Skip to main content
Log in

A Benefit-Risk Assessment of Class III Antiarrhythmic Agents

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

With β-blockers as the exception, increasing doubt is emerging on the value of antiarrhythmic drug therapy following a series of trials that have either shown no mortality benefit or even an excess mortality. Vaughan Williams class I drugs are generally avoided in patients with structural heart disease, and class IV drugs are avoided in heart failure. Unfortunately, arrhythmias are a growing problem due to an increase in the incidence of atrial fibrillation and sudden death. The population is becoming older and more patients survive for a longer time period with congestive heart failure, which again increases the frequency of both supraventricular as well as ventricular arrhythmias.

Class III antiarrhythmic drugs act by blocking repolarising currents and thereby prolong the effective refractory period of the myocardium. This is believed to facilitate termination of re-entry tachyarrhythmias. This class of drugs is developed for treatment of both supraventricular and ventricular arrhythmias. Amiodarone, sotalol, dofetilide, and ibutilide are examples of class III drugs that are currently available. Amiodarone and sotalol have other antiarrhythmic properties in addition to pure class III action, which differentiates them from the others. However, all have potential serious adverse events. Proarrhythmia, especially torsade de pointes, is a common problem making the benefit-risk ratio of these drugs a key question.

Class III drugs have been evaluated in different settings: primary and secondary prevention of ventricular arrhythmias and in treatment of atrial fibrillation or flutter. Based on existing evidence there is no routine indication for antiarrhythmic drug therapy other than β-blockers in patients at high risk of sudden death. Subgroup analyses of trials with amiodarone and dofetilide suggest that patients with atrial fibrillation may have a mortality reduction with these drugs. However, this needs to be tested in a prospective trial. Similarly, subgroups that will benefit from prophylactic treatment with class III antiarrhythmic drugs may be found based on QT-intervals or — in the future — from genetic testing.

Class III drugs are effective in converting atrial fibrillation to sinus rhythm and for the maintenance of sinus rhythm after conversion. This is currently by far the most important indication for this class of drugs. As defined by recent guidelines, amiodarone and dofetilide have their place as second-line therapy except for patients with heart failure where they are first line therapy being the only drugs where the safety has been documented for this group of high risk patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. Echt DS, Liebson PR, Mitchell LB, et al. Mortality and morbidity in patients receiving encainide, flecainide or placebo: The Cardiac Arrhythmia Suppression Trial. N Engl J Med 1991; 324: 781–8

    Article  PubMed  CAS  Google Scholar 

  2. The Cardiac Arrhythmia Suppression Trial II Investigators. Effect of the antiarrhythmic agent moricizine on survival after myocardial infarction. N Engl J Med 1992; 327 (4): 227–33

    Google Scholar 

  3. Mason JW. A comparison of seven antiarrhythmic drugs in patients with ventricular tachyarrhythmias: electrophysiologic study versus electrocardiographic monitoring investigators. N Engl J Med 1993; 329(7): 452–8

    Article  PubMed  CAS  Google Scholar 

  4. The CASCADE Investigators. Randomized antiarrhythmic drug therapy in survivors of cardiac arrest (the CASCADE Study). Am J Cardiol 1993; 72 (3): 280–7

  5. Pedersen OD, Bagger H, Keller N, et al. Efficacy of dofetilide in the treatment of atrial fibrillation-flutter in patients with reduced left ventricular function: a danish investigations of arrhythmia and mortality on dofetilide (DIAMOND) substudy. Circulation 2001; 104(3): 292–6

    Article  PubMed  CAS  Google Scholar 

  6. Tsikouris JP, Cox CD. A review of class III antiarrhythmic agents for atrial fibrillation: maintenance of normal sinus rhythm. Pharmacotherapy 2001; 21(12): 1514–29

    Article  PubMed  CAS  Google Scholar 

  7. Singh BN, Sarma JS. What niche will newer class III antiarrhythmic drugs occupy? Curr Cardiol Rep 2001; 3(4): 314–23

    Article  PubMed  CAS  Google Scholar 

  8. Saliba WI. Dofetilide (Tikosyn): a new drug to control atrial fibrillation. Cleve Clin J Med 2001; 68(4): 353–63

    PubMed  CAS  Google Scholar 

  9. Brachmann J. The role of class III antiarrhythmic agents in maintaining sinus rhythm. Europace 2000; 1Suppl. C: C10–5

    PubMed  Google Scholar 

  10. Dorian P. Mechanisms of action of class III agents and their clinical relevance. Europace 2000; 1Suppl. C: C6–9

    PubMed  Google Scholar 

  11. Camm AJ. Clinical differences between the newer antiarrhythmic agents. Europace 2000; 1Suppl. C: C16–22

    PubMed  Google Scholar 

  12. Sager PT. New advances in class III antiarrhythmic drug therapy. Curr Opin Cardiol 2000; 15(1): 41–53

    Article  PubMed  CAS  Google Scholar 

  13. Singh SN, Fletcher RD. Class III drugs and congestive heart failure: focus on the congestive heart failure-survival trial of antiarrhythmic therapy. Am J Cardiol 1999; 84(9A): 103R–8R

