Skip to main content
Log in

What Will Be the Role of Pharmacogenetics in Evaluating Drug Safety and Minimising Adverse Effects?

  • Current Opinion
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

In the US, adverse drug reactions (ADRs) rank between the fourth to sixth leading cause of death, ahead of pneumonia and diabetes mellitus. An important reason for the high incidence of serious and fatal ADRs is that the existing drug development paradigms do not generate adequate information on the mechanistic sources of marked variability in pharmacokinetics and pharmacodynamics of new therapeutic candidates, precluding treatments from being tailored for individual patients.

Pharmacogenetics is the study of the hereditary basis of person-to-person variations in drug response. The focus of pharmacogenetic investigations has traditionally been unusual and extreme drug responses resulting from a single gene effect. The Human Genome Project and recent advancements in molecular genetics now present an unprecedented opportunity to study all genes in the human genome, including genes for drug metabolism, drug targets and postreceptor second messenger machinery, in relation to variability in drug safety and efficacy. In addition to sequence variations in the genome, high throughput and genome-wide transcript profiling for differentially regulated mRNA species before and during drug treatment will serve as important tools to uncover novel mechanisms of drug action. Pharmacogenetic-guided drug discovery and development represent a departure from the conventional approach which markets drugs for broad patient populations, rather than smaller groups of patients in whom drugs may work more optimally.

Pharmacogenetics provides a rational framework to minimise the uncertainty in outcome of drug therapy and clinical trials and thereby should significantly reduce the risk of drug toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: meta-analysis of prospective studies. JAMA 1998; 279: 1200–5

    Article  PubMed  CAS  Google Scholar 

  2. Drews J. Genomic sciences and the medicine of tomorrow. Nat Biotechnol 1996; 14: 1516–8

    Article  PubMed  CAS  Google Scholar 

  3. Kleyn PW, Vesell ES. Genetic variation as a guide to drug development. Science 1998; 281: 1820–1

    Article  PubMed  CAS  Google Scholar 

  4. Kalow W. Pharmacogenetic research: a revolutionary science. J Psychiatry Neurosci 1999; 24: 139–40

    PubMed  CAS  Google Scholar 

  5. Weber WW. Populations and genetic polymorphisms. Mol Diagn 1999; 4: 299–307

    Article  PubMed  CAS  Google Scholar 

  6. Kalow W. Pharmacogenetics: heredity and the response to drugs. 1st edition. Philadelphia: WB Saunders, 1962: 1–231

    Google Scholar 

  7. Motulsky AG. Drug reactions, enzymes and biochemical genetics. JAMA 1957; 165: 835–7

    Article  CAS  Google Scholar 

  8. Grant DM. Pharmacogenomics and the changing face of clinical pharmacology. Can J Clin Pharmacol 1999; 6: 131–2

    PubMed  CAS  Google Scholar 

  9. Sadée W. Genomics and drugs: finding the optimal drug for the right patient. Pharm Res 1998; 15: 959–63

    Article  PubMed  Google Scholar 

  10. Kurth JH. Pharmacogenomics: future promise of a tool for identifying patients at risk. Drug Info J 2000; 34: 223–7

    Article  Google Scholar 

  11. Nebert DW. Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist? Clin Genet 1999; 56: 247–58

    Article  PubMed  CAS  Google Scholar 

  12. Mancinelli L, Cronin M, Sadée W. Pharmacogenomics: the promise of personalized medicine. AAPS Pharmsci 2000; 2(1) article 4 [online]. Available at URL: http://www.pharmsci.org/ [Acessed 2000 Dec 19]

    Google Scholar 

  13. Nebert DW. Suggestions for the nomenclature of human alleles: relevance to ecogenetics, pharmacogenetics and molecular epidemiology. Pharmacogenetics 2000; 10: 279–90

    Article  PubMed  CAS  Google Scholar 

  14. Ingelman-Sundberg M, Oscarson M, McLellan RA. Polymorphic human cytochrome P450 enzymes: an opportunity for individualized drug treatment. Trends Pharmacol Sci 1999; 20: 342–9

    Article  PubMed  CAS  Google Scholar 

  15. Eaton DL, Farin F, Omiecinski CJ, et al. Genetic susceptibility. In: Rom WN, editor. Environmental and Occupational Medicine, 3rd ed. Philadelphia (PA): Williams & Wilkins, 1998: 209–21

