Advertisement

Drug Safety

, Volume 24, Issue 9, pp 645–663 | Cite as

Adverse Gastrointestinal Effects of Mycophenolate Mofetil

Aetiology, Incidence and Management
  • Matthias BehrendEmail author
Review Article

Abstract

Mycophenolate mofetil (MMF) is a relatively new immunosuppressive drug. It inhibits inosine monophosphate dehydrogenase, a key enzyme in the de novo pathway of purine synthesis, and thus causes lymphocyte-selective immunosuppression. Large clinical trials have revealed the efficacy of MMF in the prevention of allograft rejection when administered together with cyclosporin or tacrolimus and corticosteroids.

Although the adverse effect profile of MMF is comparatively benign, gastrointestinal adverse effects are a major concern. These effects are partially explained by the increased immune suppression, by the mode of action and by interactions, particularly with other immunosuppressants. The aetiology of the rarest gastrointestinal adverse effects is still not completely clear. Therapy depends upon the clinical gravity of the adverse effects and is therefore a case of waiting and observing. An adjustment of dosage of immunosuppressants according to the clinical situation and, particularly in the case of MMF, spreading the total dosage over more than 2 daily doses are often sufficient. Should adverse effects persist for a longer period of time and be of a more serious nature, a comprehensive invasive diagnostic process is necessary, including endoscopy and biopsy and the search for opportunistic infections. In this case, dosage reduction or the complete withdrawal of MMF seems to be unavoidable.

Severe gastrointestinal complications with MMF are rare, but when they do occur they may require extensive diagnosis and treatment. In the future, therapeutic drug monitoring and, where necessary, pharmacological modifications of MMF could lead to a further reduction of adverse effects with an equal or even increased efficacy.