    Article  PubMed  CAS  Google Scholar 

  14. Doshi SK, Singh BN. Pure class III antiarrhythmic drugs: focus on dofetilide. J Cardiovasc Pharmacol Ther 2000; 5(4): 237–47

    Article  PubMed  CAS  Google Scholar 

  15. Falk RH, Decara JM. Dofetilide: a new pure class III antiarrhythmic agent. Am Heart J 2000; 140(5): 697–706

    Article  PubMed  CAS  Google Scholar 

  16. Abrol R, Page RL. Azimilide dihydrochloride: a new class III anti-arrhythmic agent. Expert Opin Investig Drugs 2000; 9(11): 2705–15

    Article  PubMed  CAS  Google Scholar 

  17. Lenz TL, Hilleman DE. Dofetilide, a new class III antiarrhythmic agent. Pharmacotherapy 2000; 20(7): 776–86

    Article  PubMed  CAS  Google Scholar 

  18. Kalus JS, Mauro VF. Dofetilide: a class III-specific antiarrhythmic agent. Ann Pharmacother 2000; 34(1): 44–56

    Article  PubMed  CAS  Google Scholar 

  19. Al-Dashti R, Sami M. Dofetilide: a new class III antiarrhythmic agent. Can J Cardiol 2001; 17(1): 63–7

    PubMed  CAS  Google Scholar 

  20. Torp-Pedersen C, Brendorp B, Kober L. Dofetilide: a class III anti-arrhythmic drug for the treatment of atrial fibrillation. Expert Opin Investig Drugs 2000; 9(11): 2695–704

    Article  PubMed  CAS  Google Scholar 

  21. Mounsey JP, DiMarco JP. Cardiovascular drugs: dofetilide. Circulation 2000; 102(21): 2665–70

    Article  PubMed  CAS  Google Scholar 

  22. Rogers KC, Wolfe DA. Ibutilide: a class III rapidly acting antidysrhythmic for atrial fibrillation or atrial flutter. J Emerg Med 2001; 20(1): 67–71

    Article  PubMed  CAS  Google Scholar 

  23. Doggrell SA, Brown L. D-Sotalol: death by the SWORD or deserving of further consideration for clinical use? Expert Opin Investig Drugs 2000; 9(7): 1625–34

    Article  PubMed  CAS  Google Scholar 

  24. Kodama I, Kamiya K, Toyama J. Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am J Cardiol 1999; 84(9A): 20R–8R

    Article  PubMed  CAS  Google Scholar 

  25. Fuster V, Ryden LE, Asinger RW, et al. ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to develop guidelines for the management of patients with atrial fibrillation) developed in collaboration with the North American Society of Pacing and Electrophysiology. Eur Heart J 2001; 22(20): 1852–923

    Article  PubMed  CAS  Google Scholar 

  26. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology. The Sicilian gambit: a new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 1991; 84 (4): 1831–51

    Google Scholar 

  27. Ackerman MJ. The long QT syndrome: ion channel diseases of the heart. Mayo Clin Proc 1998; 73(3): 250–69

    Article  PubMed  CAS  Google Scholar 

  28. Priori SG, Barhanin J, Hauer RN, et al. Genetic and molecular basis of cardiac arrhythmias; impact on clinical management: study group on molecular basis of arrhythmias of the working group on arrhythmias of the European society of cardiology. Eur Heart J 1999; 20(3): 174–95

    Article  PubMed  CAS  Google Scholar 

  29. Hohnloser SH, Singh BN. Proarrhythmia with class III antiarrhythmic drugs: definition, electrophysiologic mechanisms, incidence, predisposing factors, and clinical implications. J Cardiovasc Electrophysiol 1995; 6(10 Pt 2): 920–36

    Article  PubMed  CAS  Google Scholar 

  30. Takanaka C, Singh BN. Barium-induced nondriven action potentials as a model of triggered potentials from early after depolarizations: significance of slow channel activity and differing effects of quinidine and amiodarone. J Am Coll Cardiol 1990; 15(1): 213–21

