Skip to main content
Log in

A Risk-Benefit Assessment of Treatments for Infantile Spasms

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Infantile spasms are a devastating epileptic encephalopathy of the young child. The continuing spasms and hypsarrhythmia have a deleterious effect on brain maturation and further cognitive development.

Corticotropin (adrenocorticotropic hormone) or corticosteroids have been the gold standard treatment for the last 40 years, but there is little agreement on the best agent to use, or the dosage and duration of the treatment. Despite this empirical approach, corticotropin or corticosteroids are effective in controlling spasms and normalising electroencephalograms in about 60% of cases. The major concern with this treatment is the occurrence of frequent and severe adverse effects.

The introduction of vigabatrin in the 1990s improved the outcome of infantile spasms. Vigabatrin shows an efficacy at least equal to that of corticosteroids, and even higher in specific groups such as those with tuberous sclerosis. The major advantages of vigabatrin are the ability to initiate treatment at the full dosage, rapid efficacy, suitability for outpatient treatment and particularly good tolerability with only minor adverse effects. Recently, however, the safety of vigabatrin has caused concern since a specific visual field loss has been reported in treated adults.

The current problem is determining the risk-benefit ratio of vigabatrin and corticosteroids/corticotropin in children with infantile spasms, and to specify the groups where their use could be optimal. Visual field loss is usually asymptomatic and can be detected only by perimetric visual field studies. In children, especially in the young or disabled, it is difficult if not impossible to detect the visual field loss and it is not yet known if children are at higher or lower risk for this adverse effect. Until a clear answer about the occurrence of this adverse effect in children has been established through randomised study, vigabatrin may still be considered first-line therapy in infantile spasms. Children who do not achieve a good response to vigabatrin should be switched to corticotropin/corticosteroid therapy.

Despite the efficacy of corticosteroids and vigabatrin, the use of the conventional antiepileptic drugs, the newly developed antiepileptic drugs and some promising results with ketogenic diet, 25 to 30% of patients with infantile spasms continue to have spasms and experience psychomotor regression. These drug-resistant patients could be candidates for surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Commission on the Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30: 389–99

    Google Scholar 

  2. Hurst DL The epidemiology of infantile spasms. In: Dulac O, Chugani H, Dalla Bernardina B, editors. Infantile spasms and West syndrome. Philadelphia (PA): Saunders, 1994

    Google Scholar 

  3. Chugani HT, Shields WD, Shewmon DA, et al. Infantile spasms. I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol 1990; 27: 406–13

    PubMed  CAS  Google Scholar 

  4. Bachman D. Spontaneous remission of infantile spasms with hypsarrythmia [letter]. Arch Neurol 1981; 38: 785

    PubMed  CAS  Google Scholar 

  5. Dulac O, Plouin P, Jambaqué I, et al. Spasmes infantiles épileptiques bénins. Rev EEG Neurophysiol Clin 1986; 16: 371–82

    CAS  Google Scholar 

  6. Sorel L, Dusaucy-Bauloye A. Apropos de 21 cas d’hypsarythmie de Gibbs, Son traitement spectaculaire par l’ACTH. Acta Neurol Belg 1958; 58: 130–41

    CAS  Google Scholar 

  7. Chiron C, Dulac O, Luna D, et al. Vigabatrin in infantile spasms [letter]. Lancet 1990; 335: 363–4

    PubMed  CAS  Google Scholar 

  8. Chiron C, Dulac O, Beaumont D, et al. Therapeutic trial of vigabatrin in refractory infantile Spasms. J Child Neurol 1991; 6: S52–9

    Google Scholar 

  9. Lombroso CT. A prospective study of infantile spasms: clinical and therapeutic correlations. Epilepsia 1983; 24: 135–58

    PubMed  CAS  Google Scholar 

  10. Glaze DG, Hrachovy RA, Forst JD, et al. Prospective study of outcome of infants with infantile spasms treated during controlled studies of ACTH and prednisone. J Pediatr 1988; 112: 389–96

    PubMed  CAS  Google Scholar 

  11. Snead OC, Benton JW, Hosey LC, et al. Treatment of infantile spasms with high doses of ACTH: efficacy and plasma levels of ACTH and cortisol. Neurology 1989; 39: 1027–30