Keywords

Tacrolimus Acute Rejection Therapeutic Drug Monitoring Renal Transplant Recipient Gastrointestinal Adverse Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Koyama H, Cecka JM. Rejection episodes. Clin Transpl 1992; 391–404Google Scholar
  2. 2.
    Kliem V, Eberhard OK, Oldhafer K, et al. FK 506 in the treatment of steroid- and OKT3-resistant rejection in renal transplant recipients: reduced dosage and anti-infective prophylaxis. Transplant Proc 1996; 28(6): 3166–8PubMedGoogle Scholar
  3. 3.
    Allison AC, Eugui EM. The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin Immunopathol 1993; 14(4): 353–80PubMedCrossRefGoogle Scholar
  4. 4.
    Sollinger HW. Mycophenolate mofetil. Kidney Int Suppl 1995; 52: S14–7PubMedGoogle Scholar
  5. 5.
    Platz KP, Sollinger HW, Hullett DA, et al. RS-61443 - a new, potent immunosuppressive agent. Transplantation 1991; 51(1): 27–31PubMedCrossRefGoogle Scholar
  6. 6.
    Fulton B, Markham A. Mycophenolate mofetil: a review of its pharmacodynamic and pharmacokinetic properties and clinical efficacy in renal transplantation. Drugs 1996; 51(2): 278–98PubMedCrossRefGoogle Scholar
  7. 7.
    Behrend M. Mycophenolate mofetil: suggested guidelines for use in kidney transplantation. BioDrugs 2001; 15(1): 37–53PubMedCrossRefGoogle Scholar
  8. 8.
    Franklin TJ, Cook JM. The inhibition of nucleic acid synthesis by mycophenolic acid. Biochem J 1969; 113: 515–24PubMedGoogle Scholar
  9. 9.
    Gosio B. Richerche batterilogische e chimiche sulle alterazióni del mais. Riv Ig Sanita Pubblica Ann 1896; 7: 825–49Google Scholar
  10. 10.
    Giblett ER, Ammann AJ, Wara DW, et al. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975; I(7914): 1010–3CrossRefGoogle Scholar
  11. 11.
    Allison AC, Hovi T, Watts RW, et al. Immunological observations on patients with Lesch-Nyhan syndrome, and on the role of de-novo purine synthesis in lymphocyte transformation. Lancet 1975; II(7946): 1179–83CrossRefGoogle Scholar
  12. 12.
    Sanquer S, Breil M, Baron C, et al. Trough blood concentrations in long-term treatment with mycophenolate mofetil [letter]. Lancet 1998; 351(9115): 1557PubMedCrossRefGoogle Scholar
  13. 13.
    Allison AC, Eugui EM. Mycophenolate mofetil, a rationally designed immunosuppressive drug. Clin Transplant 1993; 7: 96–112Google Scholar
  14. 14.
    Allison AC, Eugui EM. Preferential suppression of lymphocyte proliferation by mycophenolic acid and predicted long-term effects of mycophenolate mofetil in transplantation. Transplant Proc 1994; 26(6): 3205–10PubMedGoogle Scholar
  15. 15.
    Natsumeda Y, Carr SF. Human type I and II IMP dehydrogenases as drug targets. Ann N Y Acad Sci 1993; 696: 88–93PubMedCrossRefGoogle Scholar
  16. 16.
    Zimmermann AG, Gu JJ, Laliberte J, et al. Inosine-5′-monophosphate dehydrogenase: regulation of expression and role in cellular proliferation and T lymphocyte activation. Prog Nucleic Acid Res Mol Biol 1998; 61: 181–209PubMedCrossRefGoogle Scholar
  17. 17.
    Schutz E, Shipkova M, Armstrong VW, et al. Therapeutic drug monitoring of mycophenolic acid: comparison of HPLC and immunoassay reveals new MPA metabolites. Transplant Proc 1998; 30(4): 1185–7PubMedCrossRefGoogle Scholar
  18. 18.
    Schutz E, Shipkova M, Armstrong VW, et al. Identification of a pharmacologically active metabolite of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Clin Chem 1999; 45(3): 419–22PubMedGoogle Scholar
  19. 19.
    Sollinger HW, Deierhoi MH, Belzer FO, et al. RS-61443 - a phase I clinical trial and pilot rescue study. Transplantation 1992; 53(2): 428–32PubMedCrossRefGoogle Scholar
  20. 20.
    Data on file, Investigational brochure: mycophenolate mofetil (RS-61443-000). Palo Alto (CA): Syntex Research, 1996Google Scholar
  21. 21.
    Zucker K, Rosen A, Tsaroucha A, et al. Unexpected augmentation of mycophenolic acid pharmacokinetics in renal transplant patients receiving tacrolimus and mycophenolate mofetil in combination therapy, and analogous in vitro findings. Transpl Immunol 1997; 5(3): 225–32PubMedCrossRefGoogle Scholar
  22. 22.