    Article  PubMed  CAS  Google Scholar 

  31. Sager PT, Uppal P, Follmer C, et al. Frequency-dependent electrophysiologic effects of amiodarone in humans. Circulation 1993; 88(3): 1063–71

    Article  PubMed  CAS  Google Scholar 

  32. Singh BN. Expanding indications for the use of Class III agents in patients at high risk for sudden death. J Cardiovasc Electrophysiol 1995; 6(10 Pt 2): 887–900

    Article  PubMed  CAS  Google Scholar 

  33. Singh BN. Antiarrhythmic actions of amiodarone: a profile of a paradoxical agent. Am J Cardiol 1996; 78(4A): 41–53

    Article  PubMed  CAS  Google Scholar 

  34. Sicouri S, Moro S, Litovsky S, et al. Chronic amiodarone reduces transmural dispersion of repolarization in the canine heart. J Cardiovasc Electrophysiol 1997; 8(11): 1269–79

    Article  PubMed  CAS  Google Scholar 

  35. Polster P, Broekhuysen J. The adrenergic antagonism of amiodarone. Biochem Pharmacol 1976; 25(2): 131–4

    Article  PubMed  CAS  Google Scholar 

  36. Singh BN. Current antiarrhythmic drugs: an overview of mechanisms of action and potential clinical utility. J Cardiovasc Electrophysiol 1999; 10(2): 283–301

    Article  PubMed  CAS  Google Scholar 

  37. Hohnloser SH, Woosley RL. Sotalol. N Engl J Med 1994; 331(1): 31–8

    Article  PubMed  CAS  Google Scholar 

  38. Sanguinetti MC, Jurkiewicz NK. Two components of cardiac delayed rectifier K+ current: differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 1990; 96(1): 195–215

    Article  PubMed  CAS  Google Scholar 

  39. Sanguinetti MC. Modulation of potassium channels by antiarrhythmic and antihypertensive drugs. Hypertension 1992; 19(3): 228–36

    Article  PubMed  CAS  Google Scholar 

  40. Carmeliet E. Electrophysiological and voltage clamp analysis of the effects of sotalol on isolated cardiac muscle and Purkinje fibers. J Pharmacol Exp Ther 1985; 232: 817–25

    PubMed  CAS  Google Scholar 

  41. Kato R, Ikeda N, Yabek SM, et al. Electrophysiologic effects of the levo- and dextrorotatory isomers of sotalol in isolated cardiac muscle and their in vivo pharmacokinetics. J Am Coll Cardiol 1986; 7(1): 116–25

    Article  PubMed  CAS  Google Scholar 

  42. Waldo AL, Camm AJ, deRuyter H, et al. Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction. Lancet 1996 Jul 6; 348: 7–12

    Article  PubMed  CAS  Google Scholar 

  43. Camm AJ, Yap YG. What should we expect from the next generation of antiarrhythmic drugs? J Cardiovasc Electrophysiol 1999; 10(2): 307–17

    Article  PubMed  CAS  Google Scholar 

  44. Gwilt M, Arrowsmith JE, Blackburn KJ, et al. UK-68,798: a novel, potent and highly selective class III antiarrhythmic agent which blocks potassium channels in cardiac cells. J Pharmacol Exp Ther 1991; 256: 318–24

    PubMed  CAS  Google Scholar 

  45. Rasmussen HS, Allen MJ, Blackburn KJ, et al. Dofetilide, a novel class III antiarrhythmic agent. J Cardiovasc Pharmacol 1992; 20Suppl. 2: S96–S105

    Article  PubMed  CAS  Google Scholar 

  46. Naccarelli GV, Lee KS, Gibson JK, et al. Electrophysiology and pharmacology of ibutilide. Am J Cardiol 1996; 78(8A): 12–6

    Article  PubMed  CAS  Google Scholar 

  47. Roden DM. Ibutilide and the treatment of atrial arrhythmias: a new drug, almost unheralded, is now available to US physicians. Circulation 1996; 94(7): 1499–502

    Article  PubMed  CAS  Google Scholar 

  48. Nemeth M, Varro A, Virag L, et al. Frequency-dependent cardiac electrophysiologic effects of tedisamil: comparison with quinidine and sotalol. J Cardiovasc Pharmacol Ther 1997; 2(4): 273–84

    Article  PubMed  CAS  Google Scholar 

  49. Dukes ID, Cleemann L, Morad M. Tedisamil blocks the transient and delayed rectifier K+ currents in mammalian cardiac and glial cells. J Pharmacol Exp. Ther 1990; 254(2): 560–9

