Skip to main content
Log in

Clinical-Pharmacological Strategies to Assess Drug Interaction Potential During Drug Development

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Drug interactions in patients receiving multiple drug regimens are a constant concern for the clinician. With the increased availability of new drugs and their concomitant use with other drugs, there has been a rise in the potential for adverse drug interactions as demonstrated by the recent withdrawals of newly marketed drugs because of unacceptable interaction profiles. Therefore, the interaction potential of a new compound has to be assessed in detail, starting with preclinical in vitro and in vivo studies at candidate selection and continuously followed up through preclinical and clinical development. Since formal in vivo studies of all possible drug interactions are neither practicable nor suggestive, a careful selection of a limited number of drug combinations to be investigated in vivo during the development phase is indicated. Based on knowledge of pharmacokinetic and biopharmaceutical properties, a well balanced link between in vitro investigations and carefully selected in vivo interaction studies allows full assessment of the potential of a new drug to cause clinically relevant pharmacokinetic drug-drug interactions, prediction of a lack of interactions and derivation of the proper dose recommendations.

Clinical pharmacology plays a number of key roles within the process of collecting information on drug interactions during preclinical and clinical development: addressing issues and/or favourable properties to be expected, thus contributing to the scientific assessment of development potential; setting up a rational in vivo drug-drug interaction programme; performing early mechanistic studies to link in vitro with in vivo information (employing ‘cocktail’ approaches if possible); reviewing co-medication sections for clinical trials; and conducting labelling-oriented interaction studies after proof of concept.

The fact that interactions can occur between various active substances should by itself be a conclusive argument against unnecessary polypharmacy. Prescribing fewer drugs on a rational basis can reduce the risk of adverse effects secondary to drug interactions and may help to improve the quality of drug treatment and to save costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2

Similar content being viewed by others

References

  1. Cluff LE, Petrie JC. Clinical effects of interaction between drugs. Amsterdam: Excerpta Medica, 1975

    Google Scholar 

  2. Verspohl EJ. Pharmakodynamische Wechselwirkungen zwischen Arzneistoffen. Med Monatsschr Pharm 1980; 8: 228–41

    Google Scholar 

  3. Cadieux RJ. Drug interactions in the elderly. How multiple drug use increases risk exponentially. Postgrad Med 1989; 86: 179–86

    CAS  PubMed  Google Scholar 

  4. Kuhlmann J. Drug-drug interactions of cardiovascular drugs. In: Breimer DD, Merkus FWHM, editors. Drug-drug and drug-food interactions. Boerhaave Committee for Postgraduate Medical Education. Center for Bio-Pharmaceutical Sciences. The Netherlands: Leiden University, 1991: 75–90

    Google Scholar 

  5. Goldberg RM, Mabee J, Chan L, et al. Drug-drug and drug-disease interactions in the ED: analysis of a high-risk population. Am J Emerg Med 1996; 14: 447–50

    Article  CAS  PubMed  Google Scholar 

  6. Kohler GI, Bode-Böger SM, Busse R, et al. Drug-drug interactions in medical patients: effects on in-hospital treatment and relation to multiple drug use. Intern J Clin Pharm Ther 2000 Nov; 38: 504–13

    CAS  Google Scholar 

  7. Schimmel EM. The hazards of hospitalization. Ann Intern Med 1964; 60: 100–10

    CAS  PubMed  Google Scholar 

  8. Lasagna L. Drug toxicity in man - the problem and the challenge. Am NY Acad Sci 1965; 123: 312

    Article  CAS  Google Scholar 

  9. Smith JW, Seidl LG, Cluft LE. Studies on the epidemiology of adverse drug reactions. Ann Intern Med 1966; 65: 629–40

    CAS  PubMed  Google Scholar 

  10. Boston Collaborative Drug Surveillance Program. Adverse drug interactions. JAMA 1972; 220: 1238–9

    Google Scholar 

  11. Jick H. Drugs: remarkably nontoxic. N Engl J Med 1974; 291: 824–8

    Article  CAS  PubMed  Google Scholar 

  12. Kewitz H. Erhebungen uber die Arzneitherapie in der Klinik. Verh Dtsch Ges Inn Med 1977; 83: 1487–502

    CAS  PubMed  Google Scholar 

  13. Steel K, Gertman PM, Crescenzi C, et al. Jatrogenic illness on a general medical service at a university hospital. N Engl J Med 1981; 304: 638–42

    Article  CAS  PubMed  Google Scholar 

  14. Kondo JJ, Blaschke TF. Drug-drug interactions in geriatric patients. In: Platt D, editor. Gerontology, 4th International Symposium; 1989 Sep 14-17; Heidelberg, 257–69

  15. Einarson TR. Drug-related hospital admissions. Ann Pharmacother 1993 Jul/Aug; 27: 832–9

    CAS  PubMed  Google Scholar 

  16. Kuhlmann J. General aspects of drug interaction studies. In: Kuhlmann J. editor. Klinische Pharmakologie 11. Munchen: W. Zuckschwerdt Verlag, 1994: 1–8