    Smak Gregoor PJ, van Gelder T, Hesse CJ, et al. Mycophenolic acid plasma concentrations in kidney allograft recipients with or without cyclosporin: a cross-sectional study. Nephrol Dial Transplant 1999; 14(3): 706–8PubMedCrossRefGoogle Scholar
  23. 23.
    Zucker K, Tsaroucha A, Olson L, et al. Evidence that tacrolimus augments the bioavailability of mycophenolate mofetil through the inhibition of mycophenolic acid glucuronidation. Ther Drug Monit 1999; 21(1): 35–43PubMedCrossRefGoogle Scholar
  24. 24.
    Gregoor PJ, de Sevaux RG, Hene RJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation 1999; 68(10): 1603–6PubMedCrossRefGoogle Scholar
  25. 25.
    Pou L, Brunet M, Cantarell C, et al. Mycophenolic acid plasma concentrations: influence of comedication. Ther Drug Monit 2001; 23(1): 35–8PubMedCrossRefGoogle Scholar
  26. 26.
    van Gelder T, Klupp J, Barten MJ, et al. Comparison of the effects of tacrolimus and cyclosporine on the pharmacokinetics of mycophenolic acid. Ther Drug Monit 2001; 23(2): 119–28PubMedCrossRefGoogle Scholar
  27. 27.
    van Gelder T, Klupp J, Barten MJ, et al. Co-administration of tacrolimus and mycophenolate mofetil does not increase mycophenolic acid (MPA) exposure, but co-administration of cyclosporine inhibits the enterohepatic recirculation of MPA, thereby decreasing its exposure. J Heart Lung Transplant 2001; 20(2): 160–1PubMedCrossRefGoogle Scholar
  28. 28.
    Jain A, Venkataramanan R, Hamad IS, et al. Pharmacokinetics of mycophenolic acid after mycophenolate mofetil administration in liver transplant patients treated with tacrolimus. J Clin Pharmacol 2001; 41(3): 268–76PubMedCrossRefGoogle Scholar
  29. 29.
    Kaplan B, Meier-Kriesche HU, Friedman G, et al. The effect of renal insufficiency on mycophenolic acid protein binding. J Clin Pharmacol 1999; 39(7): 715–20PubMedCrossRefGoogle Scholar
  30. 30.
    Cho S, Hodge E, Navarro M. Mycophenolate mofetil improves long-term graft survival following renal transplantation in patients experiencing delayed graft function. International Mycophenolate mofetil Renal Study Groups. Transplant Proc 1999; 31(1-2): 322–3PubMedCrossRefGoogle Scholar
  31. 31.
    Pally C, Tanner M, Rizvi H, et al. Tolerability profile of sodium mycophenolate (ERL080) and mycophenolate mofetil with and without cyclosporine (Neoral) in the rat. Toxicology 2001; 157(3): 207–15PubMedCrossRefGoogle Scholar
  32. 32.
    Rihs G, Papageorgiou C, Pfeffer S. Sodium mycophenolate. Acta Crystallogr C 2000; 56(Pt 4): 432–3Google Scholar
  33. 33.
    European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection [see comments]. Lancet 1995; 345 (8961): 1321–5Google Scholar
  34. 34.
    Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. A blinded, randomized clinical trial of mycophenolate mofetil for the prevention of acute rejection in cadaveric renal transplantation [see comments]. Transplantation 1996; 61 (7): 1029–37Google Scholar
  35. 35.
    Sollinger HW, U.S. Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60(3): 225–32PubMedCrossRefGoogle Scholar
  36. 36.
    Guerard A, Rabodonirina M, Cotte L, et al. Intestinal microsporidiosis occurring in two renal transplant recipients treated with mycophenolate mofetil. Transplantation 1999; 68(5): 699–707PubMedCrossRefGoogle Scholar
  37. 37.
    Allison AC, Eugui EM. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin Transplant 1996; 10(1 Pt 2): 77–84PubMedGoogle Scholar
  38. 38.
    Sanquer S, Breil M, Baron C, et al. Induction of inosine monophosphate dehydrogenase activity after long-term treatment with mycophenolate mofetil. Clin Pharmacol Ther 1999; 65(6): 640–8PubMedCrossRefGoogle Scholar
  39. 39.
    Ducloux D, Ottignon Y, Semhoun-Ducloux S, et al. Mycophenolate mofetil-induced villous atrophy. Transplantation 1998; 66(8): 1115–6PubMedCrossRefGoogle Scholar
  40. 40.
    van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. Arandomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation [see comments]. Transplantation 1999; 68(2): 261–6PubMedCrossRefGoogle Scholar
  41. 41.
    Mourad M, Malaise J, Chaib ED, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin Chem 2001; 47(1): 88–94PubMedGoogle Scholar