    PubMed  CAS  Google Scholar 

  50. Fermini B, Jurkiewicz NK, Jow B, et al. Use-dependent effects of the class III antiarrhythmic agent NE-10064 (azimilide) on cardiac repolarization: block of delayed rectifier potassium and L-type calcium currents. J Cardiovasc Pharmacol 1995; 26(2): 259–71

    Article  PubMed  CAS  Google Scholar 

  51. Salata JJ, Brooks RR. Pharmacology of azimilide dihydrocloride (NE-10064), a class III antiarrhythmic agent. Cardiovasc Drug Rev 1997; 15: 137–56

    Article  CAS  Google Scholar 

  52. Capucci A, Aschieri D, Villani GQ, et al. Clinical potential of emerging antiarrhythmic agents. Drugs R D 1999; 1(4): 279–90

    Article  PubMed  CAS  Google Scholar 

  53. Schreieck J, Wang Y, Gjini V, et al. Differential effect of beta-adrenergic stimulation on the frequency-dependent electrophysiologic actions of the new class III antiarrhythmics dofetilide, ambasilide, and chromanol 293B. J Cardiovasc Electrophysiol 1997; 8(12): 1420–30

    Article  PubMed  CAS  Google Scholar 

  54. Zipes DP. Proarrhythmic events. Am J Cardiol 1988; 61(2): 70A–6A

    Article  PubMed  CAS  Google Scholar 

  55. Velebit V, Podrid P, Lown B, et al. Aggravation and provocation of ventricular arrhythmias by antiarrhythmic drugs. Circulation 1982; 65(5): 886–94

    Article  PubMed  CAS  Google Scholar 

  56. Rae AP, Kay HR, Horowitz LN, et al. Proarrhythmic effects of antiarrhythmic drugs in patients with malignant ventricular arrhythmias evaluated by electrophysiologic testing. J Am Coll Cardiol 1988; 12(1): 131–9

    Article  PubMed  CAS  Google Scholar 

  57. Horowitz LN, Greenspan AM, Rae AP, et al. Proarrhythmic responses during electrophysiologic testing. Am J Cardiol 1987; 59(11): 45E–8E

    Article  PubMed  CAS  Google Scholar 

  58. Lombardi F, Stein J, Podrid PJ, et al. Daily reproducibility of electrophysiologic test results in malignant ventricular arrhythmia. Am J Cardiol 1986; 57(1): 96–101

    Article  PubMed  CAS  Google Scholar 

  59. de Buitleir M, Morady F, DiCarlo Jr LA, et al. Immediate reproducibility of clinical and nonclinical forms of induced ventricular tachycardia. Am J Cardiol 1986; 58(3): 279–82

    Article  PubMed  Google Scholar 

  60. Nademanee K, Hendrickson J, Kannan R, et al. Antiarrhythmic efficacy and electrophysiologic actions of amiodarone in patients with life-threatening ventricular arrhythmias: potent suppression of spontaneously occurring tachyarrhythmias versus inconsistent abolition of induced ventricular tachycardia. Am Heart J 1982; 103(6): 950–9

    Article  PubMed  CAS  Google Scholar 

  61. Bayes de Luna A, Coumel P, Leclercq JF. Ambulatory sudden cardiac death: mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J 1989; 117(1): 151–9

    Article  Google Scholar 

  62. Jackman WM, Friday KJ, Anderson JL, et al. The long QT syndromes: a critical review, new clinical observations and a unifying hypothesis. Prog Cardiovasc Dis 1988; 31(2): 115–72

    Article  PubMed  CAS  Google Scholar 

  63. Viswanathan PC, Rudy Y. Pause induced early after depolarizations in the long QT syndrome: a simulation study. Cardiovasc Res 1999; 42(2): 530–42

    Article  PubMed  CAS  Google Scholar 

  64. Antzelevitch C, Sicouri S. Clinical relevance of cardiac arrhythmias generated by after depolarizations: role of M cells in the generation of U waves, triggered activity and torsade de pointes. J Am Coll Cardiol 1994; 23(1): 259–77

    Article  PubMed  CAS  Google Scholar 

  65. Burashnikov A, Antzelevitch C. Acceleration-induced action potential prolongation and early after depolarizations. J Cardiovasc Electrophysiol 1998; 9(9): 934–48

    Article  PubMed  CAS  Google Scholar 

  66. Carlsson L, Abrahamsson C, Andersson B, et al. Proarrhythmic effects of the class III agent almokalant: importance of infusion rate, QT dispersion, and early after depolarisations. Cardiovasc Res 1993; 27(12): 2186–93