    PubMed  Google Scholar 

  12. Baram TZ, Mitchell WG, Tournay A, et al. High dose corticotropin (ACTH) versus prednisone for infantile spasms: a prospective, randomised, blinded study. Pediatrics 1996; 97: 375–9

    PubMed  CAS  Google Scholar 

  13. Willoughby JA, Thurston DL, Holowash J. Infantile myoclonic seizures: an evaluation of ACTH and corticosteroid therapy. J Pediatr 1966; 69: 1136–8

    PubMed  CAS  Google Scholar 

  14. Hrachovy RA, Forst JD, Glaze DG. High dose, long duration versus low dose, short duration corticotropin therapy for infantile spasms. J Pediatr 1994; 124: 803–6

    PubMed  CAS  Google Scholar 

  15. Riikonen R. Infantile spasms: modern practical aspects. Acta Pediatr Scand 1984; 73: 1–12

    CAS  Google Scholar 

  16. Singer WD, Rube EF, Haller JS. The effect of ACTH therapy upon infantile spasms. J Pediatr 1980; 96: 485–9

    PubMed  CAS  Google Scholar 

  17. Hrachovy RA, Frost JD, Kellaway P, et al. Double blind study of ACTH vs prednisone therapy in infantile spasms. J Pediatr 1983; 103: 641–5

    PubMed  CAS  Google Scholar 

  18. Snead OC, Benton JW, Myers GJ. ACTH and prednisone in childhood seizures disorders. Neurology 1983; 33: 966–70

    PubMed  Google Scholar 

  19. Schlumberger E, Dulac O. A simple, effective and well tolerated regime for West syndrome. Dev Med Child Neurol 1994; 36: 863–72

    PubMed  CAS  Google Scholar 

  20. Harris R. Some observations in children with infantile spasms treated with ACTH. Arch Dis Child 1964; 39: 546–70

    Google Scholar 

  21. Jeavons PM, Bower BD. Infantile spasms: a review of the literature and a study of 112 cases. London: Heinemen, 1964

    Google Scholar 

  22. Riikonen R, Donner M. ACTH therapy in infantile spasms: side effects. Arch Dis Child 1980; 55: 664–72

    PubMed  CAS  Google Scholar 

  23. Okuno T, Ito M, Konishi Y, et al. Cerebral atrophy following ACTH therapy. J Comput Assist Tomogr 1980; 4: 20–3

    PubMed  CAS  Google Scholar 

  24. Ito M, Takao T, Okunu T, et al. Sequential CT studies of24 children with infantile spasms on ACTH therapy. Dev Med Child Neurol 1983; 25: 475–80

    PubMed  CAS  Google Scholar 

  25. Aicardi J. Epilepsy in children. New York (NY): Raven Press, 1986

    Google Scholar 

  26. Vidal C, Jordan W, Zieglgansberger W. Corticosterone reduces the excitability of hippocampal pyramidal cells in vitro. Brain Res 1986; 383(1-2): 54–9

    PubMed  CAS  Google Scholar 

  27. Maeda H, Furune S, Nomura K, et al. Decrease of N-acetylaspartate after ACTH therapy in patients with infantile spasms. Neuropediatrics 1997; 28: 2622–267

    Google Scholar 

  28. Tekgul H, Tutuncuoglu S, Coker M, et al. Infantile spasms: the effect of corticotropin (ACTH) on the free amino acid profile in cerebrospinal fluid. Brain Dev 1999; 21(1): 20–3

    PubMed  CAS  Google Scholar 

  29. Riikonen R, Soderstrom S, Vanhala R, et al. West syndrome: cerebrospinal fluid nerve growth factor and effect of ACTH. Pediatr Neurol 1997; 17: 224–9

    PubMed  CAS  Google Scholar 

  30. Willing RP, Lagenstein I. Use of ACTH fragments in children with infantile spasms. Neuropediatrics 1982; 13: 55–8

    Google Scholar 

  31. Pavone L, Incorpora G, Larosa M, et al. Treatment of infantile spasms with sodium dipropylacetic acid. Dev Med Child Neurol 1981; 23: 454–61