  42. 42.
    Berribi C, Loirat C, Jacqz-Aigrain E. Mycophenolate mofetil may induce apoptosis in duodenal villi. Pediatr Nephrol 2000; 14(2): 177–8PubMedGoogle Scholar
  43. 43.
    McCauley R, Kong SE, Hall J. Glutamine and nucleotide metabolism within enterocytes. JPEN J Parenter Enteral Nutr 1998; 22(2): 105–11PubMedCrossRefGoogle Scholar
  44. 44.
    Yanchar NL, Fedorak RN, Kneteman NM, et al. Nutritional and intestinal effects of the novel immunosuppressive agents: deoxyspergualin, rapamycin, and mycophenolate mofetil. Clin Biochem 1996; 29(4): 363–9PubMedCrossRefGoogle Scholar
  45. 45.
    Fedorak RN, Chang EB, Madara JL, et al. Intestinal adaptation to diabetes. Altered Na-dependent nutrient absorption in streptozocin-treated chronically diabetic rats. J Clin Invest 1987; 79(6): 1571–8PubMedCrossRefGoogle Scholar
  46. 46.
    Kaplan B, Meier-Kriesche HU, Jacobs MG, et al. Prevalence of cytomegalovirus in the gastrointestinal tract of renal transplant recipients with persistent abdominal pain. Am J Kidney Dis 1999; 34(1): 65–8PubMedCrossRefGoogle Scholar
  47. 47.
    Gallagher H, Andrews PA. Cytomegalovirus infection and abdominal pain with mycophenolate mofetil: is there a link? Drug Saf 2001; 24(6) 405–12PubMedCrossRefGoogle Scholar
  48. 48.
    Sarmiento JM, Dockrell DH, Schwab TR, et al. Mycophenolate mofetil increases cytomegalovirus invasive organ disease in renal transplant patients. Clin Transplant 2000; 14(2): 136–8PubMedCrossRefGoogle Scholar
  49. 49.
    Sarmiento JM, Munn SR, Paya CV, et al. Is cytomegalovirus infection related to mycophenolate mofetil after kidney transplantation? A case-control study. Clin Transplant 1998; 12(5): 371–4PubMedGoogle Scholar
  50. 50.
    ter Meulen CG, Wetzels JF, Hilbrands LB. The influence of mycophenolate mofetil on the incidence and severity of primary cytomegalovirus infections and disease after renal transplantation. Nephrol Dial Transplant 2000; 15(5): 711–4PubMedCrossRefGoogle Scholar
  51. 51.
    Noble S, Faulds D. Ganciclovir: an update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. Drugs 1998; 56(1): 115–46PubMedCrossRefGoogle Scholar
  52. 52.
    Bienvenu B, Thervet E, Bedrossian J, et al. Development of cytomegalovirus resistance to ganciclovir after oral maintenance treatment in a renal transplant recipient. Transplantation 2000; 69(1): 182–4PubMedCrossRefGoogle Scholar
  53. 53.
    Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol 2000; 14(2): 100–4PubMedCrossRefGoogle Scholar
  54. 54.
    Oellerich M, Shipkova M, Schutz E, et al., German Study Group on Mycophenolate mofetil Therapy in Pediatric Renal Transplant Recipients. Pharmacokinetic and metabolic investigations of mycophenolic acid in pediatric patients after renal transplantation: implications for therapeutic drug monitoring. Ther Drug Monit 2000; 22(1): 20–6PubMedCrossRefGoogle Scholar
  55. 55.
    Weber LT, Schutz E, Lamersdorf T, et al., German Study Group on Mycophenolate Mofetil (MMF) Therapy. Pharmacokinetics of mycophenolic acid (MPA) and free MPA in paediatric renal transplant recipients: a multicentre study. Nephrol Dial Transplant 1999; 14Suppl. 4: 33–4PubMedCrossRefGoogle Scholar
  56. 56.
    Filler G, Mai I. Limited sampling strategy for mycophenolic acid area under the curve. Ther Drug Monit 2000; 22(2): 169–73PubMedCrossRefGoogle Scholar
  57. 57.
    Roberti I, Reisman L. A comparative analysis of the use of mycophenolate mofetil in pediatric vs. adult renal allograft recipients. Pediatr Transplant 1999; 3(3): 231–5PubMedCrossRefGoogle Scholar
  58. 58.
    Mycophenolate Mofetil Renal Refractory Rejection Study Group. Mycophenolate mofetil for the treatment of refractory, acute, cellular renal transplant rejection. Transplantation 1996; 61(5): 722–9Google Scholar
  59. 59.
    Halloran P, Mathew T, Tomlanovich S, et al., International Mycophenolate Mofetil Renal Transplant Study Groups. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection [published erratum appears in Transplantation 1997 Feb 27; 63 (4): 618]. Transplantation 1997; 63(1): 39–47PubMedCrossRefGoogle Scholar