    Google Scholar 

  16. Nebert DW. Pharmacogenetics: 65 candles on the cake. Pharmacogenetics 1997; 7: 435–40

    Article  Google Scholar 

  17. Bertilsson L. Geographical/interracial differences in polymorphic drug oxidation. Current state of knowledge of cytochromes P450 (CYP) 2D6 and 2C19. Clin Pharmacokinet 1995; 29: 192–209

    Article  PubMed  CAS  Google Scholar 

  18. Sjöqvist F. The past, present and future of clinical pharmacology. Eur J Clin Pharmacol 1999; 55: 553–7

    Article  PubMed  Google Scholar 

  19. Bertilsson L, Dahl ML. Polymorphic drug oxidation. Relevance to the treatment of psychiatric disorders. CNS Drugs 1996; 5: 200–23

    Article  CAS  Google Scholar 

  20. Kalow W, Bertilsson L. Interethnic factors affecting drug response. Adv Drug Res 1994; 25: 1–53

    CAS  Google Scholar 

  21. Kalow W. Pharmacogenetics in biological perspective. Pharmacol Rev 1997; 49: 369–79

    PubMed  CAS  Google Scholar 

  22. Brøsen K. Drug-metabolizing enzymes and therapeutic drug monitoring in psychiatry. Ther Drug Monit 1996; 18: 393–6

    Article  PubMed  Google Scholar 

  23. Flockhart DA, Oesterheld JR. Cytochrome P450-mediated drug interactions. Child Adolesc Psychiatr Clin N Am 2000; 9: 43–76

    PubMed  CAS  Google Scholar 

  24. Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–31

    PubMed  CAS  Google Scholar 

  25. Alfaro CL, Lam YW, Simpson J, et al. CYP2D6 inhibition by fluoxetine, paroxetine, sertraline and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations. J Clin Pharmacol 2000; 40: 58–66

    Article  PubMed  CAS  Google Scholar 

  26. Sindrup SH, Brøsen K. The pharmacogenetics of codeine hypoalgesia. Pharmacogenetics 1995; 5: 335–46

    Article  PubMed  CAS  Google Scholar 

  27. Lin KM, Anderson D, Poland RE. Ethnicity and psychopharmacology. Bridging the gap. Psychiatr Clin North Am 1995; 18: 635–47

    PubMed  CAS  Google Scholar 

  28. Yuan R, Parmelee T, Balian JD, et al. In vitro metabolic interaction studies: experience of the food and drug administration. Clin Pharmacol Ther 1999; 66: 9–15

    Article  PubMed  CAS  Google Scholar 

  29. White RE. Short- and long-term projections about the use of drug metabolism in drug discovery and development. Drug Metab Disp 1998; 26: 1213–6

    CAS  Google Scholar 

  30. Bechtel PR, Alvan G. Criteria for the choice and definition of healthy volunteers and of patients for phase I and phase II studies in drug development. Eur J Clin Pharmacol 1989; 36: 549–50

    Article  PubMed  CAS  Google Scholar 

  31. Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an ethiopian population carrying duplicated and multiduplicated functional CYP2D6 alleles. J Pharmacol Exp Ther 1996; 278: 441–6

    PubMed  CAS  Google Scholar 

  32. Wilkinson GR. Cytochrome P4503A (CYP3A) metabolism: prediction of in vivo activity in humans. J Pharmacokinet Biopharm 1996; 24: 475–90

    PubMed  CAS  Google Scholar 

  33. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  34. Okey AB. Enzyme induction in the cytochrome P-450 system. Pharmacol Ther 1990; 45: 241–98

    Article  PubMed  CAS  Google Scholar 

  35. Tavadia SM, Mydlarski PR, Reis MD, et al. Screening for azathioprine toxicity: a pharmacoeconomic analysis based on a target case. J Am Acad Dermatol 2000; 42: 628–32

    PubMed  CAS  Google Scholar 

  36. Spire-Vayron de la Moureyre C, Debuysere H, Mastain B, et al. Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European population. Br J Pharmacol 1998; 125: 879–87

    Article  Google Scholar 

  37. Weinshilboum RM. Methylation pharmacogenetics: thiopurine methyltransferase as a model system. Xenobiotica 1992; 22: 1055–71

    Article  PubMed  CAS  Google Scholar 

  38. Chou WH, Yan FX, de Leon J, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphismon outcome and costs associated with severe mental illness. J Clin Psychopharmacol 2000; 20: 246–51