    PubMed  CAS  Google Scholar 

  32. Simon D, Penry JK. Sodium di-N-propylacetate in the treatment of epilepsy: a review. Epilepsia 1975; 16: 549–73

    PubMed  CAS  Google Scholar 

  33. Bachman D. Use of valproic acid in the treatment of infantile spasms. Arch Neurol 1982; 39: 49–52

    PubMed  CAS  Google Scholar 

  34. Siemes H, Spohr HL, Michael T, et al. Therapy of infantile spasm with valproate: results of a prospective study. Epilepsia 1988; 29: 553–60

    PubMed  CAS  Google Scholar 

  35. Takuma Y, Seti T. Combination therapy of infantile spasms with high dose pyridoxal phosphate and low dose corticotropin. J Child Neurol 1996; 11: 35–40

    PubMed  CAS  Google Scholar 

  36. Watanabe K. Medical treatment of West syndrome in Japan. J Child Neurol 1995; 10: 143–7

    PubMed  CAS  Google Scholar 

  37. Dreifuss FE, Santilli N, Langer DH, et al. Valproic acid hepatic fatalities: a retrospective review. Neurology 1987; 37: 379–85

    PubMed  CAS  Google Scholar 

  38. Bryant III AE, Dreifuss FE. Valproic acid hepatic fatalities. III: U.S. experience since 1986. Neurology 1996; 46: 465–9

    PubMed  Google Scholar 

  39. Dulac O, Stern D, Rey E, et al. Sodium valproate monotherapy in childhood epilepsy. Brain Dev 1986; 8: 47–52

    PubMed  CAS  Google Scholar 

  40. Lenn NJ, Ellis WG, Washburn ER, et al. Fatal hepatocerebral syndrome in siblings discordant for exposure to valproate. Epilepsia 1990; 24: 135–8

    Google Scholar 

  41. Harding BNP. Progressive neuronal degeneration of childhood with liver disease (Alpers-Huttenlocher syndrome): a personal review. J Child Neurol 1990; 5: 273–87

    PubMed  CAS  Google Scholar 

  42. Oechsner M, Steen C, Sturenburg HJ, et al. Hyperammonaemic encephalopathy after initiation of valproate therapy in unrecognised ornithine transcarbamylase deficiency. J Neurol Neurosurg Psychiatry 1998 May; 64(5): 680–2

    PubMed  CAS  Google Scholar 

  43. Davis R, Peters DH, McTavish D. Valproic acid. A reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994 Feb; 47 (2): 332–72

    Google Scholar 

  44. Novak GP, Maytal J, Alshansky A, et al. Risk of excessive weight gain in epileptic children treated with valproate. J Child Neurol 1999 Aug; 14(8): 490–5.

    PubMed  CAS  Google Scholar 

  45. Acharya S, Bussel JB. Hematologic toxicity of sodium valproate. J Pediatr Hematol Oncol 2000 Jan-Feb; 22(1): 62–5

    PubMed  CAS  Google Scholar 

  46. Voltzke E, Doose H, Stephan E. The treatment of infantile spasms and hypsarrhythmias with Mogadon. Epilepsia 1967; 8: 64–70

    Google Scholar 

  47. Dreifuss S, Farwell J, Holmes G, et al. Infantile spasms, comparative trial of nitrazepam and corticotropin. Arch Neurol 1986; 43: 1107–10

    PubMed  CAS  Google Scholar 

  48. Lim HC, Nigro MA, Beierwaltes P, et al. Nitrazepam-induced cricopharyngeal dysphagia, abnormal esophageal peristalsis and associated bronchospasm: probable cause of nitrazepam-related sudden death. Brain Dev 1992 Sep; 14(5): 309–14

    PubMed  CAS  Google Scholar 

  49. Wyllie E, Wyllie R, Cruse RP, et al. The mechanism of nitrazepam-induced drooling and aspiration. N Engl J Med 1986 Jan 2; 314(1): 35–8

    PubMed  CAS  Google Scholar 

  50. Pinder RM, Brogden RN, Speight TM, et al. Clonazepam: a review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs 1976 Nov; 12(5): 321–61