  60. 60.
    Jacobs F, Mamzer-Bruneel MF, Skhiri H, et al. Safety of the mycophenolate mofetil-allopurinol combination in kidney transplant recipients with gout [letter]. Transplantation 1997; 64(7): 1087–8PubMedCrossRefGoogle Scholar
  61. 61.
    Sollinger HW, Belzer FO, Deierhoi MH, et al. RS-61443 (mycophenolate mofetil). A multicenter study for refractory kidney transplant rejection. Ann Surg 1992; 216(4): 513–8PubMedCrossRefGoogle Scholar
  62. 62.
    Goldblum R. Therapy of rheumatoid arthritis with my cophenolate mofetil. Clin Exp Rheumatol 1993; 11Suppl. 8: S117–9PubMedGoogle Scholar
  63. 63.
    Fellermann K, Steffen M, Stein J, et al. Mycophenolate mofetil: lack of efficacy in chronic active inflammatory bowel disease. Aliment Pharmacol Ther 2000; 14(2): 171–6PubMedCrossRefGoogle Scholar
  64. 64.
    Neurath MF, Wanitschke R, Peters M, et al. Mycophenolate mofetil for treatment of active inflammatory bowel disease. Clinical and immunological studies. Ann N Y Acad Sci 1998; 859: 315–8PubMedCrossRefGoogle Scholar
  65. 65.
    Allison AC, Eugui EM. Immunosuppressive and other effects of mycophenolic acid and an ester prodrug, mycophenolate mofetil. Immunol Rev 1993; 136: 5–28PubMedCrossRefGoogle Scholar
  66. 66.
    Azuma H, Binder J, Heemann U, et al. Effects of RS61443 on functional and morphological changes in chronically rejecting rat kidney allografts. Transplantation 1995; 59(4): 460–6PubMedGoogle Scholar
  67. 67.
    Deierhoi MH, Kauffman RS, Hudson SL, et al. Experience with mycophenolate mofetil (RS61443) in renal transplantation at a single center. Ann Surg 1993; 217(5): 476–82PubMedCrossRefGoogle Scholar
  68. 68.
    Freise CE, Hebert M, Osorio RW, et al. Maintenance immunosuppression with prednisone and RS-61443 alone following liver transplantation. Transplant Proc 1993; 25(2): 1758–9PubMedGoogle Scholar
  69. 69.
    Behrend M. A review of clinical experience with the novel immunosuppressive drug mycophenolate mofetil in renal transplantation. Clin Nephrol 1996; 45(5): 336–41PubMedGoogle Scholar
  70. 70.
    Behrend M. Mycophenolate mofetil. Expert Opin Investig Drugs 1998; 7: 1509–1519PubMedCrossRefGoogle Scholar
  71. 71.
    Mycophenolate Mofetil Acute Renal Rejection Study Group. Mycophenolate mofetil for the treatment of a first acute renal allograft rejection [published erratum appears in Transplantation 1998 Apr 15; 65 (7) following table of contents]. Transplantation 1998; 65 (2): 235–41Google Scholar
  72. 72.
    Sterneck M, Fischer L, Gahlemann C, et al. Mycophenolate mofetil for prevention of liver allograft rejection: initial results of a controlled clinical trial. Ann Transplant 2000; 5(1): 43–6PubMedGoogle Scholar
  73. 73.
    Papatheodoridis GV, O’Beirne J, Mistry P, et al. Mycophenolate mofetil monotherapy in stable liver transplant patients with cyclosporine-induced renal impairment: a preliminary report. Transplantation 1999; 68(1): 155–7PubMedCrossRefGoogle Scholar
  74. 74.
    Fisher RA, Ham JM, Marcos A, et al. A prospective randomized trial of mycophenolate mofetil with neoral or tacrolimus after orthotopic liver transplantation. Transplantation 1998; 66(12): 1616–21PubMedCrossRefGoogle Scholar
  75. 75.
    Herrero JI, Quiroga J, Sangro B, et al. Conversion of liver transplant recipients on cyclosporine with renal impairment to mycophenolate mofetil. Liver Transpl Surg 1999; 5(5): 414–20PubMedCrossRefGoogle Scholar
  76. 76.
    Costanzo MR, Mycophenolate mofetil Study Investigators. Results of the randomized trial of mycophenolate mofetil vs azathioprine in heart transplantation [abstract]. American Society for Transplant Physicians 15th Annual Scientific Meeting; 1997 May 10; ChicagoGoogle Scholar
  77. 77.
    Kobashigawa JA. Mycophenolate mofetil in cardiac transplantation. Curr Opin Cardiol 1998; 13(2): 117–21PubMedCrossRefGoogle Scholar
  78. 78.
    Ensley RD, Bristow MR, Olsen SL, et al. The use of mycophenolate mofetil (RS-61443) in human heart transplant recipients. Transplantation 1993; 56(1): 75–82PubMedCrossRefGoogle Scholar
  79. 79.
