Skip to main content
Log in

Fenofibrate-Induced Hyperhomocysteinaemia

Clinical Implications and Management

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Fenofibrate is among the drugs of choice for treatment of hypertriglyceridaemia and low levels of high-density lipoprotein (HDL)-cholesterol, both recognised as risk factors for cardiovascular disease. Recently, a number of studies have shown an elevation of homocysteine levels with fenofibrate or bezafibrate therapy. Homocysteine is an atherogenic amino acid derived from the methionine cycle. At present, the underlying mechanism for this elevation has not been elucidated. While deterioration of vitamin status does not seem to be involved, impairment of renal function or changes in creatine metabolism are regarded as probable mechanisms. In patients not receiving lipid-lowering drugs, vitamin supplementation with folic acid and vitamin B12 effectively reduces the plasma homocysteine level. Two studies have shown that addition of folic acid or a vitamin combination to fenofibrate prevented most of the homocysteine increase associated with fenofibrate. Although the consequence of increasing homocysteine levels for cardiovascular risk has not been proven at present, it has to be considered that fenofibrate will be given for long-term treatment. Therefore, addition of folic acid and vitamin B12 to fenofibrate can be recommended to prevent the increase of homocysteine associated with fenofibrate, or treatment could be changed to gemfibrozil, which does not increase plasma homocysteine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Jeppesen J, Hein HO, Suadicani P, et al. Triglyceride concentration and ischemic heart disease: an eight-year follow up in the Copenhagen Male Study. Circulation 1998; 97: 1029–36

    Article  PubMed  CAS  Google Scholar 

  2. Assmann G, Schulte H, Funke H, et al. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J 1998; 19Suppl. M: M8–14

    PubMed  Google Scholar 

  3. Austin MA, King MC, Vranizan KM, et al. Atherogenic lipoprotein phenotype: a proposed genetic marker for coronary heart disease risk. Circulation 1990; 82: 495–506

    Article  PubMed  CAS  Google Scholar 

  4. Fruchart JC, Staels B, Duriez P. The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 2001; 3: 83–92

    Article  PubMed  CAS  Google Scholar 

  5. Despres JP. Increasing high-density lipoprotein cholesterol: an update on fenofibrate. Am J Cardiol 2001; 88: 30N–6N

    Article  PubMed  CAS  Google Scholar 

  6. Kirchgässler KU, Schmitz H, Bach G. Effectiveness and tolerability of 12-week treatment with micronised fenofibrate 200mg in a drug-monitoring programme involving 9884 patients with dyslipidaemia. Clin Drug Invest 1998; 15: 197–204

    Article  Google Scholar 

  7. Kornitzer M, Dramaix M, Vandenbroek MD, et al. Efficacy and tolerance of 200mg micronised fenofibrate administered over a 6-month period in hyperlipidaemic patients: an open Belgian multicenter study. Atherosclerosis 1994; 110Suppl.: S49–54

    Article  PubMed  CAS  Google Scholar 

  8. The Diabetes Atherosclerosis Intervention Study Investigators. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357: 905–10

    Google Scholar 

  9. Devuyst O, Goffin E, Pirson Y, et al. Creatinine rise after fibrate therapy in renal graft recipients. Lancet 1993; 341: 840

    Article  PubMed  CAS  Google Scholar 

  10. Lipscombe J, Lewis GF, Cattran D, et al. Deterioration in renal function associated with fibrate therapy. Clin Nephrol 2001; 55: 39–44

    PubMed  CAS  Google Scholar 

  11. Sharobeem KM, Madden BP, Millner R, et al. Acute renal failure after cardiopulmonary bypass: a possible association with drugs of the fibrate group. J Cardiovasc Pharmacol Ther 2000; 5: 33–9

    Article  PubMed  CAS  Google Scholar 

  12. Lüttjohann D, Sigit JI, Locatelli S, et al. High-dose simvastin (80 mg/day) decreases plasma concentrations of total homocyst(e)ine in patients with hypercholesterolemia. Atherosclerosis 2001; 155: 265–6

    Article  Google Scholar 

  13. MacMahon M, Kirkpatrick C, Cummings CE, et al. A pilot study with simvastatin and folic acid/vitamin B12 in preparation for the Study of the Effectiveness of Additional Reductions in Cholesterol and Homocysteine (SEARCH). Nutr Metab Cardiovasc Dis 2000; 10: 195–203

    PubMed  CAS  Google Scholar 

  14. Ueland PM, Refsum H, Beresford SA, et al. The controversy over homocysteine and cardiovascular risk. Am J Clin Nutr 2000; 72: 324–32