    PubMed  CAS  Google Scholar 

  51. Rudolf M, Geddes DM, Turner JA, et al. Depression of central respiratory drive by nitrazepam. Thorax 1978 Feb; 33(1): 97–100

    PubMed  CAS  Google Scholar 

  52. Rintahaka Pj, Nakagawa JA, Shewmon DA, et al. Incidence of death in patients with intractable epilepsy during nitrazepam treatment. Epilepsia 1999 Apr; 40(4): 492–6

    PubMed  CAS  Google Scholar 

  53. Chung SH, Cox RA. Determination of pyridoxal phosphate levels in the brains of audiogenic and normal mice. Neurochem 1983; 8: 1245–59

    CAS  Google Scholar 

  54. Ito M, Mikawa H, Taniguchi T, et al. Cerebrospinal fluid GABA levels in children with infantile spasms. Neurology 1984; 34: 234–8

    Google Scholar 

  55. Ohtsuka Y, Matsuda M, Ogino T, et al. Treatment of the West syndrome with high-dose pyridoxal phosphate. Brain Dev 1997; 9: 418–21

    Google Scholar 

  56. Gram L, Klosterskov P, Dam M. Gamma-vinyl-GABA: a double-blind placebo-controlled trial in partial epilepsy. Ann Neurol 1985; 17: 262–6

    PubMed  CAS  Google Scholar 

  57. Luna D, Dulac O, Beaumont D, et al. Vigabatrin in the treatment of childhood epilepsies: a single blind placebo controlled study. Epilepsia 1989; 30: 430–7

    PubMed  CAS  Google Scholar 

  58. Lopez-Valdes E, Hernandez-Lain A, Simon R, et al. Treatment of refractory infantile epilepsy with vigabatrin in a series of 55 patients. Rev Neurol 1996; 24: 1255–7

    PubMed  CAS  Google Scholar 

  59. Granstrom ML, Gaily E, Liukkonen E. Treatment of infantile spasms: results of a population based study with vigabatrin as the first drug for spasms. Epilepsia 1999; 40(7): 950–7

    PubMed  CAS  Google Scholar 

  60. Koo B. Vigabatrin in the treatment of infantile spasms. Pediatr Neurol 1999; 20(2): 106–10

    PubMed  CAS  Google Scholar 

  61. Aicardi J, Sabril IS, Mumford J, et al. Vigabatrin as initial therapy for infantile spasms: an European retrospective survey. Epilepsia 1996; 37: 638–42

    PubMed  CAS  Google Scholar 

  62. Vigevano F, Cilio MR. Vigabatrin versus ACTH as first line treatment for infantile spasms: a randomized, prospective study. Epilepsia 1997; 38: 1270–4

    PubMed  CAS  Google Scholar 

  63. Chiron C, Dumas C, Jambaqué I, et al. Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res 1997; 26: 389–95

    PubMed  CAS  Google Scholar 

  64. Cossette P, Riviello JJ, Carmant L, et al. ACTH versus vigabatrin therapy in infantile spasms: a retrospective study. Neurology 1999; 52: 1691–4

    PubMed  CAS  Google Scholar 

  65. Appleton RE, Peters ACB, Mumford JP, et al. Randomized, placebo-controlled study of vigabatrin as first line treatment of infantile spasms: vigabatrin as first line monotherapy in newly diagnosed infantile spasms. Epilepsia 1999; 40(11): 1627–33

    PubMed  CAS  Google Scholar 

  66. Eke T, Talbot JF, Lawden MC. Severe persistent visual field constriction associated with vigabatrin [letter]. BMJ 1997; 314: 180–1

    PubMed  CAS  Google Scholar 

  67. Mackenzie R, Klistomer A. Severe persistent visual field constriction associated with vigabatrin [letter]. BMJ 1997; 314: 1693

    Google Scholar 

  68. Wilson OA, Brodie MJ. Severe persistent visual field constriction associated with vigabatrin [letter]. BMJ 1997; 314: 1693

    PubMed  CAS  Google Scholar 

  69. Wong IC, Mawer GE, Sander JWAS. Severe persistent visual field constriction associated with vigabatrin. Reaction may be dose dependent [letter]. BMJ 1997; 314: 1693–4