    Present DH. Is mycophenolate mofetil a new alternative in the treatment of inflammatory bowel disease? Gut 1999; 44(5): 592–3PubMedCrossRefGoogle Scholar
  80. 80.
    Florin TH, Roberts RK, Watson MR, et al. Treatment of steroid refractory inflammatory bowel disease (IBD) with Mycophenolate mofetil (MMF). Aust N Z J Med 1998; 28(3): 344–5PubMedCrossRefGoogle Scholar
  81. 81.
    Orth T, Peters M, Schlaak JF, et al. Mycophenolate mofetil versus azathioprine in patients with chronic active ulcerative colitis: a 12-month pilot study. Am J Gastroenterol 2000; 95(5): 1201–7PubMedCrossRefGoogle Scholar
  82. 82.
    Radford-Smith GL, Taylor P, Florin TH. Mycophenolate mofetil in IBD patients. Lancet 1999; 354(9187): 1386–7PubMedCrossRefGoogle Scholar
  83. 83.
    Roth D, Colona J, Burke GW, et al. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. Transplantation 1998; 65(2): 248–52PubMedCrossRefGoogle Scholar
  84. 84.
    Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial of FK 506/prednisone vs FK 506/azathioprine/prednisone in renal transplant patients. Transplant Proc0 1995; 27(1): 814–7PubMedGoogle Scholar
  85. 85.
    Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial to compare tacrolimus and prednisone with and without mycophenolate mofetil in patients undergoing renal transplantation: first report. J Urol 1998; 160(6 Pt 1): 1982–5PubMedGoogle Scholar
  86. 86.
    Shapiro R, Jordan ML, Scantlebury VP, et al. A prospective, randomized trial of tacrolimus/prednisone versus tacrolimus/prednisone/mycophenolate mofetil in renal transplant recipients. Transplantation 1999; 67(3): 411–5PubMedCrossRefGoogle Scholar
  87. 87.
    Miller J, FK506/MMF Dose-Ranging Kidney Transplant Study Group. Tacrolimus and mycophenolate mofetil in renal transplant recipients: one year results of a multicenter, randomized dose ranging trial. Transplant Proc 1999; 31(1-2): 276–7PubMedCrossRefGoogle Scholar
  88. 88.
    Pirsch J, Bekersky I, Vincenti F, et al. Coadministration of tacrolimus and mycophenolate mofetil in stable kidney transplant patients: pharmacokinetics and tolerability. J Clin Pharmacol 2000; 40(5): 527–32PubMedCrossRefGoogle Scholar
  89. 89.
    Kreis H, Cisterne JM, Land W, et al. Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 2000; 69(7): 1252–60PubMedCrossRefGoogle Scholar
  90. 90.
    Birkeland SA, Larsen KE, Rohr N. Pediatric renal transplantation without steroids. Pediatr Nephrol 1998; 12(2): 87–92PubMedCrossRefGoogle Scholar
  91. 91.
    Fille G, Ehric J. Mycophenolate mofetil for rescue therapy in acute renal transplant rejection in children should always be monitored by measurement of trough concentration [letter]. Nephrol Dial Transplant 1997; 12(2): 374–5CrossRefGoogle Scholar
  92. 92.
    Benfield MR, Stablei D, Tejan A. Trends in immunosuppressive therapy: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant 1999; 3(1): 27–32PubMedCrossRefGoogle Scholar
  93. 93.
    Benfield MR, Symons JM, Bynon S, et al. Mycophenolate mofetil in pediatric renal transplantation [see comments]. Pediatr Transplant 1999; 3(1): 33–7PubMedCrossRefGoogle Scholar
  94. 94.
    Neu AM, Benfield M. What is the role for mycophenolate mofetil in pediatric renal transplantation? Pediatr Transplant 1999; 3(1): 83–7PubMedCrossRefGoogle Scholar
  95. 95.
    Seikaly MG. Mycophenolate mofetil: is it worth the cost? The in-favor opinion [see comments]. Pediatr Transplant 1999; 3(1): 79–82PubMedCrossRefGoogle Scholar
  96. 96.
    Butani L, Palmer J, Baluarte HJ, et al. Adverse effects of mycophenolate mofetil in pediatric renal transplant recipients with presumed chronic rejection. Transplantation 1999; 68(1): 83–6PubMedCrossRefGoogle Scholar
  97. 97.
    Ferraris JR, Tambutti ML, Redal MA, et al. Conversion from azathioprine to mycophenolate mofetil in pediatric renal transplant recipients with chronic rejection. Transplantation 2000; 70(2): 297–301PubMedCrossRefGoogle Scholar
  98. 98.
    Filler G, Gellermann J, Zimmering M, et al. Effect of adding mycophenolate mofetil in paediatric renal transplant recipients with chronical cyclosporine nephrotoxicity. Transpl Int 2000; 13(3): 201–6PubMedCrossRefGoogle Scholar