    Article  PubMed  CAS  Google Scholar 

  67. Antzelevitch C, Sun ZQ, Zhang ZQ, et al. Cellular and ionic mechanisms underlying erythromycin-induced long QT intervals and torsade de pointes. J Am Coll Cardiol 1996; 28(7): 1836–48

    Article  PubMed  CAS  Google Scholar 

  68. Yan GX, Antzelevitch C. Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation 1998; 98(18): 1928–36

    Article  PubMed  CAS  Google Scholar 

  69. Surawicz B. Electrophysiologic substrate of torsade de pointes: dispersion of repolarization or early after depolarizations? J Am Coll Cardiol 1989; 14(1): 172–84

    Article  PubMed  CAS  Google Scholar 

  70. Roden DM, Hoffman BF. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers: relationship to potassium and cycle length. Circ Res 1985; 56(6): 857–67

    Article  PubMed  CAS  Google Scholar 

  71. Drouin E, Charpentier F, Gauthier C, et al. Electrophysiologic characteristics of cells spanning the left ventricular wall of human heart: evidence for presence of M cells. J Am Coll Cardiol 1995; 26(1): 185–92

    Article  PubMed  CAS  Google Scholar 

  72. el Sherif N, Caref EB, Yin H, et al. The electrophysiological mechanism of ventricular arrhythmias in the long QT syndrome: tridimensional mapping of activation and recovery patterns. Circ Res 1996; 79(3): 474–92

    Article  PubMed  Google Scholar 

  73. Haverkamp W, Breithardt G, Camm AJ, et al. The potential for QT prolongation and proarrhythmia by nonantiarrhythmic drugs: clinical and regulatory implications: report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 2000; 21: 1216–31

    CAS  Google Scholar 

  74. Houltz B, Darpo B, Edvardsson N, et al. Electrocardiographic and clinical predictors of torsades de pointes induced by almokalant infusion in patients with chronic atrial fibrillation or flutter: a prospective study. Pacing Clin Electrophysiol 1998; 21(5): 1044–57

    Article  PubMed  CAS  Google Scholar 

  75. Abbott GW, Sesti F, Splawski I, et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 1999; 97(2): 175–87

    Article  PubMed  CAS  Google Scholar 

  76. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999; 99(4): 529–33

    Article  PubMed  CAS  Google Scholar 

  77. Roden DM. Taking the ‘idio’ out of ‘idiosyncratic’: predicting torsades de pointes. Pacing Clin Electrophysiol 1998; 21(5): 1029–34

    Article  PubMed  CAS  Google Scholar 

  78. Mazur A, Anderson ME, Bonney S, et al. Pause-dependent polymorphic ventricular tachycardia during long-term treatment with dofetilide: a placebo-controlled, implantable cardioverter-defibrillator-based evaluation. J Am Coll Cardiol 2001; 37(4): 1100–5

    Article  PubMed  CAS  Google Scholar 

  79. Yang T, Roden DM. Extracellular potassium modulation of drug block of Ikr: implications for torsade de pointes and reverse use-dependence. Circulation 1996; 93(3): 407–11

    Article  PubMed  CAS  Google Scholar 

  80. Hondeghem LM, Snyders DJ. Class III antiarrhythmic agents have a lot of potential but a long way to go: reduced effectiveness and dangers of reverse use dependence. Circulation 1990; 81(2): 686–90

    Article  PubMed  CAS  Google Scholar 

  81. Cairns JA, Connolly SJ, Roberts R, et al. Randomised trial of outcome after myocardial infarction in patients with frequent or repetitive ventricular premature depolarisations: CAMIAT. Canadian Amiodarone Myocardial Infarction Arrhythmia Trial Investigators. Lancet 1997; 349(9053): 675–82

    Article  PubMed  CAS  Google Scholar 

  82. Singh SN, Fletcher RD, Fisher SG, et al. Amiodarone in patients with congestive heart failure and asymptomatic ventricular arrhythmia: survival trial of antiarrhythmic therapy in congestive heart failure. N Engl J Med 1995; 333: 77–82

    Article  PubMed  CAS  Google Scholar 

  83. Torp-Pedersen C, Moller M, Bloch-Thomsen PE, et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction: Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. N Engl J Med 1999; 341(12): 857–65

    Article  PubMed  CAS  Google Scholar 

  84. Kober L, Bloch Thomsen PE, Moller M, et al. Effect of dofetilide in patients with recent myocardial infarction and left-ventricular dysfunction: a randomised trial. Lancet 2000; 356(9247): 2052–8