    PubMed  CAS  Google Scholar 

  70. Blackwell N, Hayllar J, Kelly G. Severe persistent visual field constriction associated with vigabatrin [letter]. BMJ 1997; 314: 1694

    PubMed  CAS  Google Scholar 

  71. Harding JFA. Severe persistent visual field constriction associated with vigabatrin [letter]. BMJ 1997; 314: 1694

    PubMed  CAS  Google Scholar 

  72. Krauss GL, Johnson MA, Miller NR. Vigabatrin associated retinal cone system dysfunction. Neurology 1998; 50: 614–8

    PubMed  CAS  Google Scholar 

  73. Harding JFA, Wild JM, Robertson K, et al. Electroculography, ERG’s, multifocal ERG’s and VEPs in epileptic patients showing visual field disorder. Electroencephalogr Clin Electrophysiol 1997; 103: 96

    Google Scholar 

  74. Ruether K, Pung T, Kellner U, et al. Electrophysiologic evaluation of a patient with peripheral visual field constriction associated with vigabatrin. Arch Ophtalmol 1998; 116: 817–9

    CAS  Google Scholar 

  75. Kalvinainen R, Nousiainen I, Mantyjarvi M, et al. Vigabatrin, a GABAergic antiepileptic drug, causes concentric visual field defects. Neurology 1999; 53: 922–6

    Google Scholar 

  76. Wild CM, Martinez C, Reinshagen G, et al. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999; 40(12): 1784–94

    PubMed  CAS  Google Scholar 

  77. Butler WH, Ford GP, Newberne GW. A study of the effect of vigabatrin on the central nervous system and retina of Sprague-Dawley and Lister-Hooded rats. Toxicol Pathol 1987; 15: 143–8

    PubMed  CAS  Google Scholar 

  78. Gibson JP, Yarrington JT, Loudy DE, et al. Chronic toxicity studies with vigabatrin, a GABA transaminase inhibitor. Toxicol Pathol 1990; 18: 225–38

    PubMed  CAS  Google Scholar 

  79. Mauguiere F, Chauvel P, Dewailly J, et al. No effect of long term vigabatrin on central nervous system in patients with refractory epilepsy: results of a multicenter study of somatosensory and visual evoked potentials. Epilepsia 1997; 38: 301–8

    PubMed  CAS  Google Scholar 

  80. Riekkinen P, Aikia M, Partanen K. Efficacy and safety of vigabatrin monotherapy. Epilepsia 1997; 38Suppl.: 104

    Google Scholar 

  81. Cannon DJ, Buttler WH, Mumford JP, et al. Neuropathological findings in patients receiving long term vigabatrin therapy for chronic intractable epilepsy. J Child Neurol 1991; 6: 17–24

    Google Scholar 

  82. Gross-Tsur V, Banin E, Shahar E, et al. Visual impairment in children with epilepsy treated with vigabatrin. Ann Neurol 2000 Jul; 48(1): 60–4

    PubMed  CAS  Google Scholar 

  83. Ianetti P, Spalice A, Perla FM, et al. Visual field constriction in children with epilepsy on vigabatrin treatment. Pediatrics 2000 Oct; 106(4): 838–42

    Google Scholar 

  84. Wohlrab G, Boltshauser E, Schmitt B, et al. Visual field constriction is not limited to children treated with vigabatrin. Neuropediatrics 1999 Jun; 30(3): 130–2

    PubMed  CAS  Google Scholar 

  85. Versino M, Veggiotti P. Reversibility ofvigabratin-induced visual- field defect. Lancet 1999 Aug 7; 354(9177): 486

    PubMed  CAS  Google Scholar 

  86. Appleton RE. Guideline may help in prescribing vigabatrin. BMJ 1998; 317: 1322

    PubMed  CAS  Google Scholar 

  87. Guideline for prescribing vigabatrin in children has been revised. Vigabatrin Paediatric Advisory Group. BMJ 2000 May 20; 320 (7246): 1404–5

  88. Vigabatrin Paediatric Advisory Group. Advisory group reply. In: Lux AL, Edwards SW, Osborne JP, et al. Revised guideline for prescribing vigabatrin in children: guideline’s claim about infantile spasms is not based on appropriate evidence. BMJ 2001 Jan 27; 322 (7280): 236–7