    Article  PubMed  CAS  Google Scholar 

  39. Costa LG. The emerging field of ecogenetics. Neurotoxicol 2000; 21: 85–90

    CAS  Google Scholar 

  40. Eaton DL. Biotransformation enzyme polymorphism and pesticide susceptibility. Neurotoxicol 2000; 21: 101–11

    CAS  Google Scholar 

  41. Kalow W, Tang BK. Caffeine as a metabolic probe: exploration of the enzyme-inducing effects of cigarette smoking. Clin Pharmacol Ther 1991; 49: 44–8

    Article  PubMed  CAS  Google Scholar 

  42. Sachse C, Brockmoller J, Bauer S, et al. Functional significance of a C—>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–9

    Article  PubMed  CAS  Google Scholar 

  43. Piscitelli SC, Burstein AH, Chaitt D, et al. Indinavir concentrations and St John’s wort. Lancet 2000; 355: 547–8

    Article  PubMed  CAS  Google Scholar 

  44. Roby CA, Anderson GD, Kantor E, et al. St John’sWort: effect on CYP3A4 activity. Clin Pharmacol Ther 2000; 67: 451–7

    Article  PubMed  CAS  Google Scholar 

  45. Johne A, Brockmoller J, Bauer S, et al. Pharmacokinetic interaction of digoxin with an herbal extract from St John’s wort (Hypericum perforatum). Clin Pharmacol Ther 1999; 66: 338–45

    Article  PubMed  CAS  Google Scholar 

  46. Dresser GK, Spence JD, Bailey DG. Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet 2000; 38: 41–57

    Article  PubMed  CAS  Google Scholar 

  47. Weber WW. Pharmacogenetics. New York (NY): Oxford University Press, 1997: 41–70

    Google Scholar 

  48. Hoffmeyer S, Burk O, von Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 2000; 97: 3473–8

    Article  PubMed  CAS  Google Scholar 

  49. von Moltke LL, Greenblatt DJ. Drug transporters in psychopharmacology—are they important? J Clin Psychopharmacol 2000; 20: 291–4

    Article  Google Scholar 

  50. Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res 1999; 16: 408–14

    Article  PubMed  CAS  Google Scholar 

  51. Eichler HG, Müller M. Drug distribution. The forgotten relative in clinical pharmacokinetics. Clin Pharmacokinet 1998; 34: 95–9

    Article  PubMed  CAS  Google Scholar 

  52. Uhr M, Steckler T, Yassouridis A, et al. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood-brain barrier deficiency due to Mdr1a p-glycoprotein gene disruption. Neuropsychopharmacology 2000; 22: 380–7

    Article  PubMed  CAS  Google Scholar 

  53. Levy G. Predicting effective drug concentrations for individual patients. Determinants of pharmacodynamic variability. Clin Pharmacokinet 1998; 34: 323–33

    Article  PubMed  CAS  Google Scholar 

  54. Arranz MJ, Kerwin RW. Neurotransmitter-related genes and antipsychotic response: pharmacogenetics meets psychiatric treatment. Ann Med 2000; 32: 128–33

    Article  PubMed  CAS  Google Scholar 

  55. Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999; 286: 487–91

    Article  PubMed  CAS  Google Scholar 

  56. Lima JJ, Thomason DB, Mohamed MHN, et al. Impact of genetic polymorphisms of the beta2-adrenergic receptor on albuterol bronchodilator pharmacodynamics. Clin Pharmacol Ther 1999; 65: 519–25

    Article  PubMed  CAS  Google Scholar 

  57. Propping P, Nothen MM. Genetic variation of CNS receptors - a new perspective for pharmacogenetics. Pharmacogenetics 1995; 5: 318–25

    Article  PubMed  CAS  Google Scholar 

  58. Basile VS, Masellis M, Badri F, et al. Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 1999; 21: 17–27

    Article  PubMed  CAS  Google Scholar 

  59. Segman R, Neeman T, Heresco-Levy U, et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 1999; 4: 247–53

    Article  PubMed  CAS  Google Scholar 

  60. Steen VM, Lovlie R, MacEwan T, et al. Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry 1997; 2: 139–45

    Article  PubMed  CAS  Google Scholar 

  61. Meyer UA, Amrein R, Balant LP, et al. Antidepressants and drug-metabolizing enzymes - expert group report. Acta Psychiatr Scand 1996; 93: 71–9

    Article  PubMed  CAS  Google Scholar 

  62. Peck CC, Barr WH, Benet LZ, et al. Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. Clin Pharmacol Ther 1992; 51: 465–73

