacigalupo A, Broccia G, Corda G, et al. Antilymphocyte globulin, cyclosporin, and granulocyte colony stimulating factor in patients with acquired severe aplastic anemia (SAA): a pilot study of the EBMT SAA working party. Blood 1995; 85: 1348–53

    PubMed  CAS  Google Scholar 

  100. 100.

    Brodsky RA, Sensenbrenner LL, Jones RJ. Complete remission in severe aplastic anemia after high dose cyclophosphamide without bone marrow transplantation. Blood 1996; 87: 491–4

    PubMed  CAS  Google Scholar 

  101. 101.

    Storb R, Etzioni R, Anasetti C. Cyclophosphamide combined with antithymocyte globulin in preparation for allogeneic marrow transplants in patients with aplastic anaemia. Blood 1994; 84(3): 941–9

    PubMed  CAS  Google Scholar 

  102. 102.

    Tsai TW, Freytes CO. Allogeneic bone marrow transplantation for leukemias and aplastic anemia. Adv Intern Med 1997; 42: 423–51

    PubMed  CAS  Google Scholar 

  103. 103.

    Bacigalupo A, Oneto R, Socie G, et al. Current results of bone marrow transplantation in patients with acquired severe aplastic anaemia: report of the European group for blood and marrow transplantation. Acta Haematol 2000; 103(1): 19–25

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Young NS. Acquired aplastic anemia. JAMA 1999; 282(3): 272–8

    Article  Google Scholar 

  105. 105.

    Kernan NA, Bartsch G, Ash RC, et al. Analysis of 462 transplantations from unrelated donors facilitated by the national marrow donor programme. N Engl J Med 1993; 328: 593–602

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Alphs LD, Anand R. Clozapine: the commitment to patient safety. J Clin Psychiatry 1999; 60Suppl. 12: 39S–42S

    Google Scholar 

  107. 107.

    Amos RS, Pullar T, Bax TE, et al. Sulphasalazine for rheumatoid arthritis: toxicity in 774 patients monitored for one to 11 years. BMJ 1986; 293: 420–3

    PubMed  Article  CAS  Google Scholar 

  108. 108.

    Swinson CM, Lumb M, Levi AJ. Role of sulphasalazine in the aetiology of folate deficiency in ulcerative colitis. Gut 1981; 22: 456–61

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Drug induced agranulocytosis. Drug Ther Bull 1997; 35: 49–52

    Google Scholar 

  110. 110.

    Elaboration: drug induced agranulocytosis: monitoring antithyroid treatment. Drug Ther Bull 1997; 35: 88

  111. 111.

    Tajiri J, Noguchi S, Murakami T, et al. Antithyroid drug induced agranulocytosis: the usefulness of routine white blood cell count monitoring. Arch Intern Med 1990; 150: 621–4

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The author has no conflicts of interest that are directly relevant to the contents of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr Peter J. Carey.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Carey, P.J. Drug-Induced Myelosuppression. Drug-Safety 26, 691–706 (2003). https://doi.org/10.2165/00002018-200326100-00003

Download citation

Keywords

  • Clozapine
  • Febrile Neutropenia
  • Aplastic Anaemia
  • Agranulocytosis
  • Full Blood Count