    PubMed  CAS  Google Scholar 

  15. Dierkes J, Jeckel A, Ambrosch A, et al. Factors explaining the difference of total homocysteine between men and women in the European Investigation Into Cancer and Nutrition Potsdam study. Metabolism 2001; 50: 640–5

    Article  PubMed  CAS  Google Scholar 

  16. Desouza C, Keebler M, McNamara DB, et al. Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 2002; 62: 605–16

    Article  PubMed  CAS  Google Scholar 

  17. Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med 1998; 338: 1042–50

    Article  PubMed  CAS  Google Scholar 

  18. Thambyrajah J, Townend JN. Homocysteine and atherothrombosis: mechanisms for injury. Eur Heart J 2000; 21: 967–74

    Article  PubMed  CAS  Google Scholar 

  19. Tawakol A, Omland T, Gerhard M, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997; 95: 1119–21

    Article  PubMed  CAS  Google Scholar 

  20. Chambers JC, Obeid OA, Kooner JS. Physiological increments in plasma homocysteine induce vascular endothelial dysfunction in normal human subjects. Arterioscler Thromb Vasc Biol 1999; 19: 2922–7

    Article  PubMed  CAS  Google Scholar 

  21. Chambers JC, Ueland PM, Obeid OA, et al. Improved vascular endothelial function after oral B vitamins: an effect mediated through reduced concentrations of free plasma homocysteine. Circulation 2000; 102: 2479–83

    Article  PubMed  CAS  Google Scholar 

  22. Chambers JC, McGregor A, Jean-Marie J, et al. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation 1999; 99: 1156–60

    Article  PubMed  CAS  Google Scholar 

  23. Nappo F, De Rosa N, Marfella R, et al. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. JAMA 1999; 281: 2113–8

    Article  PubMed  CAS  Google Scholar 

  24. Usui M, Matsuoka H, Miyazaki H, et al. Endothelial dysfunction by acute hyperhomocyst(e)inaemia: restoration by folic acid. Clin Sci (Lond) 1999; 96: 235–9

    Article  CAS  Google Scholar 

  25. Doshi SN, McDowell IF, Moat SJ, et al. Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering. Circulation 2002; 105: 22–6

    Article  PubMed  CAS  Google Scholar 

  26. Böger RH, Lentz SR, Bode-Böger SM, et al. Elevation of asymmetrical dimethylarginine may mediate endothelial dysfunction during experimental hyperhomocyst(e)inaemia in humans. Clin Sci (Lond) 2001; 100: 161–7

    Article  Google Scholar 

  27. Boushey CJ, Beresford SA, Omenn GS, et al. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 1995 Oct 4; 274(13): 1049–57

    Article  PubMed  CAS  Google Scholar 

  28. Eikelboom JW, Lonn E, Genest Jr J, et al. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 1999; 131: 363–75

    PubMed  CAS  Google Scholar 

  29. Refsum H, Ueland PM, Nygard O, et al. Homocysteine and cardiovascular disease. Annu Rev Med 1998; 49: 31–62

    Article  PubMed  CAS  Google Scholar 

  30. Brattstrom L, Wilcken DE. Homocysteine and cardiovascular disease: cause or effect? Am J Clin Nutr 2000; 72: 315–23

    PubMed  CAS  Google Scholar 

  31. Anderson JL, Muhlestein JB, Horne BD, et al. Plasma homocysteine predicts mortality independently of traditional risk factors and C-reactive protein in patients with angiographically defined coronary artery disease. Circulation 2000; 102: 1227–32

    Article  PubMed  CAS  Google Scholar 

  32. Vollset SE, Refsum H, Tverdal A, et al. Plasma total homocysteine and cardiovascular and noncardiovascular mortality: the Hordaland Homocysteine Study. Am J Clin Nutr 2001; 74: 130–6

    PubMed  CAS  Google Scholar 

  33. Clarke R. Homocysteine and cardiovascular disease: overview. J Cardiovasc Risk 1998; 5: 213–5

    Article  PubMed  CAS  Google Scholar 

  34. Willems HP, den Heijer M, Bos GM. Homocysteine and venous thrombosis: outline of a vitamin intervention trial. Semin Thromb Hemost 2000; 26: 297–304

    Article  PubMed  CAS  Google Scholar 

  35. Spence JD, Howard VJ, Chambless LE, et al. Vitamin intervention for stroke prevention (VISP) trial: rationale and design. Neuroepidemiology 2001; 20: 16–25

    Article  PubMed  CAS  Google Scholar 

  36. de Lorgeril M, Salen P, Paillard F, et al. Lipid-lowering drugs and homocysteine. Lancet 1999; 353: 209–10