    Article  PubMed  CAS  Google Scholar 

  85. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: The Symptomatic Atrial Fibrillation Investigative Research on Dofetilide (SAFIRE-D) Study. Circulation 2000; 102(19): 2385–90

    Article  PubMed  CAS  Google Scholar 

  86. Malik M, Batchvarov VN. Measurement, interpretation and clinical potential of QT dispersion. J Am Coll Cardiol 2000; 36(6): 1749–66

    Article  PubMed  CAS  Google Scholar 

  87. Spargias KS, Lindsay SJ, Kawa GI, et al. QT dispersion as a predictor of long-term mortality in patients with acute myocardial infarction and clinical evidence of heart failure. Eur Heart J 1999; 20(16): 1158–65

    Article  PubMed  CAS  Google Scholar 

  88. Brendorp B, Elming H, Jun L, et al. QT dispersion has no prognostic information for patients with advanced congestive heart failure and reduced left ventricular systolic function. Circulation 2001; 103(6): 831–5

    Article  PubMed  CAS  Google Scholar 

  89. Colatsky TJ, Follmer CH, Starmer CF. Channel specificity in antiarrhythmic drug action: mechanism of potassium channel block and its role in suppressing and aggravating cardiac arrhythmias. Circulation 1990; 82(6): 2235–42

    Article  PubMed  CAS  Google Scholar 

  90. Jurkiewicz NK, Sanguinetti MC. Rate-dependent prolongation of cardiac action potentials by a methanesulfonanilide class III antiarrhythmic agent: specific block of rapidly activating delayed rectifier K+ current by dofetilide. Circ Res 1993; 72(1): 75–83

    Article  PubMed  CAS  Google Scholar 

  91. Baskin EP, Lynch Jr JJ. Comparative effects of increased extracellular potassium and pacing frequency on the class III activities of methanesulfonanilide IKr blockers dofetilide, D-sotalol, E-4031, and MK-499. J Cardiovasc Pharmacol 1994; 24(2): 199–208

    PubMed  CAS  Google Scholar 

  92. Nattel S, Liu L, St Georges D. Effects of the novel antiarrhythmic agent azimilide on experimental atrial fibrillation and atrial electrophysiologic properties. Cardiovasc Res 1998; 37(3): 627–35

    Article  PubMed  CAS  Google Scholar 

  93. Bauer A, Becker R, Freigang KD, et al. Rate- and site-dependent effects of propafenone, dofetilide, and the new I (Ks)-blocking agent chromanol 293b on individual muscle layers of the intact canine heart. Circulation 1999; 100(21): 2184–90

    Article  PubMed  CAS  Google Scholar 

  94. Bosch RF, Gaspo R, Busch AE, et al. Effects of the chromanol 293B, a selective blocker of the slow, component of the delayed rectifier K+ current, on repolarization in human and guinea pig ventricular myocytes. Cardiovasc Res 1998; 38(2): 441–50

    Article  PubMed  CAS  Google Scholar 

  95. Boutitie F, Boissel JP, Connolly SJ, et al. Amiodarone interaction with beta-blockers: analysis of the merged EMIAT (European Myocardial Infarct Amiodarone Trial) and CAMIAT (Canadian Amiodarone Myocardial Infarction Trial) databases. The EMIAT and CAMIAT Investigators. Circulation 1999; 99(17): 2268–75

    Article  PubMed  CAS  Google Scholar 

  96. Lee SD, Newman D, Ham M, et al. Electrophysiologic mechanisms of antiarrhythmic efficacy of a sotalol and class Ia drug combination: elimination of reverse use dependence. J Am Coll Cardiol 1997; 29(1): 100–5

    Article  PubMed  CAS  Google Scholar 

  97. Julian DG, Camm AJ, Frangin G, et al. Randomised trial of effect of amiodarone on mortality in patients with left-ventricular dysfunction after recent myocardial infarction: EMIAT. European Myocardial Infarct Amiodarone Trial Investigators. Lancet 1997; 349(9053): 667–74

    Article  PubMed  CAS  Google Scholar 

  98. Amiodarone Trials Meta-Analysis Investigators. Effect of prophylactic amiodarone on mortality after acute myocardial infarction and in congestive heart failure: meta-analysis of individual data from 6500 patients in randomised trials. Lancet 1997; 350 (9089): 1417–24

    Google Scholar 

  99. Teo KK, Yusuf S, Furberg CD. Effects of prophylactic antiarrhythmic drug therapy in acute myocardial infarction: an overview of results from randomized controlled trials. JAMA 1993; 270(13): 1589–95