    Google Scholar 

  17. Levy M, Kewitz H, Altwein W, et al. Hospital admissions due to adverse drug reactions: a comparative study from Jerusalem and Berlin. Eur J Clin Pharmacol 1980; 17: 25–31

    Article  CAS  PubMed  Google Scholar 

  18. Williamson J, Chopin JM. Adverse reactions to prescribed drugs in the elderly: a multicentre investigation. Age Ageing 1980; 9: 73–80

    Article  CAS  PubMed  Google Scholar 

  19. Popplewell PY, Henschke PJ. Acute admissions to a geriatric assessment unit. Med J Aust 1982; 1: 343–4

    CAS  PubMed  Google Scholar 

  20. Roughead EE, Gilbert AL, Primrose JG, et al. Drug-related hospital admissions: a review of Australian studies published 1988 - 1996. Med J Aust 1998 Apr; 168: 405–8

    CAS  PubMed  Google Scholar 

  21. Colt HG, Shapiro AP. Drug-induced illness as a cause for admission to a community hospital. J Am Geriatr Soc 1989; 37: 323–6

    CAS  PubMed  Google Scholar 

  22. Fuhr U. ‘Klinischbedeutsame’neue Arzneimittelinteraktionen. Med Kli 1999; 94(2): 120–4

    Article  CAS  Google Scholar 

  23. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients. JAMA 1998 Apr; 279(15): 1200–5

    Article  CAS  PubMed  Google Scholar 

  24. Borda IT, Slone D, Jick H. Assessment of adverse reactions within a drug surveillance program. JAMA 1968; 205: 645–17

    Article  CAS  PubMed  Google Scholar 

  25. Costa AJ. Potential drug interactions in an ambulatory geriatric population. Fam Pract 1991; 8: 234–6

    Article  CAS  PubMed  Google Scholar 

  26. McInnes GT, Brodie MJ. Drug interactions that matter: a critical reappraisal. Drugs 1988; 36: 83–110

    Article  CAS  PubMed  Google Scholar 

  27. Rockhold FW, Goldberg MR. An approach to the assessment of therapeutic drug interactions with fixed combination drug products. J Biopharm Stat 1996; 6(3): 231–40

    Article  CAS  PubMed  Google Scholar 

  28. Schmassmann-Suhijar D, Bullingham R, Gasser R, et al. Rhabdomyolysis due to interaction of simvastatin with mibefradil. Lancet 1998; 351: 1929–30

    Article  CAS  PubMed  Google Scholar 

  29. Nightingale SL. Two new warnings added to labeling for mibefradil. JAMA 1998; 279: 346

    Article  CAS  PubMed  Google Scholar 

  30. Welker HA, Wiltshire H, Bullingham R. Clinical pharmacokinetics of mibefradil. Clin Pharmacokinet 1998; 35: 405–23

    Article  CAS  PubMed  Google Scholar 

  31. Krayenbuhl JC, Vozeh S, Kondo-Oestreicher M, et al. Drug-drug interactions of new active substances: mibefradil example. Eur J Clin Pharmacol 1999; 55: 559–65

    Article  CAS  PubMed  Google Scholar 

  32. European Agency for the Evaluation of Medicinal Products (EMEA), Human Medicines Evaluation Unit. Committee for Proprietary Medicinal Products (CPMP) Note for guidance onthe investigation of drug interactions. London: EMEA, 1998: CPMP/EWP/560/95

  33. US Food and Drug Administration (FDA). Guidance for industry: Drug metabolism/drug interaction studies in the drug development process: studies in vitro. Rockville (MD): US Food and Drug Administration, 1997 Apr: 1–10

  34. US Food and Drug Administration (FDA). Guidance for industry: In vivo drug metabolism/drug interaction studies - studydesign, data analysis, and recommendations for dosing andlabeling. Rockville (MD): US Food and Drug Administration,1999 Nov: 1–16

  35. Kuhlmann J. Drug interaction studies during drug development: which, when, how. Int J Clin Pharmacol Ther 1994; 32(6): 305–11

    CAS  PubMed  Google Scholar 

  36. Steinijans VW, Hartmann M, Huber R, et al. Lack of pharmacokinetic interaction as an equivalence problem. Int J Clin Pharmacol Ther Toxicol 1991; 29: 323–8

    CAS  PubMed  Google Scholar 

  37. Bischoff H, Angerbauer R, Bender J, et al. Cerivastatin: pharmacology of a novel synthetic and highly active HMG-CoA reductase inhibitor. Atherosclerosis 1997; 135: 119–30

    Article  CAS  PubMed  Google Scholar 

  38. Kuhlmann J, Mück W, Bischoff H, et al. Cerivastatin (BAY w 6228): Anovel HMG-CoA reductase inhibitor. Cardiovasc Drug Rev 1999; 16: 236–63

    Article  Google Scholar 

  39. Stein EA, Schopen U, Cagatay M. A pooled efficacy analysis of cerivastatin in the treatment of primary hyperlipidemia. Clin Drug Invest 1999; 18: 433–44

    Article  CAS  Google Scholar 

  40. Mück W. Rational assessment of the interaction profile of cerivastatin supports its low propensity for drug interactions. Drugs 1998; 56(1 Suppl.): 15–23