    Article  PubMed  Google Scholar 

  37. Landray MJ, Townend JN, Martin S, et al. Lipid-lowering drugs and homocysteine. Lancet 1999; 353: 1974–5

    Article  PubMed  CAS  Google Scholar 

  38. Dierkes J, Westphal S, Luley C. Serum homocysteine increases after therapy with fenofibrate or bezafibrate. Lancet 1999; 354: 219–20

    Article  PubMed  CAS  Google Scholar 

  39. Melenovsky V. Fenofibrate, but not atorvastatin treatment increases homocysteine levels in patients with combined hyperlipidemia [abstract]. Eur Heart J 2000; 21: 636

    Google Scholar 

  40. Giral P, Bruckert E, Jacob N, et al. Homocysteine and lipid lowering agents: a comparison between atorvastatin and fenofibrate in patients with mixed hyperlipidemia. Atherosclerosis 2001; 154: 421–7

    Article  PubMed  CAS  Google Scholar 

  41. Bissonnette R, Treacy E, Rozen R, et al. Fenofibrate raises plasma homocysteine levels in the fasted and fed states. Atherosclerosis 2001; 155: 455–62

    Article  PubMed  CAS  Google Scholar 

  42. Dierkes J, Westphal S, Kunstmann S, et al. Vitamin supplementation can markedly reduce the homocysteine elevation induced by fenofibrate. Atherosclerosis 2001; 158: 161–4

    Article  PubMed  CAS  Google Scholar 

  43. Westphal S, Dierkes J, Luley C. Effects of fenofibrate and gemfibrozil on plasma homocysteine. Lancet 2001; 358: 39–40

    Article  PubMed  CAS  Google Scholar 

  44. Stulc T, Melenovsky V, Grauova B, et al. Folate supplementation prevents plasma homocysteine increase after fenofibrate therapy. Nutrition 2001; 17: 721–3

    Article  PubMed  CAS  Google Scholar 

  45. Jonkers IJAM, de Man FHAF, Onkenhout W, et al. Implications of fibrate therapy for homocysteine. Lancet 1999; 354: 1208

    Article  PubMed  CAS  Google Scholar 

  46. Harats D, Yodfat O, Doolman R, et al. Homocysteine elevation with fibrates: is it a class effect? Isr Med Assoc J 2001; 3: 243–6

    PubMed  CAS  Google Scholar 

  47. Selhub J, Jacques PF, Wilson PW, et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993; 270: 2693–8

    Article  PubMed  CAS  Google Scholar 

  48. Norlund L, Grubb A, Fex G, et al. The increase of plasma homocysteine concentrations with age is partly due to the deterioration of renal function as determined by plasma cystatin C. Clin Chem Lab Med 1998; 36: 175–8

    Article  PubMed  CAS  Google Scholar 

  49. Wollesen F, Brattstrom L, Refsum H, et al. Plasma total homocysteine and cysteine in relation to glomerular filtration rate in diabetes mellitus. Kidney Int 1999; 55: 1028–35

    Article  PubMed  CAS  Google Scholar 

  50. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–3

    Article  PubMed  CAS  Google Scholar 

  51. Fukagawa NK, Martin JM, Wurthmann A, et al. Sex-related differences in methionine metabolism and plasma homocysteine concentrations. Am J Clin Nutr 2000; 72: 22–9

    PubMed  CAS  Google Scholar 

  52. Mudd SH, Poole JR. Labile methyl balances for normal humans on various dietary regimens. Metabolism 1975; 24: 721–35

    Article  PubMed  CAS  Google Scholar 

  53. Brattstrom L, Lindgren A, Israelsson B, et al. Homocysteine and cysteine: determinants of plasma levels in middle-aged and elderly subjects. J Intern Med 1994; 236: 633–41

    Article  PubMed  CAS  Google Scholar 

  54. Lindgren A. Elevated serum methylmalonic acid: how much comes from cobalamin deficiency and how much comes from the kidneys? Scand J Clin Lab Invest 2002; 62: 15–9

    Article  PubMed  CAS  Google Scholar 

  55. Broeders N, Knoop C, Antoine M, et al. Fibrate-induced increase in blood urea and creatinine: is gemfibrozil the only innocuous agent? Nephrol Dial Transplant 2000; 15: 1993–9

    Article  PubMed  CAS  Google Scholar 

  56. Hottelart C, el Esper N, Achard JM, et al. Fenofibrate increases blood creatinine, but does not change the glomerular filtration rate in patients with mild renal insufficiency [in French]. Nephrologie 1999; 20: 41–4

    PubMed  CAS  Google Scholar 

  57. Stead LM, Au KP, Jacobs RL, et al. Methylation demand and homocysteine metabolism: effects of dietary provision of creatine and guanidinoacetate. Am J Physiol Endocrinol Metab 2001; 28: E1095–100