    Article  PubMed  CAS  Google Scholar 

  63. Halushka MK, Fan JB, Bentley K, et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nat Genet 1999; 22: 239–47

    Article  PubMed  CAS  Google Scholar 

  64. Lander ES, Schork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–48

    Article  PubMed  CAS  Google Scholar 

  65. Hacia JG, Brody LC, Collins FS. Applications of DNA chips for genomic analysis. Mol Psychiatry 1998; 3: 483–92

    Article  PubMed  CAS  Google Scholar 

  66. Debouck C, Goodfellow PN. DNA microarrays in drug discovery and development. Nat Genet 1999; 21 Suppl.: 48–50

    Article  Google Scholar 

  67. Hyman SE. The millennium of mind, brain, and behavior. Arch Gen Psychiatry 2000; 57: 88–9

    Article  PubMed  CAS  Google Scholar 

  68. Trevan JW. The error of determination of toxicity. Proc R Soc Lond B 1927; 101: 483–514

    Article  CAS  Google Scholar 

  69. Kalow W, Ozdemir V, Tang BK, et al. The science of pharmacological variability. Clin Pharmacol Ther 1999; 66: 445–7

    Article  PubMed  CAS  Google Scholar 

  70. Tett SE, Holford NHG, McLachlan AJ. Population pharmacokinetics and pharmacodynamics: an underutilized resource. Drug Info J 1998; 32: 693–710

    Article  Google Scholar 

  71. Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metab Rev 1984; 15: 153–71

    Article  PubMed  CAS  Google Scholar 

  72. Sheiner LB. Learning versus confirming in clinical drug development. Clin Pharmacol Ther 1997; 61: 275–91

    Article  PubMed  CAS  Google Scholar 

  73. Sheiner LB. The intellectual health of clinical drug evaluation. Clin Pharmacol Ther 1991; 50: 4–9

    Article  PubMed  CAS  Google Scholar 

  74. Kalow W, Tang BK, Endrenyi L. Hypothesis: comparisons of inter- and intra-individual variations can substitute for twin studies in drug research. Pharmacogenetics 1998; 8: 283–9

    Article  PubMed  CAS  Google Scholar 

  75. Ozdemir V, Kalow W, Tang BK, et al. Evaluation of the genetic contribution to CYP3A4 activity in vivo: A repeated drug administration method. Pharmacogenetics 2000; 10: 373–88

    Article  PubMed  CAS  Google Scholar 

  76. Hugo V. Histoire D’un Crime, 1st ed. Paris: J. Hetzel & Cie, [189-?]: 1–243

  77. Strausberg RL, Austin MJF. Functional genomics: technological challenges and opportunities. Physiol Genomics 1999; 1: 25–32

    PubMed  CAS  Google Scholar 

  78. Motulsky AG. If I had a gene test, what would I have and who would I tell? Lancet 1999; 354 Suppl. 1: S35–7

    Article  Google Scholar 

  79. Jonsen AR, Durfy SJ, Burke W, et al. The advent of the ‘unpatients’. Nat Med 1996; 2: 622–4

    Article  PubMed  CAS  Google Scholar 

  80. Collins FS, Bochm K. Avoiding casualties in the genetic revolution: the urgent need to educate physicians about genetics. Acad Med 1999; 74: 48–9

    PubMed  CAS  Google Scholar 

  81. Hinderling PH. Detection of populations at risk and problem drug during drug development and in pharmacotherapy. Ther Drug Monit 1988; 10: 245–9

    Article  PubMed  CAS  Google Scholar 

  82. Shi MM, Bleavins MR, de la Inglesia FA. Technologies for detecting genetic polymorphisms in pharmacogenomics. Mol Diagn 1999; 4: 343–51

    Article  PubMed  CAS  Google Scholar 

  83. Chichon S, Nothen MM, Reitschel M, et al. Pharmacogenetics of schizophrenia. Am J Med Genet 2000; 97: 98–106

    Article  Google Scholar 

Download references

Acknowledgements

Vural Ozdemir is the recipient of a postdoctoral fellowship (Ontario Mental Health Foundation) and a young investigator grant (National Alliance for Research on Schizophrenia and Affective Disorders, New York, US).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kalow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozdemir, V., Shear, N.H. & Kalow, W. What Will Be the Role of Pharmacogenetics in Evaluating Drug Safety and Minimising Adverse Effects?. Drug-Safety 24, 75–85 (2001). https://doi.org/10.2165/00002018-200124020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-200124020-00001

Keywords

Navigation