    Article  PubMed  Google Scholar 

  41. Mück W. Clinical pharmacokinetics of cerivastatin. Clin Pharmacokinet 2000; 39: 99–116

    Article  PubMed  Google Scholar 

  42. Farnier M, Esper R. Efficacy and safety of cerivastatin/bezafibrate and cerivastatin/fenofibrate combination therapies [abstract no. 1101]. Diabetologica 2000; 43(1 Suppl.): A287

    Google Scholar 

  43. Pichard L, Fabre I, Fabre G, et al. Cyclosporin A drug interactions: screening for inducers and inhibitors of cytochrome P-450 (cyclosporin A oxidase) in primary cultures of human hepatocytes and in liver microsomes. Drug Metab Dispos 1990; 18: 595–606

    CAS  PubMed  Google Scholar 

  44. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58

    Article  CAS  PubMed  Google Scholar 

  45. Von Moltke LL, Greenblatt DJ, Schmider J, et al. In vitro approaches to predicting drug interactions in vivo. Biochem Pharmacol 1998; 55: 113–22

    Article  Google Scholar 

  46. Fuhr U, Weiss M, Kroemer HK, et al. Systematic screening for pharmacokinetic interactions during drug development. Int J Clin Pharm Ther 1996; 34: 139–51

    CAS  Google Scholar 

  47. Monahan BP, Ferguson CL, Killeavy ES, et al. Torsades de Pointes occurring in association with terfenadine use. JAMA 1990; 264: 2788–90

    Article  CAS  PubMed  Google Scholar 

  48. Diasio RB. Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br J Clin Pharmacol 1998; 46: 1–4

    Article  CAS  PubMed  Google Scholar 

  49. Ferslew KE, Hagerdorn AN, Harlan GC, et al. A fatal drug interaction between clozapine and fluoxetine. J Forensic Sci 1998; 43: 1082–5

    CAS  PubMed  Google Scholar 

  50. Celecoxib® package insert. Chicago: G.D. Searle & Co, 1999

  51. Avelox® package insert. West Haven: Bayer Corp, 2000 Aug

  52. Avandia® package insert. Pittsburgh: SmithKline Beecham,1999 May

  53. Viagra® package insert. New York: Pfizer Inc., 1999 Jun

  54. Yuan R, Parmelee T, Balian JD, et al. In vitro metabolic interaction studies: experience of the Food and Drug Administration. Clin Pharmacol Ther 1999; 66: 9–15

    Article  CAS  PubMed  Google Scholar 

  55. Davit B, Reynolds K, Yuan R, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling. J Clin Pharmacol 1999; 39: 899–910

    Article  CAS  PubMed  Google Scholar 

  56. Huang SM, Lesko LJ, Williams RL. Assessment of the quality and quantity of drug-drug interaction studies in recent NDA submissions: study design and data analysis issues. J Clin Pharmacol 1999; 39: 1006–14

    Article  CAS  PubMed  Google Scholar 

  57. Frye RF, Matzke GR, Adedoyin A, et al. Valdiation of the five-drug “Pittsburgh cocktail” approach for assessment of selective regulation of drug-metabolizing enzymes. Clin Pharmacol Ther 1997; 62: 365–76

    Article  CAS  PubMed  Google Scholar 

  58. Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events: implications for prevention. JAMA 1995; 274: 29–34

    Article  CAS  PubMed  Google Scholar 

  59. Bonnabry P, Sievering J, Leeman T, et al. Quantitative drug interactions prediction system (Q-DIPS): a computer-based prediction and management support system for drug metabolism interactions. Eur J Clin Pharmacol 1999; 55: 341–7

    Article  CAS  PubMed  Google Scholar 

  60. Wyatt JC, Walton R. Computer based prescribing. BMJ 1995; 311: 1181–2

    Article  CAS  PubMed  Google Scholar 

  61. Atkin PA, Finnegan TP, Ogle SJ, et al. Are medication cards useful? Med J Aust 1995; 162: 300–1

    CAS  PubMed  Google Scholar 

  62. Atkin PA, Stringer RS, Duffy JB, et al. The influence of information provided by patients in the accuracy of medication records. Med J Aust 1998; 169: 85–8

    CAS  PubMed  Google Scholar 

  63. Alderman CP. Patient-oriented strategies for the prevention of drug interactions. Drug Saf 2000; 22: 103–9

    Article  CAS  PubMed  Google Scholar 

  64. Sihvo S, Klaukka T, Martikainen J. et al. Frequency of daily over-the-counter drug use and potential clinically significant over-the counter-prescription drug interactions in the Finnish adult population. Eur J Clin Pharmacol 2000; 56: 495–9

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dedicated with gratitude to Professor Norbert Rietbrock on the occasion of his 70th birthday.

We would like to express our thanks to Mrs S. Herrmann for secretarial and administrative help of quite exceptional quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Kuhlmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhlmann, J., Mück, W. Clinical-Pharmacological Strategies to Assess Drug Interaction Potential During Drug Development. Drug-Safety 24, 715–725 (2001). https://doi.org/10.2165/00002018-200124100-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200124100-00001

Keywords

Navigation