    Article  PubMed  CAS  Google Scholar 

  100. Julian DG, Prescott RJ, Jackson FS, et al. Controlled trial of sotalol for one year after myocardial infarction. Lancet 1982; I(8282): 1142–7

    Article  Google Scholar 

  101. Lynch JJ, Coskey LA, Montgomery DG, et al. Prevention of ventricular fibrillation by dextrorotatory sotalol in a conscious canine model of sudden coronary death. Am Heart J 1985; 109(5 Pt 1): 949–58

    Article  PubMed  CAS  Google Scholar 

  102. Vanoli E, Hull Jr SS, Adamson PB, et al. K+ channel blockade in the prevention of ventricular fibrillation in dogs with acute ischemia and enhanced sympathetic activity. J Cardiovasc Pharmacol 1995; 26(6): 847–54

    Article  PubMed  CAS  Google Scholar 

  103. Vanoli E, Priori SG, Nakagawa H, et al. Sympathetic activation, ventricular repolarization and Ikr blockade: implications for the antifibrillatory efficacy of potassium channel blocking agents. J Am Coll Cardiol 1995; 25(7): 1609–14

    Article  PubMed  CAS  Google Scholar 

  104. Burkart F, Pfisterer M, Kiowski W, et al. Effect of antiarrhythmic therapy on mortality in survivors of myocardial infarction with asymptomatic complex ventricular arrhythmias: Basel Antiarrhythmic Study of Infarct Survival (BASIS). J Am Coll Cardiol 1990; 16(7): 1711–8

    Article  PubMed  CAS  Google Scholar 

  105. Ceremuzynski L, Kleczar E, Krzeminska-Pakvla M, et al. Effect of amiodarone on mortality after myocardial infarction: a double-blind, placebo-controlled, pilot study. J Am Coll Cardiol 1992; 20(5): 1056–62

    Article  PubMed  CAS  Google Scholar 

  106. Pratt CM, Singh SN, Al-Khalidi H, et al. Efficacy of azimilide in the treatment of atrial fibrillation in a high-risk post-myocardial infarction population [abstract no. 107263]. Presented at the American Heart Association Meeting; 2001 Nov 11-14; Anaheim (CA)

  107. Doval HC, Nul DR, Grancelli HO, et al. Randomized trial of low dose amiodarone in severe congestive heart failure. Lancet 1994; 344: 493–8

    Article  PubMed  CAS  Google Scholar 

  108. Deedwania PC, Singh BN, Ellenbogen K, et al. Spontaneous conversion and maintenance of sinus rhythm by amiodarone in patients with heart failure and atrial fibrillation: observations from the veterans affairs congestive heart failure survival trial of antiarrhythmic therapy (CHF-STAT). The Department of Veterans Affairs CHF-STAT Investigators. Circulation 1998; 98(23): 2574–9

    Article  PubMed  CAS  Google Scholar 

  109. Massie BM, Shah NB, Pitt B, et al. Effect of amiodarone on clinical status and left ventricular function in patients with congestive heart failure. CHF-STAT Investigators. Circulation 1996; 93(12): 2128–34

    Article  PubMed  CAS  Google Scholar 

  110. Brendorp B, Elming H, Jun L, et al. QTc Interval as a guide to select those patients with congestive heart failure and reduced left ventricular systolic function who will benefit from antiarrhythmic treatment with dofetilide. Circulation 2001; 103(10): 1422–7

    Article  PubMed  CAS  Google Scholar 

  111. Brendorp B, Elming H, Li J, et al. The prognostic value of QTc Interval and QT dispersion following myocardial infarction in patients treated with or without dofetilide. Clin Cardiol. In press

  112. Brendorp B, Torp-Pedersen C, Elming H, et al. Survival after withdrawal of dofetilide in patientswith congestive heart failure and a short baseline QTc interval - a follow-up on the Diamond-CHF substudy. Eur Heart J. In press

  113. Pacifico A, Hohnloser SH, Williams JH, et al. Prevention of implantable-defibrillator shocks by treatment with sotalol: d,l-Sotalol Implantable Cardioverter-Defibrillator Study Group. N Engl J Med 1999; 340(24): 1855–62

    Article  PubMed  CAS  Google Scholar 

  114. Siebels J, Kuck KH. Implantable cardioverter defibrillator compared with antiarrhythmic drug treatment in cardiac arrest survivors: the Cardiac Arrest Study Hamburg. Am Heart J 1994; 127(4 Pt 2): 1139–44