    Google Scholar 

  58. Steenge GR, Verhoef P, Greenhaff PL. The effect of creatine and resistance training on plasma homocysteine concentration in healthy volunteers. Arch Intern Med 2001; 161: 1455–6

    Article  PubMed  CAS  Google Scholar 

  59. Wilson MW, Lay LT, Chow CK, et al. Altered hepatic eicosanoid concentrations in rats treated with the peroxisome proliferators ciprofibrate and perfluorodecanoic acid. Arch Toxicol 1995; 69: 491–7

    Article  PubMed  CAS  Google Scholar 

  60. Khan KN, Paulson SK, Verburg KM, et al. Pharmacology of cyclooxygenase-2 inhibition in the kidney. Kidney Int 2002; 61: 1210–9

    Article  PubMed  CAS  Google Scholar 

  61. Yoshinari M, Asano T, Kaori S, et al. Effect of gemfibrozil on serum levels of prostacyclin and precursor fatty acids in hyperlipidemic patients with type 2 diabetes. Diabetes Res Clin Pract 1998; 42: 149–54

    Article  PubMed  CAS  Google Scholar 

  62. Brude IR, Finstad HS, Seljeflot I, et al. Plasma homocysteine concentration related to diet, endothelial function and mononuclear cell gene expression among male hyperlipidaemic smokers. Eur J Clin Invest 1999; 29: 100–8

    Article  PubMed  CAS  Google Scholar 

  63. Guan Y, Breyer MD. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney Int 2001; 60: 14–30

    Article  PubMed  CAS  Google Scholar 

  64. Wang W, Basinger A, Neese RA, et al. Effect of nicotinic acid administration on hepatic very low density lipoprotein-triglyceride production. Am J Physiol Endocrinol Metab 2001; 280: E540–7

    PubMed  CAS  Google Scholar 

  65. Basu TK, Makhani N, Sedgwick G. Niacin (nicotinic acid) in non-physiological doses causes hyperhomocysteineaemia in Sprague-Dawley rats. Br J Nutr 2002; 87: 115–9

    Article  PubMed  CAS  Google Scholar 

  66. Garg R, Malinow M, Pettinger M, et al. Niacin treatment increases plasma homocyst(e)ine levels. Am Heart J 1999; 138: 1082–7

    Article  PubMed  CAS  Google Scholar 

  67. Sunder-Plassmann G, Födinger M. Pathophysiology and clinical importance of hyperhomocysteinemia: clinical intervention studies. Miner Electrolyte Metab 1999; 25: 286–90

    Article  PubMed  CAS  Google Scholar 

  68. Homocysteine Lowering Trialists’ Collaboration. Lowering blood homocysteine with folic acid based supplements: metaanalysis of randomised trials. BMJ 1998; 316: 894–8

    Google Scholar 

  69. Ubbink JB, Vermaak WJ, van der Merve A, et al. Vitamin requirements for the treatment of hyperhomocysteinemia in humans. J Nutr 1994; 124: 1927–33

    PubMed  CAS  Google Scholar 

  70. den Heijer M, Brouwer IA, Bos GM, et al. Vitamin supplementation reduces blood homocysteine levels: a controlled trial in patients with venous thrombosis and healthy volunteers. Arterioscler Thromb Vasc Biol 1998; 18: 356–61

    Article  Google Scholar 

  71. Dierkes J, Kroesen M, Pietrzik K. Folic acid and vitamin B6 supplementation and plasma homocysteine concentrations in healthy young women. Int J Vitam Nutr Res 1998; 68: 98–103

    PubMed  CAS  Google Scholar 

  72. Schnyder G, Roffi M, Pin R, et al. Decreased rate of coronary restenosis after lowering of plasma homocysteine levels. N Engl J Med 2001; 345: 1593–600

    Article  PubMed  CAS  Google Scholar 

  73. Wald DS, Bishop L, Wald NJ, et al. Randomized trial of folic acid supplementation and serum homocysteine levels. Arch Intern Med 2001; 161: 695–700

    Article  PubMed  CAS  Google Scholar 

  74. Thambyrajah J, Landray MJ, Jones HJ, et al. A randomized double-blind placebo-controlled trial of the effect of homocysteine-lowering therapy with folic acid on endothelial function in patients with coronary artery disease. J Am Coll Cardiol 2001; 37: 1858–63

    Article  PubMed  CAS  Google Scholar 

  75. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45

    Article  PubMed  CAS  Google Scholar 

  76. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT: a randomized controlled trial. JAMA 2001; 285: 1585–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the contents of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dierkes, J., Westphal, S. & Luley, C. Fenofibrate-Induced Hyperhomocysteinaemia. Drug-Safety 26, 81–91 (2003). https://doi.org/10.2165/00002018-200326020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200326020-00002

Keywords

Navigation