  99. 99.
    European Mycophenolate Mofetil Cooperative Study Group. Mycophenolate mofetil in renal transplantation: 3-year results from the placebo-controlled trial. Transplantation 1999; 68 (3): 391–6Google Scholar
  100. 100.
    US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate mofetil in cadaveric renal transplantation. Am J Kidney Dis 1999; 34 (2): 296–303Google Scholar
  101. 101.
    Mathew TH, Tricontinental Mycophenolate Mofetil Renal Transplantation Study Group. Ablinded, long-term, randomized multicenter study of mycophenolate mofetil in cadaveric renal transplantation: results at three years [published erratum appears in Transplantation 1998 Sep 27; 66 (6): 817]. Transplantation 1998; 65(11): 1450–4PubMedCrossRefGoogle Scholar
  102. 102.
    Hricik DE, Kupin WL, First MR. Steroid-free immunosuppression after renal transplantation. J Am Soc Nephrol 1994; 4(8 Suppl.): S10–6PubMedGoogle Scholar
  103. 103.
    Hilbrands LB, Hoitsma AJ, Koene RA. The effect of immunosuppressive drugs on quality of life after renal transplantation. Transplantation 1995; 59(9): 1263–70PubMedGoogle Scholar
  104. 104.
    Hall BM, Tiller DJ, Hardie I, et al. Comparison of three immunosuppressive regimens in cadaver renal transplantation: long-term cyclosporine, short-term cyclosporine followed by azathioprine and prednisolone, and azathioprine and prednisolone without cyclosporine. N Engl J Med 1988; 318(23): 1499–507PubMedCrossRefGoogle Scholar
  105. 105.
    Opelz G, Collaborative Transplant Study. Influence of treatment with cyclosporine, azathioprine and steroids on chronic allograft failure. Kidney Int Suppl 1995; 52: S89–92PubMedGoogle Scholar
  106. 106.
    Grinyo JM, Gil-Vernet S, Seron D, et al. Steroid withdrawal in mycophenolate mofetil-treated renal allograft recipients. Transplantation 1997; 63(11): 1688–90PubMedCrossRefGoogle Scholar
  107. 107.
    Kupin W, Venkat KK, Goggins M, et al. Improved outcome of steroid withdrawal inmycophenolate mofetil-treated primary cadaveric renal transplant recipients. Transplant Proc 1999; 31(1-2): 1131–2PubMedCrossRefGoogle Scholar
  108. 108.
    Lebranchu Y, M55002 Study Group. Comparison of two corticosteroid regimens in combination with CellCept and cyclosporine Afor prevention of acute allograft rejection: 12 month results of a double-blind, randomized, multi-center study. Transplant Proc 1999; 31(1-2): 249–50PubMedCrossRefGoogle Scholar
  109. 109.
    Birkeland SA. Steroid-free immunosuppression after kidney transplantation with antithymocyte globulin induction and cyclosporine and mycophenolate mofetil maintenance therapy. Transplantation 1998; 66(9): 1207–10PubMedCrossRefGoogle Scholar
  110. 110.
    Smak Gregoor PJ, van Gelder T, van Besouw NM, et al. Randomized study on the conversion of treatment with cyclosporine to azathioprine or mycophenolate mofetil followed by dose reduction [see comments]. Transplantation 2000; 70(1): 143–8PubMedGoogle Scholar
  111. 111.
    Kim HC, Park SB. Mycophenolate mofetil-induced ischemic colitis. Transplant Proc 2000; 32(7): 1896–7PubMedCrossRefGoogle Scholar
  112. 112.
    Chueh S, Huang C, Lai M. Mycophenolate mofetil-induced hyperbilirubinemia in renal transplant recipients. Transplant Proc 2000; 32(7): 1901–2PubMedCrossRefGoogle Scholar
  113. 113.
    Bullingham RE, Nicholls A, Hale M. Pharmacokinetics of mycophenolate mofetil (RS61443): a short review. Transplant Proc 1996; 28(2): 925–9PubMedGoogle Scholar
  114. 114.
    Hale MD, Nicholls AJ, Bullingham RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther 1998; 64(6): 672–83PubMedCrossRefGoogle Scholar
  115. 115.
    Langman LJ, LeGatt DF, Halloran PF, et al. Pharmacodynamic assessment of mycophenolic acid-induced immunosuppression in renal transplant recipients. Transplantation 1996; 62(5): 666–72PubMedCrossRefGoogle Scholar

Copyright information

© Adis International Limited 2001

Authors and Affiliations

  1. 1.Abteilung für Viszeral- und TransplantationschirurgieMedizinische Hochschule HannoverHannoverGermany

Personalised recommendations