    Article  PubMed  CAS  Google Scholar 

  115. Antiarrhythmics versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 1997; 337 (22): 1576–83

    Google Scholar 

  116. Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS): a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation 2000; 101(11): 1297–302

    Article  PubMed  CAS  Google Scholar 

  117. Kudenchuk PJ, Cobb LA, Copass MK, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 1999; 341(12): 871–8

    Article  PubMed  CAS  Google Scholar 

  118. Dorian P, Cass D, Schwartz B, et al. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med 2002; 346(12): 884–90

    Article  PubMed  CAS  Google Scholar 

  119. Ostranderld J, Brandt RL, Kieldsberg MO, et al. Electrocardiographic findings among the adult population of total natural community, Tecumseh, Michigan. Circulation 1965; 31: 888–98

    Article  Google Scholar 

  120. Levy S, Maarek M, Coumel P, et al. Characterization of different subsets of atrial fibrillation in general practice in France: the ALFA study: the College of French Cardiologists. Circulation 1999; 99(23): 3028–35

    Article  PubMed  CAS  Google Scholar 

  121. Benjamin EJ, Wolf PA, D’Agostino RB, et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 1998; 98(10): 946–52

    Article  PubMed  CAS  Google Scholar 

  122. Hart J, Halperin J. Atrial fibrillation and thromboembolism: a decade of progress in stroke prevention. Ann Intern Med 1999; 131: 688–95

    PubMed  CAS  Google Scholar 

  123. Coplen SE, Antman EM, Berlin JA, et al. Efficacy and safety of quinidine therapy for maintenance of sinus rhythm after cardioversion: a meta-analysis of randomized control trials. Circulation 1990; 82(4): 1106–16

    Article  PubMed  CAS  Google Scholar 

  124. Reimold SC, Chalmers TC, Berlin JA, et al. Assessment of the efficacy and safety of antiarrhythmic therapy for chronic atrial fibrillation: observations on the role of trial design and implications of drug-related mortality. Am Heart J 1992; 124(4): 924–32

    Article  PubMed  CAS  Google Scholar 

  125. Vitolo E, Tronci M, Larovere MT, et al. Amiodarone versus quinidine in the prophylaxis of atrial fibrillation. Acta Cardiol 1981; 36(6): 431–44

    PubMed  CAS  Google Scholar 

  126. Roy D, Talajic M, Dorian P, et al. Amiodarone to prevent recurrence of atrial fibrillation: Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med 2000; 342(13): 913–20

    Article  PubMed  CAS  Google Scholar 

  127. Hohnloser SH, Kuck KH, Lilienthal J. Rhythm or rate control in atrial fibrillation, pharmacological intervention in atrial fibrillation (PIAF): a randomised trial. Lancet 2000; 356(9244): 1789–94

    Article  PubMed  CAS  Google Scholar 

  128. Greenbaum RA, Campbell TJ, Channer KS, et al. Conversion of atrial fibrillation and maintenance of sinus rhythm by dofetilide: The EMERALD (European and Australian Multicenter Evaluative Research on Atrial Fibrillation Dofetilide) study [abstract]. Circulation 1998; 98(17 Suppl.): 1633

    Google Scholar 

  129. Benditt DG, Williams JH, Jin J, et al. Maintenance of sinus rhythm with oral d,l-sotalol therapy in patients with symptomatic atrial fibrillation and/or atrial flutter. d,l-Sotalol Atrial Fibrillation/Flutter Study Group. Am J Cardiol 1999; 84(3): 270–7

    Article  PubMed  CAS  Google Scholar 

  130. Juul-Moller S, Edvardsson N, Rehnqvist-Ahlberg N. Sotalol versus quinidine for the maintenance of sinus rhythm after direct current conversion of atrial fibrillation. Circulation 1990; 82(6): 1932–9

    Article  PubMed  CAS  Google Scholar 

  131. Reimold SC, Cantillon CO, Friedman PC, et al. Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. Am J Cardiol 1993; 71(7): 558–63

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Danish Heart Association. Christian Torp-Pedersen and Lars Køber were in the steering committee of the DIAMOND studies and have given presentations at symposia sponsored by Pfizer Inc. Christian Torp-Pedersen and Lars Køber are currently on the ANDROMEDA steering committee, a study of dronaderone sponsored by Sanofi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Brendorp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brendorp, B., Pedersen, O.D., Torp-Pedersen, C. et al. A Benefit-Risk Assessment of Class III Antiarrhythmic Agents. Drug-Safety 25, 847–865 (2002). https://doi.org/10.2165/00002018-200225120-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200225120-00003

Keywords

Navigation