  89. Lux AL, Edwards SW, Osborne JP, et al. Revised guideline for prescribing vigabatrin in children: guideline’s claim about infantile spasms is not based on appropriate evidence. BMJ 2001 Jan 27; 322(7280): 236–7

    PubMed  CAS  Google Scholar 

  90. Riikonen RS. Steroids or vigabatrin in the treatment of infantile spasms? Pediatr Neurol 2000 Nov; 23(5): 403–8

    PubMed  CAS  Google Scholar 

  91. Dulac O. Vigabatrin-optimal use in children. In: Vigabatrin: current status and future prospects. 23rd International Epilepsy Congress; 1999 Sep 12-17: Prague. TMG Healthcare Communications: Prague, 1999

    Google Scholar 

  92. Prasad AN, Penney S, Buckley DJ. The role of vigabatrin in childhood seizure disorders: results from a clinical audit. Epilepsia 2001; 42(1): 54–61

    PubMed  CAS  Google Scholar 

  93. Langtry HD, Wagstaff AJ. Management of epilepsy: defining the role of lamotrigine. Dis Manage Health Outcomes 1997; 1: 254–70

    Google Scholar 

  94. Veggiotti P, Cieuta C, Rey E, et al. Lamotrigine in infantile spasms [letter]. Lancet 1994; 44: 1375–6

    Google Scholar 

  95. Sclumberger E, Chavez F, Palacios L, et al. Lamotrigine in treatment of 120 children with epilepsy. Epilepsia 1994; 35: 359–67

    Google Scholar 

  96. Rosenfeld WE, Sachdeo RC, Faught RE, et al. Long term experience with topiramate as adjunctive therapy in patients with partial onset seizures: retrospective survey of open label treatment. Epilepsia 1998; 38Suppl. 1 (1): 34–6

    Google Scholar 

  97. Sachdeo RC, Reife RA, Lim P, et al. Topiramate monotherapy for partial onset seizures. Epilepsia 1997; 38: 294–300

    PubMed  CAS  Google Scholar 

  98. Glauser TA, Sachdeo RC, Ritter FJ, et al. Topiramate in Lennox-Gastaut syndrome: a double blind trial. Neurology 1997; 48: 1729

    Google Scholar 

  99. Glauser TA, Clark PO, Strawsburg R. A pilot study of topiramate in the treatment of infantile spasms. Epilepsia 1998; 39(12): 1324–8

    PubMed  CAS  Google Scholar 

  100. Glauser TA, Clark PO, McGee K. Long term response to Topiramate in patients with West syndrome. Epilepsia 2000; 41(1): 91–4

    Google Scholar 

  101. Yanai S, Hanai T, Narazaki O. Treatment of infantile spasms with zonisamide. Brain Dev 1999; 21(3): 157–61

    PubMed  CAS  Google Scholar 

  102. Kawawaki H, Tomiwa K, Shiraishi K, et al. Efficacy of zonisamide in West syndrome [abstract]. No To Hattatsu 1999; 31(3): 263–7

    PubMed  CAS  Google Scholar 

  103. Suzuki Y, Nagai T, Ono J. Zonizamide monotherapy in newly diagnosed infantile spasms. Epilepsia 1997; 38: 1035–8

    PubMed  CAS  Google Scholar 

  104. Kishi T, Nejihashi Y, Kajiyama M, et al. Successful zonisamide for infants with hypsarrhythmia. Pediatr Neurol 2000; 23(3): 274–7

    PubMed  CAS  Google Scholar 

  105. Pennel PB, Ogaily MS, Macdonald RL. A plastic anemia in a patient receiving felbamate for complex partial seizure. Neurology 1995; 45: 456–60

    Google Scholar 

  106. Hurst DL, Rolan TD. The use of felbamate to treat infantile spasms. J Child Neurol 1995; 10: 134–44

    PubMed  CAS  Google Scholar 

  107. Coppola G, Pascotto A. Felbamate in refractory infantile spasms. Epilepsia 1997; 38Suppl.: 37

    Google Scholar 

  108. Monaghan EP, Navalta LA, Shum L, et al. Initial human experience with ganaxolone, a neuroactive steroid with antiepileptic activity. Epilepsia 1997; 38(9): 1026–31

    PubMed  CAS  Google Scholar 

  109. Gasior M, Ungard JT, Beekman M, et al. Acute and chronic effect of the synthetic neuroactive steroid, ganaxolone, against the convulsive and lethal effects of pentylenetetrazol in seizure-kindled mice: comparison with diazepam and valproate. Neuropharmacology 2000; 39(7): 1184–96

    PubMed  CAS  Google Scholar 

  110. Kerrigan JF, Shields WD, Nelson TY, et al. Ganoxolone for treating infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res 2000; 42(2-3): 133–9

    PubMed  CAS  Google Scholar 

  111. Swink T, Vining EP, Casey JC, et al. Efficacy of the ketogenic diet in children under 2 years of age. Epilepsia 1997; 38Suppl.: 26

    Google Scholar 

  112. Freeman JM, Vining EP. Ketogenic diet: a time tested, effective, and safe method for treatment of intractable childhood epilepsy. Epilepsia 1998; 39: 450–7

    PubMed  CAS  Google Scholar 

  113. Vining EP. Clinical efficacy of the ketogenic diet. Epilepsy Res 1999; 37(3): 181–90

    PubMed  CAS  Google Scholar 

  114. Hassan AM, Keene DL, Whiting SE, et al. Ketogenic diet in the treatment of refractory epilepsy in childhood. Pediatr Neurol 1999; 21(2): 548–52

    PubMed  CAS  Google Scholar 

  115. Vining EP, Freeman JM, Ballaban-Gil K, et al. A multicenter study of the efficacy of the ketogenic diet. Arch Neurol 1998; 55(11): 1433–7

    PubMed  CAS  Google Scholar 

  116. Ballaban-Gil K, Callahan C, O’Dell C, et al. Complications of the ketogenic diet. Epilepsia 1998; 39(7): 744–8

    PubMed  CAS  Google Scholar 

  117. Pechadre JC, Sauvezic B, Osier C, et al. Traitement des encéphalopathies épileptiques des enfants par les immunoglobulines. Rev EEG Neurophysiol Clin 1977; 7: 443–7

    CAS  Google Scholar 

  118. Ariizumi M, Baba K, Shiihara H, et al. High dose gammaglobulin for intractable childhood epilepsy. Lancet 1983; II: 162–3

    Google Scholar 

  119. Ariizumi M, Baba K, Hibio S, et al. Immunoglobulin therapy in West syndrome. Brain Dev 1987; 9: 422–5

    PubMed  CAS  Google Scholar 

  120. Echenne B, Dulac O, Parayre-Chanez MJ, et al. Treatment of infantile spasms with intravenous gammaglobulines. Brain Dev 1991; 13: 313–9

    PubMed  CAS  Google Scholar 

  121. Chugani TH, Shewmon AD, Shields DW, et al. Surgery for intractable infantile spasms: neuroimaging perspectives. Epilepsia 1993; 34(4): 764–71

    PubMed  CAS  Google Scholar 

  122. Asarnow RF, LoPresti C, Guthrie D, et al. Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms. Dev Med Child Neurol 1997; 39(7): 430–40

    PubMed  CAS  Google Scholar 

  123. Chugani HT, Conti JR. Etiologic classification of infantile spasms in 140 cases: role of positron emission tomography. J Child Neurol 1996; 11(1): 44–8

    PubMed  CAS  Google Scholar 

  124. Kramer U, Sue WC, Mikati MA. Focal features in West syndrome indicating candidacy for surgery. Pediatr Neurol 1997; 16(3): 213–7

    PubMed  CAS  Google Scholar 

  125. Pinard JM, Delalande O, Chiron C, et al. Callosotomy for epilepsy after West syndrome. Epilepsia 1999; 40(12): 1727–34

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Dr Catherine Chiron and Professor Olivier Dulac for their advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Nabbout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nabbout, R. A Risk-Benefit Assessment of Treatments for Infantile Spasms. Drug-Safety 24, 813–828 (2001). https://doi.org/10.2165/00002018-200124110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200124110-00003

Keywords

Navigation